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Abstract

The subiculum is positioned at a critical juncture at the interface of the hippocampus with the

rest of the brain. However, the exact roles of the subiculum in most hippocampal-dependent

memory tasks remain largely unknown. One obstacle to make comparisons of neural firing

patterns between the subiculum and hippocampus is the broad firing fields of the subicular

cells. Here, we used spiking phases in relation to theta rhythm to parse the broad firing field

of a subicular neuron into multiple subfields to find the unique functional contribution of the

subiculum while male rats performed a hippocampal-dependent visual scene memory task.

Some of the broad firing fields of the subicular neurons were successfully divided into multi-

ple subfields similar to those in the CA1 by using the theta phase precession cycle. The new

paradigm significantly improved the detection of task-relevant information in subicular cells

without affecting the information content represented by CA1 cells. Notably, we found that

multiple fields of a single subicular neuron, unlike those in the CA1, carried heterogeneous

task-related information such as visual context and choice response. Our findings suggest

that the subicular cells integrate multiple task-related factors by using theta rhythm to asso-

ciate environmental context with action.

Introduction

The hippocampal formation plays key roles in fundamental cognitive functions, including spa-

tial navigation and episodic memory [1–3]. The subiculum, a region within the hippocampal

formation, has long been considered the area from which cortical outputs of the hippocampus

emanate [4,5]. However, viewing the subiculum as an area that passively transmits hippocam-

pal information to cortical regions might be inappropriate, because the subiculum is con-

nected not only with the CA1 of the hippocampus but also with other areas, including the

medial prefrontal cortex, entorhinal cortex, retrosplenial cortex, perirhinal cortex, postrhinal

cortex, nucleus accumbens, basal amygdala, and various subcortical regions [6–8].

Physiologically, it has been reported that the neural correlates of the subiculum are signifi-

cantly different from those of the CA1 during spatial navigation. Specifically, neurons in the

subiculum tend to exhibit broader place fields than those in the CA1 [9–12]. Also, place cells
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in the subiculum are more attuned to movement-related factors, such as direction and motion,

during navigation compared with CA1 place cells [13–16]. A few studies have also suggested

that the subiculum is essential in remembering places and environmental contexts [17–21].

However, the exact roles of subicular neurons, especially in a goal-directed memory task, still

remain largely unknown.

In our previous study, we reported that neurons in both the subiculum and CA1 showed

rate remapping according to task-related factors, specifically visual scene and choice response

in a visual scene memory (VSM) task. In the VSM task, rats were required to make choices in

a T-maze using the visual scene stimulus presented around the maze [11]. Interestingly, place

cells in the CA1 showed such firing properties while coding very specific locations in space,

whereas cells in the subiculum fired similarly while mapping broader areas (e.g., entire stem or

choice arm region), as if they represented the cognitive structure of the task by schematically

parsing the environment. On the basis of these results, we speculated that position-linked envi-

ronmental information in the hippocampus in the VSM task [22,23] might be translated into

contextual action–related information that can be communicated with other brain regions.

One major obstacle that poses great difficulties for investigations of the neural correlates of

subicular neurons is their higher spontaneous firing rates and broader firing fields in space

compared with those of place cells in the hippocampus [10–12]. These firing characteristics of

subicular neurons make it difficult to apply the conventional analytical techniques optimized

for place cells recorded from hippocampus. In the hippocampus, such techniques work well

because place fields are more restricted to specific locations of the environment with a higher

signal-to-noise ratio compared with the subiculum. For example, in our previous study [11],

we sought to identify field boundaries of subicular cells by finding local minima through statis-

tical comparisons of trial-by-trial firing rates between neighboring bins. However, such meth-

ods had shortcomings, such as defining some subicular cells as having no fields and ignoring

small subfields in the presence of a more dominant field with a higher firing peak.

Notably, some previous studies attempted to parse the broad spatial firing field of a subicu-

lar neuron into smaller fields using the phases of spikes in relation to theta rhythm [10,24].

Here, inspired by these studies, we compared the traditional rate–based field detection method

with the theta phase–based field detection method using the same physiological data recorded

from the CA1 and subiculum in our previous study [11]. The current study showed that the

phase-based analysis could successfully parse subicular firing fields into multiple subfields and

that these newly parsed place fields in the subiculum represented task-related information bet-

ter. Importantly, some subicular cells represented multiplex information associated with the

VSM task through their phase-based subfields, possibly suggesting a unique role of the subicu-

lum in integrating environmental information with action.

Results

Electrophysiological recording in the subiculum and CA1 in the VSM task

In the VSM task, rats (n = 5) learned to associate each scene stimulus with either a left or right

turn response on the T-maze (Fig 1A). During recording sessions, rats performed the VSM

task well above performance criterion (75%) for all stimuli (p-values < 0.0004 for all scenes,

one-sample Wilcoxon signed-rank test; Fig 1B). Tetrodes located at the boundaries of either

the CA1 or subiculum (including the border between them) were excluded from the analysis

(Fig 1C). To quantify the anatomical distributions of recording locations for the CA1 and sub-

iculum along the proximodistal axis, we measured the relative positions from which individual

cells were recorded and normalized them across rats (Fig 1D). Only complex-spiking cells sat-

isfying our unit-filtering criteria (CA1, n = 270; subiculum, n = 151; see Methods) were used
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for analysis. Subicular cells were found along the entire proximodistal axis, whereas CA1 cells

were mainly recorded from the intermediate to proximal portions of the CA1. More details

can be found in our previous study [11].

Limitations of the firing rate–based method in detecting place fields in the

subiculum

Prior studies [9–12] reported that cells in the subiculum fire at higher rates with lower spatial

selectivity than those in the CA1, a finding also confirmed in our study. That is, cells recorded

from the CA1 fired at focal and restricted locations along the T-maze (Fig 2A), whereas cells

recorded from the subiculum tended to show broad and continuous firing fields (Fig 2B),

making it challenging to identify a place field using the conventional field detection method

based on spatial firing rates. Specifically, although some subicular cells exhibited spatially

tuned place fields similar to CA1 place fields (cells 234–4–1–5 and 232–5–4–8 in Fig 2B),

some background spiking activity continued to occur outside their place fields. Furthermore,

other subicular cells fired continuously across the entire track (cells 232–4–17–1 and 232–5–

20–1 in Fig 2B), complicating efforts to define the field boundaries for these cells. These differ-

ences in field characteristics between the CA1 and subiculum can be more clearly observed in

Fig 1. Behavioral task and histological verification of electrophysiological recordings. (A) VSM task. As a trial

begins, the rat runs out onto the track of a T-maze from the start box (S), and one of 4 visual scene stimuli (Zebra, Z;

Bamboo, B; Pebbles, P; Mountain, M) is presented on LCD monitors. Each scene stimulus is associated with either the

left or right arm of the T-maze. (B) Behavioral performance during recording sessions (21 sessions from 5 rats). Each

dot corresponds to the percent correct for each scene stimulus of a session and is color-coded for individual rats.

Box plot indicates interquartile range and median value. The median values exceeded the performance criterion

(dashed line, 75%) for all scenes. (C) Photomicrographs of Nissl-stained coronal brain sections with verified electrode

tips (black arrows). Numbers above the arrows indicate normalized positions of marked recording sites along the

proximodistal axis. Dashed lines represent the anatomical boundaries of the CA1 or subiculum. Upper and lower rows

show recording sites from the subiculum and CA1, respectively. (D) Proportional distribution of cells recorded in the

CA1 (blue) and SUB (red) along the proximodistal axis (CA1, n = 270; SUB, n = 151). The positions are normalized to

account for differences in relative length between 2 regions. The dashed line at 0.36 indicates the boundary between 2

regions. Data associated with this figure can be found in S1 Data file. SUB, subiculum; VSM, visual scene memory.

https://doi.org/10.1371/journal.pbio.3001546.g001
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population rate maps constructed by stacking the rate maps of individual cells (Fig 2A and

2B).

To quantitatively compare differential firing patterns between the 2 regions, we first classi-

fied cells according to the number of place fields: no place field, a single field, or multiple fields.

