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1  | INTRODUC TION

Most studies of species contact are restricted to two taxa at a sin‐
gle point in time, despite theoretical studies indicating the value of 
considering interactions among multiple species (Svenning et al., 
2014) over long time periods (Buggs, 2007). In particular, studies of 

contact zones at a single point in time contribute to the general as‐
sumption that contact between contiguously distributed species is 
relatively stable geographically (witness countless maps of species 
distributions in field guides). Certainly, the impact of long‐term cli‐
mate change on species distributions (e.g., during climate oscillations 
of the Quaternary) is well understood and appreciated. But major 
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Abstract
We synthesize observations from 1979 to 2016 of a contact zone involving two sub‐
species of pocket gophers (Thomomys bottae connectens and T. b. opulentus) and their 
respective chewing lice (Geomydoecus aurei and G. centralis) along the Río Grande 
Valley in New Mexico, U.S.A., to test predictions about the dynamics of the zone. 
Historically, the natural flood cycle of the Rio Grande prevented contact between the 
two subspecies of pocket gophers. Flood control measures completed in the 1930s 
permitted contact, thus establishing the hybrid zone between the pocket gophers 
and the contact zone between their lice (without hybridization). Since that time, the 
pocket gopher hybrid zone has stabilized, whereas the northern chewing louse spe‐
cies has replaced the southern louse species at a consistent rate of ~150 m/year. The 
0.2–0.8 width of the replacement zone has remained constant, reflecting the con‐
stant rate of chewing louse species turnover on a single gopher and within a local 
pocket gopher population. In contrast, the full width of the replacement zone (north‐
ernmost G. centralis to southernmost G. aurei) has increased annually. By employing a 
variety of metrics of the species replacement zone, we are better able to understand 
the dynamics of interactions between and among the chewing lice and their pocket 
gopher hosts. This research provides an opportunity to observe active species re‐
placement and resulting distributional shifts in a parasitic organism in its natural 
setting.
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distributional changes resulting from climate change can occur over 
far shorter periods (decades, even years; Frey, 1992), and rapid dis‐
tributional expansions or reductions (including extirpation or ex‐
tinction) can result from environmental perturbations that create or 
eliminate dispersal corridors and barriers (e.g., bridges, dams, river 
diversion, deforestation, or interference with natural fire cycles). 
Because such changes occur rapidly, opportunities to study them 
while they are actively occurring are rare, yet have the potential to 
provide insight into the dynamics of species distributions. Study of 
species at the margins of their geographic distributions may reveal 
factors critical to their ecological limitations or other life‐history 
parameters (Hall, 1946; Hargreaves & Eckert, 2014). In a similar 
sense, study of the interactions of species in zones of contact has 
the potential to reveal emergent features of their natural histories 
that could not be discovered by separate studies of each species in 
isolation.

Contact zones involving host species and their obligate para‐
sites are a special case of multiple‐species contact zones, in that the 
dynamics of the parasite species’ contact zone and transmission of 
parasites to alternate hosts are determined by specializations and 
behaviors of both the parasites and their hosts. The contact be‐
tween the host species is generally viewed as reflecting the current 
distribution of their respective habitats, whether along a wide front 
or in patchy islands of habitat. These habitats shift over ecological 
and geological time. In contrast, from the perspective of the parasite 
species, the hosts are patches of habitat that move constantly both 
in daily activity and in annual dispersal. Thus to understand the dy‐
namics of the parasite contact zone, it is important to consider the 
basic life history and dynamics of both the parasite and the host.

1.1 | Pocket gophers, chewing lice, and 
history of the San Acacia contact zone

Pocket gophers of the genus Thomomys (Rodentia: Geomyidae) are 
fossorial, solitary, and aggressively territorial, and encounters among 
individuals, except when mating, are generally avoided. Individuals 
probably live from 1 to 3 years, with high juvenile mortality during 
above‐ground dispersal following birth in the spring (Hafner, 2016). 
Based on the few published measures of dispersal distance in pocket 
gophers, average annual dispersal distance is 62–117 m/year, and 
maximum dispersal distance is 122–300 m (Daly & Patton, 1990; 
Howard & Childs, 1959; Vaughan, 1963).

Chewing lice of the genus Geomydoecus (Phthiraptera: Tricho‐
dectidae; Figure 1) are found only on pocket gophers. They are 
wingless insects that feed on skin detritus, and they spend their 
entire lives on their host and are highly host‐specific (Demastes, 
Hafner, Hafner, & Spradling, 1998; Marshall, 1981; Murray, 1957). 
Transmission of lice among hosts appears to require host‐to‐host 
contact (Timm, 1983), and the ability of a chewing louse to colo‐
nize new hosts is greatly limited by the louse's poor dispersal ability 
combined with the solitary nature of its host (Demastes et al., 2012; 
Harper, Spradling, Demastes, & Calhoun, 2015; Nadler, Hafner, 
Hafner, & Hafner, 1990; Nessner, Andersen, Renshaw, Giresi, & 

Light, 2014). As such, most colonization is from mother to offspring 
(Rust, 1974).