A spatial firing distribution was considered a place field if its peak firing rate exceeded 1 Hz

and its spatial information content (bits/spike) exceeded 0.5. Field boundaries were set at the

spatial bins in which the associated firing rates dropped below 33% of the peak firing rate (see

Methods). Of cells that were active during the rat’s outbound journey on the T-maze, approxi-

mately 90% were single-field cells in the CA1, while only about half of cells exhibited either sin-

gle- or multi-fields in the subiculum (w2
ð1Þ

= 122.96, p< 0.0001; chi-squared test; Fig 2C). With

respect to basic firing properties, cells in the CA1 showed lower firing rates (Z = 5.14,

p< 0.0001; Fig 2D) with higher spatial information (Z = 14.2317, p< 0.0001; Wilcoxon rank-

sum test; Fig 2E), compared with those in the subiculum. Overall, as we reported previously

(Lee and colleagues, 2018), subicular cells exhibited less spatial tuning than CA1 cells (spatial

selectivity: 4.04 ± 0.08 in CA1, 2.24 ± 0.07 in subiculum; sparsity: 0.41 ± 0.01 in CA1,

Fig 2. Poorer spatial firing patterns in the subiculum than the CA1. (A, B) Firing rate maps of single cells (left) and

cell populations (right) in the CA1 (A) and subiculum (B), plotted as a function of the linearized position on the T-

maze from the start box to the food well in both arms. Red arrowheads indicate the choice point after which rats’

positions diverged between the left and right choice trials. On the firing rate maps of single cells, legitimate place fields

are overlaid with thick black lines, and non-place fields that did not pass the place field criteria are marked by gray

lines. Serial numbers on the upper left corner are cell IDs. Population firing rate maps are sorted according to peak

firing rate of each cell on the T-maze. White dashed lines and red arrowheads indicate the choice points. (C)

Proportional differences of place cells between the subiculum and CA1, defined by the firing rate–based method. Cells

are classified into 3 groups according to the number of place fields per cell: “SF” for one field, “MF” for more than one

field, and “NF” for no field. ���p< 0.0001. (D–F) Differences in mean firing rate (D), SI score (E), and place field

width (F) of recorded cells between the CA1 and subiculum. ���p< 0.0001. Data associated with this figure can be

found in S1 Data file. fw, food well; MF, multi-field; NF, non-place field; SF, single-field; SI, spatial information; st box,

start box; SUB, subiculum.

https://doi.org/10.1371/journal.pbio.3001546.g002
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0.74 ± 0.17 in subiculum; mean ± SEM; p-values < 0.0001; Wilcoxon rank-sum test). In addi-

tion, field width was larger in subicular place cells than those in CA1 (Z = 5.96, p< 0.0001;

Wilcoxon rank-sum test) for both single- and multi-field cells (Fig 2F). Taken together with

the comparisons made between the 2 regions based on other traditional measures in our previ-

ous study [11], these spatial firing patterns made it difficult to define place fields for individual

neurons in the subiculum compared with those in the CA1.

Identification of latent place fields based on theta phase precession of

spiking

Our findings show that the fundamental differences in spatial firing characteristics between

the CA1 and subiculum make it difficult to use conventional approaches commonly employed

for analyzing place fields in both regions because these approaches have mostly been developed

for place fields of cells in the hippocampus and not for those in the subiculum. In fact, a large

number of subicular cells that would have been defined as no-field cells by conventional field

detection methods did fire more vigorously at particular locations of the track (Fig 2B, cells

232–4–17–1 and 232–5–20–1). However, the conventional field detection algorithm was

unable to detect such spatial firing patterns because of the higher spontaneous firing activities

throughout the track in subicular cells compared with CA1 neurons. Our previous study tried

to locate field boundaries in these cells by adjusting the threshold for detecting field bound-

aries or by finding local minima through statistical comparisons of trial-by-trial firing rates

between neighboring bins. However, such methods still defined some subicular cells as having

no field. Furthermore, the conventional field detection algorithm tended to ignore a small sub-

field if there was one dominant field with a very high firing peak.

To overcome such limitations, we explored the possibility of defining place fields using

theta phase precession, a well-known phenomenon in which theta-related phases of spikes of a

neuron gradually shift to earlier phases as the rat repeatedly passes through the cell’s place field

[25,26]. In particular, we examined whether the broad firing field of a subicular neuron could

be divided into multiple subfields if it were defined by theta phases of spikes. As shown in Fig

3, theta phase precession occurred robustly within the identified unitary place field in both the

CA1 and subiculum as the rat ran along the track (CA1 single-field cells 234–2–12–2 and 561–

2–3–1 in Fig 3A; subicular single-field cells 232–5–4–8 and 234–4–1–5 in Fig 3B). Impor-

tantly, those cells previously classified as having no place field exhibited multiple cycles of

robust theta phase precessions in the subiculum (subicular non-place field cells 232–7–17–1

and 232–4–17–1 in Fig 3C).

To identify a spike cluster that belonged to a single theta precession cycle in the phase posi-

tion plot, we used the DBSCAN (Density-Based Spatial Clustering with Applications of Noise)

algorithm (see Methods for details). We compared the results of two different methods for

detecting place fields: a firing rate–based method that finds a “rate-based field”, and the theta

phase precession–based DBSCAN method, which finds a “phase-based field”. Both algorithms

produced the same results in some cells in both the CA1 and subiculum (Fig 4A). However,

we were also able to find new place fields for other cells based on the phase-based method. Spe-

cifically, some cells that were originally classified as single-field cells were converted into

multi-field cells by application of the theta phase–based clustering algorithm (Fig 4B–4D).

That is, in some cells, existing rate-based fields were subdivided into more than 2 phase-based

fields (Fig 4B). In other cells, additional place fields that might not have been detectable by the

rate-based method (mostly owing to low firing peaks) were revealed by the phase-based clus-

tering (Fig 4C). In a final group of cells, the phase-based method separated an existing field

and added a new field at the same time (Fig 4D).
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The proportions of cells showing different numbers of place fields changed when using the

phase-based clustering method compared with the rate-based method. Specifically, phase-

based clustering classified 20% of CA1 cells and 62% of subicular cells as multi-field cells and

only 9% of subicular cells as having no field (w2
ð1Þ

= 106.70, p< 0.0001; chi-squared test; Figs

5A and S1). When the categorical changes were examined for each cell group, it turned out

that three-quarters of the rate-based non-place cells in the CA1 and subiculum exhibited mul-

tiple phase-based place fields (Fig 5B). In addition, some rate-based single-field cells in the

CA1 (14%) and subiculum (45%) were converted to multi-field cells by the phase-based clus-

tering. We also found that some rate-based multi-field cells in the subiculum exhibited addi-

tional phase-based fields after applying the phase-based protocol (“MF-added” in Fig 5B).

Although the widths of phase-based place fields remained still significantly larger in the subi-

culum than in the CA1 (Z = 4.08, p< 0.0001; Wilcoxon rank-sum test; Fig 5C), other firing

properties of individual fields defined by theta phase became comparable between the 2

Fig 3. Robust multiple theta phase precessions in the subiculum. (A–C) Representative examples of theta phase

precession in the single-field cells in CA1 (A), subiculum (B), and non-place field cells in the subiculum (C). The left

column for each cell consists of linearized position (top), a raw trace of theta oscillation (middle), and spiking theta

phases (bottom) in the temporal axis in a single trial. Spikes in the raw theta traces are marked by red circular dots.

Scale bar, 250 μV. Spiking theta phases are plotted within a range of 360˚, and the initial phase is adjusted for clear

observation of theta phase precession. Serial numbers in the upper right corner are cell IDs. The right column displays

a linearized firing rate map (top) and a position phase plot (bottom) on the spatial axis across a session. Black solid

lines overlaid on the firing rate maps indicate verified place fields, whereas black dotted lines are non-place fields.

Numbers above firing rate maps denote peak firing rates (Hz) and spatial information scores (bit/spike) of place or

non-place fields. Red arrowheads and red dashed lines mark choice points. Note that subicular cells showed multiple

cycles of theta phase precession, some of which were as robust as those of CA1 cells. fw, food well; NF, non-place field;

SF, single-field; st box, start box; SUB, subiculum.

https://doi.org/10.1371/journal.pbio.3001546.g003
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regions. In particular, when we compared the 2 regions by both rate-based spatial information

(bit/spike) and phase-based spatial information (bit/cm) measured for all spiking activities

associated with outbound journeys in individual neurons (see Methods for details), the distri-

butions were well separated between the CA1 and subiculum (S2A Fig). However, when the

same distributions were obtained by using only the spiking activities within the boundaries of

the phase-based fields, the 2 distributions of CA1 and subiculum largely overlapped (S2B Fig).

Fig 4. Identification of place fields based on spiking theta phases in the CA1 and subiculum. (A–D) For each cell

example, a linearized firing field based on firing rates (rate-based field indicated by solid black line; top), linearized

firing fields based on theta phases (phase-based fields denoted by different colors; middle), and a position phase plot

on the spatial axis across a session (bottom) are shown. Gray dotted line indicates the mean firing field. The numbers

on the right corner indicate spatial information scores using firing rates (bit/spike; front) and spiking theta phases (bit/

cm; back) obtained from the entire firing activities of a cell (gray) or individual phase-based fields (color coded). Red

arrowheads denote choice points. Serial numbers above the firing rate maps are cell IDs. Spike clusters in position

phase plots are color-coded with the same colors used for the firing rate maps. Black straight lines on spike clusters

indicate the circular–linear regression lines. The numbers and asterisks in the box with colored borders are circular–

linear correlation coefficients and their significance for phase-based fields in the same color. �p< 0.05, ��p< 0.01,
���p< 0.0001. fw, food well; st box, start box; SUB, subiculum.

https://doi.org/10.1371/journal.pbio.3001546.g004
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These findings suggest that the place cells in both regions may share more common firing

properties than previously thought when the place fields are defined by theta phases of spikes

instead of the conventional rate–based method.

We next examined the robustness of theta phase precession of place cells in the subiculum

compared with that in the CA1 using circular statistics (linear regression and linear correla-

tion) for each spike cluster [27]. We found that the slope of theta phase precession was signifi-

cantly different between the 2 regions (F(1,435) = 4.43, p = 0.036), but it was not affected by the

field–identification method (F(1,613) = 0.59, p = 0.44, two-way mixed ANOVA with region as

the between-subject factor and the field identification method as the within-subject factor; Fig

5D). There was no interaction between the region and field-detection method (F(1,613) = 0.52,

Fig 5. Advantages of theta phase–based field detection. (A) Difference between the CA1 and subiculum in the

proportion of place cells associated with different numbers of place fields, when defined using the theta phase–based

method. Cells are classified into 3 groups: “SF” for one field, “MF” for more than one field, and “NF” for no field.
���p< 0.0001. (B) Categorical changes of cells within each rate-based cell group (NF, SF, and MF on the x axis) as the

field identification method was shifted to the one using theta phase. The bar graph shows the proportion of cells in

each cell group (classified by the rate-based method) was recategorized after the phase-based method. (C) Regional

differences in place field width after phase-based field detection. ���p< 0.0001. (D–E) Cumulative distributions of

TPP slope (D) and correlation coefficient (E) of place cells for each method (rate-based, FR, and theta phase-based, TP)

and each region. Line graphs on the right side of each panel display mean values and standard errors for the same data.

(F–G) Regional differences in the onset phase (H) and the phase shift range (G) of the TPP. These measurements were

obtained only from the phase-based fields that showed significant TPP. �p< 0.05, ���p< 0.0001. (H) Changes in the

proportion of place cells that exhibited significant TPPs (w/t TPP) when the fields were identified by the conventional

rate–based method (FR) versus the theta phase–based method (TP) in the CA1 and subiculum. ���p< 0.0001. Data

associated with this figure can be found in S1 Data file. FR, firing rate; MF, multi-field; NF, non-place field; SF, single-

field; TP, theta phase; TPP, theta phase precession.

https://doi.org/10.1371/journal.pbio.3001546.g005
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p = 0.47), mostly attributable to the reduced regional difference when the phase precession

slope was calculated based on the phase-based fields compared to the rate-based fields. The

precession slope of rate-based fields tended to be steeper in the CA1 than in the subiculum

(t(805) = 2.01, p = 0.045 for Bonferroni-corrected unpaired two-sample t test; corrected α =

0.0125), an outcome that could be expected based on the larger field width of subicular place

cells. However, the regional difference in slope diminished when using the phase-based

method (t(496) = 1.64, p = 0.102). The slope of theta phase precession was not affected by the

field detection method within each region (CA1, t(555) = 1.39, p = 0.16; SUB, t(637) = 0.03,

p = 0.98). On the other hand, the strength of theta phase precession of place cells evaluated by

circular–linear correlation coefficient was significantly different between the CA1 and subicu-

lum (F(1,445) = 31.57, p< 0.0001) and between the 2 field detection methods (F(1,655) = 50.25,

p< 0.0001; two-way mixed ANOVA; Fig 5E). The interaction between the region and method

was not significant (F(1,655) = 3.68, p = 0.055). Post hoc tests revealed that the phase precession

strength increased in phase-based fields compared with rate-based fields in both regions (CA1,

t(565) = 4.77, p< 0.0001; subiculum, t(695) = 5.36, p< 0.0001; unpaired two-sample t test with

Bonferroni correction; corrected α = 0.0125). Although precession strength was significantly

lower in the subiculum than in the CA1 even based on the phase-based field detection (rate-

based, t(896) = 5.08, p< 0.0001; phase-based, t(541) = 4.03, p< 0.0001), the precession strength

in the subiculum increased closer to that of the CA1.

To further compare the basic properties of theta phase precession between CA1 and subicu-

lum, we screened for the phase-based fields that showed significant theta phase precession

based on the following criteria: (i) the range of phase shift�90˚; (ii) the slope of circular–linear

regression line<0; and (iii) p-value of circular–linear correlation�0.05. In both CA1 and sub-

iculum, 70% of phase-based fields exhibited significant theta phase precession by meeting all 3

criteria (CA1, n = 235/337; subiculum, n = 212/300). In the subiculum, the onset phase was

slightly, yet significantly, earlier (Z = 2.81, p = 0.005; Fig 5F) and the range of phase shift was

significantly smaller (Z = 4.48, p< 0.0001, Wilcoxon rank-sum test; Fig 5G) than in CA1. The

proportion of place cells showing significant theta phase precession increased in the subiculum

as the phase-based method was applied compared to using the conventional rate–based

method (w2
ð1Þ

= 61.33, p< 0.0001; chi-squared test; Fig 5H), but this was not the case in the

CA1 (w2
ð1Þ

= 4.95, p = 0.084). These findings indicate that the field detection method based on

theta phase precession of spikes effectively identified multiple subfields enveloped in the broad

firing activities of the subicular cells.

Increase in task-relevant information in phase-based fields of subicular

neurons

We previously reported that firing of neurons in the CA1 and subiculum was correlated with

the visual scene stimulus and choice response in the VSM task in the form of rate remapping

[11,22]. Here, we examined whether scene- or choice-dependent rate remapping also appeared

in phase-based fields of neurons in the CA1 and subiculum. To quantify rate remapping, we

obtained a rate difference index (RDI) for individual rate-based and phase-based fields using

the firing rate maps associated with different task conditions (see Methods; Figs 6A and S3).

The RDI for choice response (RDICHC) was calculated using only the spiking activity recorded

up to the choice point. In contrast, for the scene-based RDI (RDISCN), spiking activity associ-

ated with places beyond the choice point were also included because only the scenes associated

with the same choice arm were compared. Place fields representing only arm areas were

excluded from the RDI analysis, and the cells having such arm fields only were excluded as

well (CA1, n = 212; subiculum, n = 132).
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Fig 6. Scene- and choice-dependent rate remapping is enhanced in the subiculum but not in the CA1 based on the

phase-based field detection. (A) A representative subicular cell illustrating how different indices for scene (RDISCN)

and choice (RDICHC) are obtained. The linearized firing rate map in the left panel shows rate-based fields and phase-

based fields averaged across all trials. Middle panel shows the firing rate maps associated with different task-relevant

information. Rate-based fields are marked as black lines (upper row), and phase-based fields are color-coded (bottom

row). Shaded areas overlaid on the fields are standard errors. Numbers above the fields indicate RDI values. The

rightmost panel shows RDISCN and RDICHC values for individual fields marked as dots on the scatter plot; open black

dots correspond to rate-based fields and color-coded dots denote phase-based fields. (B) Example neurons in the CA1

and subiculum with their RDI values associated with scene and choice information. Within each neuron, its linearized

firing rate map (left) and RDI scatter plot (right) are shown as in (A). Solid black lines on the firing rate maps are FR-

based firing fields, and color-coded lines are TP-based place fields, with arm fields depicted in dotted lines. Serial

numbers above the rate maps are cell IDs. Red arrowheads indicate choice points. (C) Illustration showing how RDI

differences (i.e., ΔRDISCN and ΔRDICHC) are measured using the rate-based method (open black circle) and phase-

based method (closed black circle). The filled black circle is a representative point for the phase-based method, marked
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We found that the phase-based field detection method extracted task-relevant information

more clearly than the rate-based method, especially in the subiculum. It also revealed new

information that went undetected by the conventional rate–based method. For example, the

phase-based method identified 2 fields for a subicular cell shown in Fig 6A on the stem of the

maze that were unidentifiable by the conventional rate–based method. One of the phase-based

fields (red in Fig 6A) showed a larger amount of scene information than the rate-based field

(0.32> 0.06 for RDISCN–L and 0.43> 0.25 for RDISCN–R). The other phase-based field (green

in Fig 6A) showed minimal information on the visual scene but carried more information on

the choice response compared with the rate-based field (0.26 > 0.08 for RDICHC). As illus-

trated by the neuronal examples in Fig 6B, some phase-based fields showed stronger rate

remapping for scenes than for choices (cell 234–1–13–5 in CA1; cells 415–13–18–1, 415–13–

10–1 in the subiculum), whereas other phase-based fields exhibited the opposite pattern (cell

561–1–14–6 in CA1; cells 232–6–19–1 and 415–10–19–2 in the subiculum). Furthermore,

scene and choice information increased to a similar degree in some phase-based fields (Fig 6B,

cell 234–3–19–6 in CA1; cells 415–11–19–1 and 232–4–18–3 in the subiculum).

We next investigated the extent to which task-related information carried by a single unit

changed when the field detection protocol was changed from the rate-based to the phase-

based method. For this purpose, if one cell showed multiple fields, the maximum RDI value

was selected as the representative RDI of the cell (filled black dot in Fig 6C). Then, we calcu-

lated the “difference in RDI” (ΔRDI) by subtracting the representative RDI value of the rate-

based protocol from the representative RDI value of the phase-based protocol for scene

(ΔRDISCN) and choice (ΔRDICHC) information, respectively. Both RDISCN and RDICHC

increased remarkably in the subiculum after theta phase–based field identification (T = 1582,

p = 0.0002 for ΔRDISCN; T = 2415, p< 0.0001 for ΔRDICHC), but no significant increase was

found in the CA1 (T = 365, p = 0.68 for ΔRDISCN; T = 645, p = 0.47 for ΔRDICHC; one-sample

Wilcoxon signed rank test; Fig 6D). The RDI increases for subicular neurons were signifi-

cantly higher than those for CA1 neurons for both visual scenes (Z = 3.26, p = 0.0011 for

ΔRDISCN) and choices (Z = 5.44, p< 0.0001 for ΔRDICHC; Wilcoxon rank-sum test).

Since our phase-based field detection could separate the rate modulations that occurred

separately in different fields (yet not identifiable based on the rate-based field detection; Fig

6A), we further examined if cells with multiple phase-based fields were associated with higher

RDI values than cells with only single fields. For multi-field cells, RDISCN increased in both

CA1 and subiculum (CA1, t(45) = 3.40, p = 0.0014; subiculum, t(165) = 4.10, p< 0.0001; Fig 6E),

whereas RDICHC increased significantly only in the subiculum (CA1, t(80) = 1.89, p = 0.065;

subiculum, t(50) = 6.63, p< 0.0001; Fig 6F). Cells with single fields did not show significant

changes in their RDI values for both scene (CA1, t(45) = 2.36, p = 0.020; subiculum, t(165) =

0.52, p = 0.60) and choice (CA1, t(80) = 2.37, p = 0.019; subiculum, t(50) = 0.75, p = 0.46; Bonfer-

roni-corrected one-sample t test; corrected α = 0.0125). A two-way ANOVA revealed that the

magnitude of RDI changes was significantly different between multi-field and single-field cell

groups (F(3, 340) = 29.15, p< 0.0001 for RDISCN; F(3, 340) = 37.39, p< 0.0001 for RDICHC).

by selecting maximum values among RDIs obtained from all phase-based fields. (D) Bar graphs comparing the

magnitude of changes in RDISCN and RDICHC between regions. Data are presented as means ± standard error of the

mean. ���p< 0.0001. (E–F) Comparison of the magnitudes of RDI changes for scene (E) and choice (F) information

between the cell groups with MFs and SFs within each region (CA1, n = 46/166; subiculum, n = 81/51; MF/SF).
�p< 0.0125, ���p< 0.0001. (G) Scatter plot jointly displaying ΔRDISCN and ΔRDICHC for all neurons in the CA1 and

subiculum. Colored ellipses indicate bivariate normal distributed regions (coverage 95%). Note that subicular neurons

are more dispersed in the first and second quadrant than CA1 neurons. Data associated with this figure can be found

in S1 Data file. FR, firing rate; MF, multi-field; RDI, rate difference index; SF, single-field; SUB, subiculum; TP, theta

phase.

https://doi.org/10.1371/journal.pbio.3001546.g006
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Specifically, ΔRDI was larger in multi-field cells than in single-field cells in both regions (CA1,

t(340) = 4.65, p = 0.0001; subiculum, t(340) = 3.04, p = 0.0025 for RDISCN, CA1, t(340) = 2.90,

p = 0.004; subiculum, t(340) = 5.66, p< 0.0001 for RDICHC). Note that there was a significant

interaction between the effects of region and cell group for ΔRDICHC (F(3, 340) = 4.69,

p = 0.031) with a significant increase observed in subicular multi-field cell group only (t(340) =

5.66, p = 0.0001; two-sample t test with Bonferroni-corrected α = 0.0125; Fig 6F).

For joint comparisons of changes in scene- and choice-based rate remapping, the differ-

ences in RDISCN and RDICHC of individual cells were marked as dots on a scatter plot (Fig

6G). As shown in the first and second quadrants of the scatter plot, RDISCN and RDICHC values

increased jointly after applying the phase-based method in the subiculum compared to the

CA1. Taken together, these results indicate that the theta phase–based field detection method

is capable of identifying task-relevant information that would otherwise have been unidentifi-

able using the traditional rate-based field detection protocol. This trend was prevalent in the

subicular multi-field cells and even in some CA1 multi-field cells.

Subicular neurons represent scene and choice information more

differentially through multiple phase-based fields compared to CA1 cells

We further examined the functional significance of amplified task-related information (i.e.,

scene and choice) discovered by the phase-based method in subicular neurons compared with

CA1 cells in our VSM task. If a place field showed the same amount of rate modulation for

both scene and choice factors, the corresponding data point on the RDI scatter plot should be

located on the diagonal (e.g., field 1 in Fig 7A). However, if the amount of rate remapping was

influenced to a greater degree by one of the task-related factors, the data point should be

located farther away from the diagonal (e.g., field 2 in Fig 7A, carrying more visual scene infor-

mation than choice information). If a cell had multiple phase-based fields and each field repre-

sented either scene or choice information more strongly than the other, the cell was

considered as coding heterogeneous task variables (i.e., scene and choice information) in the

current study (Fig 7B).

A significantly larger portion of subicular neurons exhibited heterogeneous representations

of task factors than CA1 neurons (w2
ð1Þ

= 18.65, p< 0.0001; chi-squared test; “MF multivariate”

in Fig 7C). To test whether the heterogeneous representation of task factors occurred more

strongly in subicular cells, we measured the angle between the diagonal and the vector of each

phase-based field (θSCN and θCHC; Fig 7D), and then calculated “heterogeneity strength” by

multiplying the sine values of the angles. RDI heterogeneity was significantly stronger in the

subiculum than in the CA1 (Z = 3.3, p = 0.001, Wilcoxon rank-sum test; Fig 7E).

Finally, we tested whether the amount of rate remapping differed between the following cell

groups: multi-field cells with heterogeneous representations (MF multivariate), multi-field

cells without such representations (MF univariate), and single-field cells (SF). Since the num-

ber of CA1 cells showing heterogenous representations for task variables was too small (n =
10) to obtain sufficient statistical power, tests were performed only within the subiculum.

There were significant differences in both scene (w2
ð2Þ

= 7.79, p = 0.02, Kruskal–Wallis test; Fig

7F) and choice (w2
ð2Þ

= 19.44, p< 0.0001; Fig 7G) between the subgroups. Specifically, cells hav-

ing multiple fields showed larger RDISCN values than those with single fields (MF multivariate

versus SF: Z = 2.12, p = 0.034; MF univariate versus SF: Z = 2.5, p = 0.013; MF multivariate ver-

sus MF univariate: Z = 0.37, p = 0.7; Wilcoxon rank-sum test with Bonferroni correction; cor-

rected α = 0.016). Moreover, subicular cells with heterogeneous representations exhibited

significantly larger RDICHC values than other groups (MF multivariate versus SF: Z = 4.51,

p< 0.0001; MF univariate versus SF: Z = 2.16, p = 0.031; MF multivariate versus MF
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univariate: Z = 2.4, p = 0.016). These findings indicate that subicular multiple fields identified

based on the theta phase precessions of spikes did not represent task-relevant information uni-

formly. Instead, they carried heterogeneous task-related information in a more independent

fashion compared with CA1 cells. Furthermore, such subicular cells represented task-related

information more strongly in the VSM task compared to CA1 cells.

Discussion

In the current study, we characterized the firing patterns of place cells in the CA1 and subicu-

lum using both phase- and rate-based field detection methods. Our findings demonstrate that

Fig 7. Scene and choice information are separately represented by multiple phase-based fields of subicular

neurons. (A) Illustration showing the different relationships between RDISCN and RDICHC of example fields on the

RDI scatter plot. Field 1 (red) near the diagonal shows the same amount of rate modulation for scene and choice

information, whereas field 2 (green) located further away from the diagonal had much stronger rate remapping for

scene than choice information. (B) Four examples of independent representations for scene and choice information

for individual neurons. For each neuron, the left panel shows a linearized firing rate map (left) and the right panel

shows an RDI scatter plot. Each phase-based field is color coded. Serial numbers above the rate map indicate cell IDs.

Numbers on the scatter plots indicate the heterogeneity strength of RDI for different task variables. (C) Proportion of

cells for which phase-based fields have independent representations for scene and choice information. ���p< 0.0001.

(D) Illustration of how the strength of heterogeneous representations for scene and choice information is quantified.

θSCN and θCHC indicate the angles between the diagonal and the vectors of the fields whose RDISCN or RDICHC is the

maximum value. (E) Cumulative distribution of RDI heterogeneity strength for each region. ��p< 0.01. (F–G)

Cumulative proportion of subicular cells for RDISCN (F) and RDICHC (G). Bar graphs on the right side of each panel

show RDI differences between subgroups within the subiculum. �p< 0.016, ���p< 0.0001. Data associated with this

figure can be found in S1 Data file. MF, multi-field; RDI, rate difference index; SF, single-field; SUB, subiculum.

https://doi.org/10.1371/journal.pbio.3001546.g007
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some of the broad place fields of subicular neurons can be parsed into multiple fields using the

theta phase precession cycle. The newly discovered, phase-based place fields in the subiculum

were more similar to those in CA1 in terms of spatial coding capacity and phase precession

strength. However, unlike the case in the CA1, the neural representational strength of task-rel-

evant information was significantly improved in the subiculum by the phase-based field detec-

tion method. Furthermore, our results suggest that firing for multiple fields by a single neuron

may provide the subiculum with the unique function of representing different types of task-

related information independently compared with the CA1.

Underlying mechanisms of multiple cycles of theta phase precession and

their associated place fields in the subiculum

One possible mechanism underlying the multiple cycles of theta phase precession and their

associated place fields in the subiculum is convergent inputs from multiple place cells in the

CA1 to a subicular cell. To our knowledge, whether a single subicular neuron is innervated by

multiple CA1 place cells is still largely unknown. However, it has been reported that axon

branches extending from a single CA1 pyramidal cell diverge to a very wide region within the

subiculum, covering approximately 2 mm along the septotemporal axis [28] and one-third of

the subiculum along the proximodistal axis [4] in rats. In addition, approximately 40% of CA1

pyramidal cells are known to send efferent projections to the subiculum [29]. Based on these

anatomical characteristics, it is possible that a single subicular cell receives synaptic inputs

from multiple CA1 pyramidal cells. If this is the case, a subicular place cell that receives inputs

from multiple place cells in the CA1 whose firing peaks are located at distant locations may

develop multiple place fields. Conversely, if multiple CA1 place cells sending projections to a

single subicular place cell have overlapping place fields, then the subicular cell might exhibit a

single broad firing field. Some prior studies may support these possibilities [30,31].

Another possibility is that the multiple fields of the subiculum might be based on inputs

from cells in the medial entorhinal cortex, especially grid cells showing periodic firing fields

and theta phase precessions. Some models have shown that theta phase precession in the CA1

could be derived from grid cells in the medial entorhinal cortex [32,33]. It has also been

reported that temporal coding (including theta phase precession) in the CA1 is impaired by

lesioning of the medial entorhinal cortex [33]. However, cells in layer 3 of the entorhinal cor-

tex, which mainly project to the CA1 and subiculum, do not exhibit phase precession relative

to theta rhythm [34]. Whether theta phase precession in the subiculum is inherited from grid

cells in the medial entorhinal cortex remains to be investigated.

Lastly, there is the possibility that cells in the subiculum might be influenced by multiple

sources of theta rhythm—one from an extracellular source and another generated intrinsically.

Specifically, some previous studies have proposed an interference model as the mechanism for

theta phase precession in the CA1 [25,35,36]. According to this model, there is an intrinsic

theta oscillator within pyramidal cells that causes theta phase precession while maintaining a

frequency that can be different from that of the extracellular theta rhythm. This model is sup-

ported by experimental evidence showing that pyramidal cells in the dorsal hippocampus

show higher intrinsic oscillation frequencies than those in the ventral hippocampus, resulting

in smaller place fields in the dorsal hippocampus [37]. Experimental evidence for the presence

of an intrinsic theta oscillator in the subiculum has not been reported. However, because prin-

cipal cells in the subiculum have denser recurrent connectivity than those in the CA1 [38–40],

it is possible that cells in the subiculum can generate local rhythms intrinsically. Notably, a

recent study reported that an atypical type of sharp–wave ripple occurs in the subiculum, inde-

pendent of traditionally known CA3-originating sharp–wave ripples [41], an observation that
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may support the possibility that subicular neurons intrinsically generate their own local

oscillations.

Clustering algorithm for identifying multiple cycles of theta phase

precession and their associated place fields

A previous study by Maurer and colleagues [24] demonstrated that the partially overlapping

place fields of a single cell in the CA1 could be segmented by manually drawing boundaries

around the spikes belonging to individual cycles of theta phase precession on the position

phase scatter plot. Further improving this strategy, Kim and colleagues [10] developed an auto-

mated algorithm that constructed a phase position firing rate map from normalized phase

position plots of rat occupancy and then defined place fields based on detection of local max-

ima. However, there were challenges to adopting this previous protocol in the current study.

First, these authors used a behavioral paradigm in which rats ran along a track in the absence

of environmental change or mnemonic task demand, whereas in the current study, rats per-

formed a mnemonic task in which they were required to associate different scenes with dis-

crete behavioral choices. Our previous study showed that firing rates of subicular cells are

modulated in relation to task-related information (i.e., scene and choice) [11]. In that case,

even if a field had a high firing rate in one condition, it might show a low firing rate in the

other condition. Accordingly, in the overall firing rate map obtained by averaging the firing

rates for all conditions, the high firing rate under one specific condition is likely to be canceled

out by that under the other condition, making it difficult to definitively establish peak firing

and field boundaries when defining a place field. Second, the length of the linear track used in

the current study was relatively short, possibly resulting in more overlap between place fields

and thus creating difficulties in setting an appropriate threshold for segmenting individual

fields on the phase position firing rate map.

Therefore, to eliminate the risk of not being able to find potential task-related firing fields,

we adopted the clustering algorithm DBSCAN, which can be applied to the raw phase position

spiking plot without normalizing for occupancy. We chose this algorithm for several reasons.

First, when sampled sufficiently, spikes tend to occur at the most preferred location within a

place field with highest probability and then gradually diminish as the distance from the field

center increases (i.e., Gaussian-like distribution). Because of its density-based algorithmic

nature, the DBSCAN algorithm is suitable for finding clusters when data points exhibit such

distributions. Second, DBSCAN has the advantage of robustly detecting outliers, which

enabled us to process continuous and spontaneous firing activities of subicular fields. Further-

more, DBSCAN does not require an experimenter to predetermine the number of clusters.

Finally, the DBSCAN algorithm does not limit cluster shape, so it can flexibly find clusters in a

complex data set.

Functional significance of the more independent representation of scene

and choice information in the subiculum than the CA1

The spatial firing properties of subicular neurons are different from those of CA1 cells. This

unique nature of the subiculum has been attributed to signals from outside the hippocampal

formation, including those related to movement and head direction of the thalamic region

[42]. However, task-related information such as scene and choice information in the subicu-

lum should be influenced by inputs from the dorsal CA1, as demonstrated in our previous

studies [22,43]. This possibility is supported by findings of the current study showing signifi-

cantly enhanced rate modulation for such task-relevant information, as only the group of
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spikes constituting a single cycle of theta phase precession was extracted for measuring the rep-

resentational strength of task-related information.

The enhancement of task-related signals in the subiculum allowed us to investigate the

functional roles of subicular cells in the VSM task compared with our previous study in which

we relied on the traditional rate-based field detection algorithm [11]. Remarkably, some subi-

cular neurons carried scene and choice information separately in their subfields. This phe-

nomenon could arise if different CA1 cells, each carrying one type of task-related information

more strongly than the other, send their outputs to a single subicular neuron. Subicular neuron

could then facilitate associative learning by representing different types of information concur-

rently so that downstream structures (e.g., prefrontal cortex) receive more associative informa-

tion between the critical task variables. Note that a subicular cell tends to represent different

task-related information in separated fields associated with distant locations, but not conjunc-

tively in one field. The different types of information represented by the separate fields of a

subicular cell might then be transmitted into identical target regions nearly simultaneously

with a certain phase relationship, potentially contributing to organized actions based on hip-

pocampal memory representations.

Functional subclasses of neurons in the subiculum may play key roles in

hippocampal-dependent action in a visual contextual memory task

Numerous studies have suggested the presence of anatomical and physiological subpopula-

tions in the subiculum. Specifically, it has been reported that afferent and efferent projections

of the subiculum are organized topographically along the proximodistal axis [4–6,8,13,28,44–

46], as the proximal and distal parts of the subiculum are clearly divided according to gene

expression in principal cells [6,47]. In addition to these anatomical subdivisions, in vitro physi-

ological studies have reported 2 types of intrinsic firing for subicular principal cells—bursting

and regular spiking [48–50]—and have shown that these cells exhibit a unique distribution

gradient along the proximodistal axis [40,51,52]. These 2 classes of cells are modulated differ-

ently by sharp–wave ripples of the CA1 and have different intrinsic connectivity [38]. Further-

more, a series of recent in vivo studies identified subpopulations in the subiculum with

different spatial firing characteristics [29,53–55].

Our physiological results also suggest that there are functionally different subclasses of neu-

rons within the subiculum. In our previous paper, subicular cells with a single broad field

showed a “schematic” firing pattern that depended on the cognitive structure of the task; we

speculated that this firing pattern serves to mediate contextual behavior by representing the

discrete region associated with critical epochs of the task [11]. That is, cells in the CA1 and

subiculum represent specific location information and an epoch-based region, respectively.

On the other hand, subicular cells with multiple focal fields are thought to contribute to asso-

ciative memory by subsequently—but almost concurrently—transmitting different types of

task-relevant information to downstream structures where choice-related actions and deci-

sions occur.

Taken together, our findings indicate that the subiculum may support visual contextual

behavior in space through 2 processes, each driven by a distinctive neuronal class. Information

regarding context and future path leading to the goal location, separately recognized at local

and distant place fields of the CA1, could be integrated by subicular cells by multiple phase-

based fields and transmitted to downstream areas. In particular, such information processing

in the subiculum could be critical for converting contextual information into a goal-directed

action signal. At the same time, subicular cells with a broad single field may represent the area

in which all locations are associated with a common task-related variable, such as a specific
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visual scene or choice response. A recent study showing that CA1-projecting subicular cells

receive direct inputs from the visual cortex and send their projections to some critical regions

(e.g., perirhinal cortex, CA1) may also support the functional significance of the subiculum in

the visual contextual behavioral task [56].

Materials and methods

Subjects

Male Long–Evans rats (n = 5) were used in the current study. Food was restricted to maintain

rats’ body weights at 350 to 400 g (85% of free-feeding weight), and water was made available

ad libitum. Rats were individually housed under a 12-h light/dark cycle. All experimental pro-

tocols followed the Laboratory Animal Act of Korea and were approved by the Institutional

Animal Care and Use Committee of the Seoul National University (SNU–200504–3–1).

Behavioral task

Detailed descriptions of our experimental procedures, including the VSM task, the apparatus,

and surgery (Fig 1A), are available in our previous study [11]. Briefly, the rat was located in a

start box before a trial began. The experimenter started the trial by opening the door of the

start box, which also triggered presentation of a patterned visual stimulus (i.e., visual scene) in

an array of 3 adjacent LCD monitors surrounding the choice–arm region of the T-maze. The

rat then entered and ran along the stem of the T-maze (stem, 73 × 8 cm; arms, 38 × 8 cm) and

was required to turn left or right at the end of the stem (“choice point”) in association with the

visual scene. The rat obtained a quarter piece of cereal reward (Froot Loops, Kellogg’s) from

the food well at the end of the correct arm, but no reward was given if it entered the wrong

arm. Four visual scenes (zebra, bamboo, pebbles, mountains) were used. In all sessions, zebra

stripes and bamboo patterns were associated with the left arm, and pebbles and mountain pat-

terns were associated with the right arm; within a session, the 4 visual scenes were presented in

a pseudorandom sequence.

During the presurgical training period, the rat was initially trained with a pair of scene sti-

muli (zebra versus pebbles or bamboo versus mountain, counterbalanced for rats) until it

reached the performance criterion for each pair (�75% correct for each scene for 2 consecutive

days; 40 trials/session). It took approximately 2 weeks (13.4 ± 0.9 sessions, mean ± SEM) for

rats (n = 5) to reach the performance criterion for both scene pairs. Afterwards, a hyperdrive

carrying 24 tetrodes (+3 reference electrodes) was surgically implanted in the right hemisphere

to cover 3.2 to 6.6 mm posterior to bregma and 1 to 4 mm lateral to the midline. After 1 week

of recovery, the rat was retrained until it reached presurgical performance levels, during which

time the tetrodes were lowered into the subiculum and CA1 by 40 to 160 μm daily. Thereafter,

the main recording sessions (123 ± 6 trials/session, mean ± SEM) began, and the 4 scene sti-

muli were presented in an intermixed fashion during sessions.

Electrophysiological recording and histological procedures

Single unit spiking activity and local field potentials (LFPs) were recorded from the dorsal

CA1 and subiculum. Neural signals were transmitted to the data acquisition system (Digital

Lynx SX; Neuralynx) through a headstage connected to the EIB board and tethered via a slip–

ring commutator on the ceiling. Neural signals from tetrodes were amplified 1,000 to 10,000

times and sampled at 32 kHz. Spiking data were acquired by filtering at 600 to 6,000 Hz. LFPs

were obtained by filtering the same signals at 0.1 to 1,000 Hz. After completion of all recording

sessions, electrolytic lesions (10 μA current for 10 s) were made to mark the tip positions of the
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tetrodes. Twenty-four hours after electrolytic lesioning, the rat was killed by inhalation of an

overdose of CO2 and perfused transcardially. Brain tissue was stained using thionin or Timm’s

method for Nissl substances (see details in our previous paper [11]; Fig 1C).

The anatomical boundaries of the CA1 and subiculum were determined based on the rat

brain atlas [57]. Tetrodes located in the transition area between the CA1 and subiculum were

excluded. To quantitatively describe the proximodistal positions of the recording tetrodes, we

measured the linearized length of the cell layer in the CA1 and subiculum—specifically, the

distance between the most distal to the proximal end along the curved pyramidal cell layer in a

given section—using image processing software (ImageJ; NIH). Recording positions across

rats were normalized by selecting a median value among the linearized lengths of the pyrami-

dal cell layers of the CA1 and subiculum in all rats, and the ratio between the CA1 and subicu-

lum was obtained (subiculum:CA1 = 0.36:0.64). The relative positions of tetrode tips within

each region were then calculated (Fig 1D).

Extraction of outbound running epochs

Before proceeding with a set of analyses based on spiking data in relation to their theta phases,

we extracted only those epochs associated with outbound journeys (from the start box to either

left or right food well). To facilitate theta rhythm–related analyses, we calculated the instanta-

neous running speed so as to include epochs in which rats ran at a reasonable speed. To this

end, we interpolated linearized position data to compensate for vacancies caused by rat head

movements and/or tether interference. Next, outlier data points were suppressed using a

locally weighted robust regression. Then, the instantaneous running speed, calculated by

dividing the length of 3 consecutive data points by the duration of time, was assigned to the

middle point of the three. The average running speed was 35.3 cm/s in all sessions for all rats.

Spikes that occurred when running speed was greater than 20 cm/s were used in this study. If

the latency from the start box to the food well was longer than 6 s, that trial was discarded.

Spiking data analysis

Unit isolation. Single units were isolated manually using both commercial software (Spi-

keSort3D; Neuralynx) and a custom-written program (WinClust) based on the waveform

parameters, peak amplitude, energy, and peak-to-valley latencies. Fast spiking neurons (mean

firing rate� 10 Hz; width of the average waveform < 325 μs) were excluded from analysis.

The same criteria from our previous study (Lee and colleagues, 2018) were used to evaluate

unit isolation quality, with the additional criterion that the number of spikes during running

epochs of outbound journeys on the track should be greater than 50 (CA1, n = 270 units; subi-

culum, n = 151 units).

Detection of firing rate–based place fields. Position data acquired during outbound run-

ning epochs were first linearized by scaling down using 2-cm spatial bins. The choice point—

that is, the point where the rat’s position data diverged between left and right choice trials—

was determined by detecting the spatial bin with a statistical difference between left and right

position traces (two-sample t test). Then, a linearized firing rate map was constructed by divid-

ing the number of spikes by the number of position data points in individual spatial bins.

Boundaries of a firing field were defined as the first spatial bin at which the firing rate dropped

below 33% of the peak firing rate for 2 consecutive bins. If a local peak exceeding 50% of the

maximum peak firing rate was found outside the predetermined firing field, it was considered

as the peak of a possible subfield, and the boundaries of the subfield were found using the

same algorithm. After defining the field boundaries, a firing field was identified as a place field

when the peak firing rate within the field exceed 1 Hz and the spatial information score of the
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field was greater than 0.5. The spatial information score was computed as follows [58]:

Spatial information score ðRate informationÞ ¼
P

ipi
li
l

log2

li
l
ðbits=spikeÞ;

where i denotes the spatial bin, pi is the occupancy rate in the ith bin, λi is the mean firing rate

in the ith bin, and λ is the overall mean firing rate. The mean firing rate were obtained from

the raw rate maps. For display, the rate maps were smoothed using the adaptive binning

method. Another spatial information score based on spiking theta phases was obtained using

the following formula [59,60]:

Spatial information score ðPhase informationÞ ¼
P

K�0
PKjxi

log2

PKjxi

Pk
ðbits=cmÞ;

where PKjxi
is the conditional probability of observing rate K in position xi, and Pk is the proba-

bility of observing a rate k in all position bins. Additional spatial coding metrics such as spatial

sparsity and selectivity per cell were calculated as follows [26]:

Sparsity ¼
ð
P

piliÞ
2

ð
P

pil
2

i Þ
; Selectivity ¼

maxðliÞ
l

;

where the same symbols were used as in the formula for calculating spatial information above.

LFP analysis

Tetrode selection. To align baseline offsets, we down-sampled LFPs from 32 kHz to 2

kHz and filtered them at 3 to 300 Hz using a zero-phase bandpass filter (third-order Butter-

worth filter with the filtfilt function in MATLAB). LFP traces from running epochs were then

visually inspected to exclude tetrodes whose voltage traces exceeded the maximum value

(3,000 μV) of the analog–digital converter or artifacts such as bumping noises. Spiking phases

in relation to theta rhythm were analyzed by obtaining a power spectral density (PSD) function

using a multi–taper method (Chronux ToolBox; MATLAB) and then selecting reference tet-

rodes with the strongest power in the high theta band (7 to 12 Hz) for individual sessions and

regions. The frequency range of the theta band was set so as to include the most prominent

peak at 8 Hz in the mean PSD function during the outbound journey and to minimize bump-

ing noises that usually occurred at less than 7 Hz. LFPs recorded from the CA1 and subiculum

were used for spiking phase analyses of single units in the corresponding regions.

Spiking theta phases. LFPs from reference tetrodes were filtered in the theta range (7 to

12 Hz) using a zero-phase bandpass filter, followed by application of a Hilbert transform to

decompose filtered LFPs into amplitude and phase information. Spiking-phase relationships

were examined by plotting instantaneous theta phases and rat’s linearized positions at time

points when spikes occurred in a 2D space (phase position plot).

Identification of theta phase–based place fields using DBSCAN. To define a cluster of

spikes that shared the same spiking-phase relationships, we adopted a well-known clustering

algorithm called the DBSCAN suggested by Ester and colleagues [61]. DBSCAN is a density-

based, nonparametric algorithm that gathers data points in close proximity while excluding

distant or sparsely located points as noise. In DBSCAN, it is not necessary to specify the num-

ber of clusters in advance. Still, some parameters must be predetermined to run the algorithm,

such as the distance (ε) and the minimum number of points within a distance (Nmin). Specifi-

cally, if the number of data points at a distance ε from a point is greater than Nmin, including

itself, the point is defined as a core point of a cluster. If another point contains the core point

within distance ε but does not satisfy Nmin, it is defined as a border point. If there is no core
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point and Nmin is not satisfied, the point is defined as a noise point. In our study, clusters on

the position phase plot were captured by the DBSCAN algorithm to find theta phase–based

place fields (“TP-based place fields”). To avoid detecting spurious sparse clusters, we restricted

DBSCAN parameters to the following ranges: distance (ε) < 8 cm; Nmin� 10; and total num-

ber of spikes in a cluster� 30. The parameters were determined manually in those ranges so

that the number of clusters in a cell was greater than the number of local maxima in linearized

firing rate maps. Biased clustering caused by experimenter subjectivity was prevented by per-

forming cross-validation with 3 additional experimenters who did not participate in analyses

of the current data sets. After cross-validation, cells with invalid clustering were excluded from

the analysis based on the following: (1) DBSCAN parameters not satisfied (subiculum, n = 21;

CA1, n = 24); (2) insufficient spikes (subiculum, n = 17; CA1, n = 30); or (3) irregular cluster

shape (subiculum, n = 16; CA1, n = 6).

Quantification of theta phase precession. After identification of individual place fields

using theta phases, the slopes of theta precession were measured by fitting individual spike

clusters to circular–linear regression lines [27]. A circular–linear correlation was also applied

to determine if the phase shift was significant (Toolbox for circular statistics with MATLAB)

[62]. Theta phase precession of a place field was considered significant if the following criteria

were met: (1) range of phase shift�90˚; (2) slope of regression line <0; and (3) p-value of cir-

cular–linear correlation�0.05. The onset phase and the range of theta phase precession were

only obtained from the phase-based fields with significant phase precession. The onset phase

was defined as the starting phase of the circular–linear regression line at the beginning of the

field. The range of phase shift was set as the phase difference between the starting phase and

ending phase of the regression line.

Analysis of rate remapping

To measure the amount of rate modulation between firing rate maps associated with different

trial conditions (i.e., scene stimulus or choice response), we obtained an RDI by calculating an

absolute value of Cohen’s d:

Rate difference index ¼
meanðFR1Þ � meanðFR2Þ

stdðFR1; FR2Þ

�
�
�
�

�
�
�
�;

where FR1 and FR2 denote the in-field firing rates of individual trials associated with different

conditions. Cohen’s d measure was used in the current study because it includes a term for

standard deviation in its denominator, which controlled the confounding effect that might be

induced by the differential variability of in intrinsic neuronal firing between the CA1 and subi-

culum (S3 Fig). With respect to RDI for scene stimuli, 2 RDI values were obtained from 2

pairs of scenes associated with the left or right choice arm (RDISCN–L and RDISCN–R, respec-

tively), then a maximum value was chosen as a representative scene-based RDI of a cell

(RDISCN). RDI for choice response (RDICHC) was measured by calculating the difference in

firing rates between left and right choice trials. For calculation of RDICHC, only the firing rate

maps associated with the area between the start point (i.e., start box door) and the choice point

of the stem of the T-maze were used because the rat’s position traces after the choice point

diverged between the left-choice and right-choice trials. Since RDISCN was originally calculated

from firing rate maps associated with the same choice arm, all spiking activities on the maze

including those that occurred after the choice point were used. However, if a spatial bin with a

firing rate less than 75% of the peak firing rate was located in one arm of the maze, the field

was considered as an arm field and was excluded from the RDI analysis. Accordingly, cells

with only single arm fields were excluded as well.
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To quantify the change in RDI (ΔRDI) within a cell after detecting its field based on theta

phase–based method, the largest RDI value for RDISCN and RDICHC was chosen as the cell’s

representative RDI value. The representative RDISCN and RDICHC could be selected from the

cell’s different fields except arm fields. If a cell had only a single field, then RDI of that field

was equated with its representative RDI. Then, ΔRDI was calculated by subtracting the repre-

sentative RDI value of the rate-based protocol from the representative RDI value of the phase-

based protocol. The same protocol was used in both rate- and phase-based methods. Cells hav-

ing place fields by both rate- and phase-based methods were used (CA1, n = 212; subiculum,

n = 132).

For analysis of the heterogeneity of RDI values, the angles between the diagonal line and

the vectors of fields with maximum RDISCN or RDICHC were obtained. Then, the product of

their sine values, defined as the strength of RDI heterogeneity, was obtained. This measure-

ment was adopted because it had the characteristic that its value approached zero as any one of

the fields came close to the diagonal. Task heterogeneity could not be measured for MF univar-

iate cells in our study because the 2 fields were located on the same side of the diagonal for

those cells. In this analysis, cells having place fields by phase-based methods were all used

(CA1, n = 212; subiculum, n = 139).

To confirm the ability of RDI to control the variability in intrinsic firing, rate modulation

index (RMI) was also obtained for each cell (S3 Fig). In the same way as the RDI calculation

method above, RMI was calculated by obtaining the mean firing rate associated with each

scene or choice condition within individual phase-based fields. Because the denominator of

the formula does not include a pooled standard deviation, RMI is regarded as an uncontrolla-

ble measurement of firing variability within a cell.

Rate modulation index ¼
meanðFR1Þ � meanðFR2Þ

meanðFR1Þ þmeanðFR2Þ

�
�
�
�

�
�
�
�:

Statistical analysis

Both the behavioral and neural data were analyzed using nonparametric statistical tests with

the level of statistical significance set at α = 0.05 unless noted otherwise. Testing for statistical

significance was two-sided, except when testing significance against a specific known value.

For example, a one-sample Wilcoxon signed rank test was used to compare the behavioral per-

formance for different scene stimuli against our performance criterion of 75% and to test

whether the differences in RDISCN or RDICHC between field identification methods were sig-

nificantly above zero. The proportional differences in cell types between 2 regions or 2 meth-

ods were tested using a chi-squared test. The differences in slope and strength of theta phase

precession were examined by two-way mixed ANOVA with region as a between-subject and

method as a within-subject factor, but an unpaired two-sample t test with Bonferroni correc-

tion was used for post hoc test because the number of observations for the within-subject fac-

tor was different across cells. A two-way ANOVA was conducted to compare the regions and

cell groups (MF cells and SF cells) with respect to ΔRDISCN and ΔRDICHC, and an unpaired

two-sample t test with a Bonferroni correction was used for post hoc tests. Differences in

RDISCN and RDICHC among cell types (i.e., MF multivariate, MF univariate and SF) were

assessed using a Kruskal–Wallis test, with the application of the Bonferroni-corrected Wil-

coxon rank-sum test for post hoc comparisons.

Supporting information

S1 Fig. Categorization of cells after theta phase–based field detection. Population rate maps

of CA1 and subicular cells that are grouped into SF cells or MF cells after the application of the
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theta phase–based field detection method. MF, multi-field; SF, single-field.

(TIF)

S2 Fig. Basic firing properties of CA1 and subicular phase-based fields are comparable. (A)

A 3D scatter plot consisting of phase information, rate information, and mean firing rate cal-

culated by using the entire spiking activities associated with outbound journey in a given cell.

Dots indicate cells in the CA1 (blue) and subiculum (red). (B) Same as in (A), but the values

are obtained from in-field firing activities of phase-based subfields. Dots indicate individual

phase-based fields. Data associated with this figure can be found in S1 Data file.

(TIF)

S3 Fig. RDI was used to control within-cell variability of intrinsic firing. (A) Illustration of

the RDI (or Cohen’s d) reflecting within-cell variability. The distributions of firing rates associ-

ated with either left trials (gray) or right trials (green) are drawn as histograms. Two example

neurons show similar amounts of difference in their mean firing rates between the trials asso-

ciated with the left and right choices. However, RDI values were different due to the difference

in pooled standard deviations between the 2 cells. (B) Comparison of RMI with RDI with

respect to correlation with firing rates. Dots indicate individual cells of the CA1 and subicu-

lum, and red lines are linearly fitted lines. Correlation coefficient is indicated on each plot.

Note that RMIs show stronger correlations with mean firing rates than RDI values. Data asso-

ciated with this figure can be found in S1 Data file. RDI, rate difference index; RMI, rate mod-

ulation index.

(TIF)

S1 Data. Data set that underlies the results and figures of the paper. (1B) Behavioral perfor-

mance data used in Fig 1B. (1D) Normalized anatomical positions of CA1 and subicular neu-

rons along the proximo-distal axis that used in Fig 1D. (2D–E, S2A) Basic firing properties

obtained from individual cells using the entire outbound spiking activities. (2C, 2F, 5A–H,

S2B) Basic firing properties and theta phase precession properties obtained from individual

rate- and phase-based fields. (6D–G) RDI changes per cell between the rate- and phase-based

methods. (7C–G) RDI heterogeneity strength of MF multivariate cells and RDI values of subi-

cular neurons. (S3A) Mean firing rates of individual trials of 2 example CA1 neurons sorted by

choice condition. (S3B) RDI and RMI values obtained from individual phase-based fields. MF,

multi-field; RDI, rate difference index; RMI, rate modulation index.

(XLSX)
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