Representatives of two strongly differentiated geographic units of 
T. bottae come into contact in the Río Grande Valley of central New 
Mexico (Belfiore, Liu, & Moritz, 2008; Hall, 1981; Patton & Smith, 1990; 
Smith, 1998). Pocket gophers are largely restricted to the friable soils 
of the valley floor, and the broad 2–4‐km wide valley is constricted 
at the contact zone by an elevated ridge that forces the Río Grande 
through a narrow (300‐m wide), steep‐walled canyon known as the San 
Acacia Constriction. Thomomys b. connectens (representing the north‐
ern, Great Basin genetic group; Patton & Smith, 1990) occurs in the 
Albuquerque Basin south to La Joya (just north of the constriction), 
whereas T. b. opulentus (the southern, Basin and Range genetic group; 
op. cit.) occurs south of the constriction (Figure 2a). The two subspe‐
cies are more differentiated genetically than most congeneric species 
of other mammals (Harper et al., 2015; Patton & Yang, 1977), yet they 
exhibit limited hybridization with introgression at this zone (Smith, 
Patton, Hafner, & Hafner, 1983; sampling localities shown in Figure 2b). 
Subsequent studies (Demastes et al., 1998; Harper et al., 2015) demon‐
strated that the pocket gopher hybrid zone has not changed location 
since its initial discovery in 1979–1980 (Smith et al., 1983).

At the contact zone, T. b. connectens and T. b. opulentus host 
different species of chewing lice (Geomydoecus aurei and G. centra‐
lis, respectively) belonging to different species groups within the 
G. californicus species complex (Price & Hellenthal, 1981a). Unlike 
the two subspecies of pocket gophers, the two species of chewing 
lice that meet at this zone show fixed allelic differences, and there 
is no evidence of interbreeding (Demastes, 1990). Examination of 
dried specimens of Geomydoecus brushed from 15 of the Thomomys 
collected in 1979–1980 (Appendix 1) revealed G. aurei (the northern 
species of louse) near San Acacia, just south of the constriction. In 

F I G U R E  1   (Cover photograph) Colonizing chewing louse 
(Geomydoecus aurei, male) clasping a hair of a new host pocket 
gopher subspecies (Thomomys bottae opulentus)
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other words, the northern species of louse had successfully passed 
through the San Acacia Constriction at least by 1979.

While the pocket gopher hybrid zone has stabilized at the San 
Acacia Constriction, the chewing louse contact zone has moved con‐
tinuously southward at a steady rate since 1979–1980 (Hafner et al., 
1998), with the northern species of chewing louse (G. aurei) replac‐
ing the southern species (G. centralis; initial louse sampling shown 
in Figure 2c). Concentrated sampling in 1991 fixed the midpoint of 
the chewing louse replacement zone at ~6 km south of the midpoint 
of the pocket gopher hybrid zone (Figure 3a). Subsequent sampling 
5 years later (1996) revealed that the chewing louse replacement 
zone had moved another 700–900 m to the south (Figure 3b). Based 
on the estimated annual rate of movement of the chewing louse re‐
placement zone (140–190 m/year between 1991 and 1996), Hafner 
et al. (1998) concluded that initial contact between the two species 

of chewing louse, and possibly the most recent contact between 
the two subspecies of pocket gophers, had occurred after the cata‐
strophic San Marcial floods of 1929 rather than 10,000 years ago, as 
suggested by Smith et al. (1983). Hafner et al. (1998) reasoned that 
any pocket gophers (and their chewing lice) inhabiting the narrow 
canyon of the San Acacia Constriction would have been extirpated by 
the catastrophic floods, thus obliterating any genetic signature of the 
pocket gopher hybrid zone remaining from previous contact. Hafner 
et al. (1998) concluded that the hybrid zone between the two subspe‐
cies of pocket gophers had stabilized at the San Acacia Constriction; 
theoretical cline models (Endler, 1977; Kohlmann & Shaw, 1991) show 
that partial barriers, such as the San Acacia Constriction, can attract 
and anchor the geographic position of clines and contact zones.

Herein, we analyze in detail data collected over nearly four decades 
at the San Acacia contact zone to test predictions about the dynamics 

F I G U R E  2   (a) Distribution of Botta's 
pocket gophers, Thomomys bottae, in 
New Mexico. Dark shading indicates 
Great Basin genetic group; light shading 
indicates Basin and Range genetic group 
(Patton & Smith, 1990). Distributions 
of the subspecies T. b. connectens and 
T. b. opulentus are indicated by dotted 
lines. (b) La Joya‐Escondida study area 
showing 1979–1980 pocket gopher 
samples (Smith et al., 1983). (c) Detail 
of the San Acacia‐Lemitar study area, 
showing 1989–1990 survey samples of 
Geomydoecus chewing lice and kilometers 
(dotted lines) along the north–south 
transect beginning at the San Acacia 
diversion dam, the area of presumed 
initial colonization by G. aurei, and the 
initial estimated location of the louse 
replacement zone
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of the zone. Our data, from five time periods (1979–1980, 1989–1991, 
1996, 2001, and 2016), have enabled a more complete description of the 
rate and dynamics of the moving chewing louse replacement zone, while 
leading to a more precise explanation for the recent contacts between 
the two pocket gopher subspecies and their chewing lice. We evaluate 
the interactions among both pairs of taxa, employing additional metrics 
of the replacement zone and extrapolating back almost a century to the 
time of establishment of the zone. By employing these additional zone 
metrics, we are able to better understand the dynamics of interactions 
between and among the chewing lice and their pocket gopher hosts.

2  | MATERIAL S AND METHODS

2.1 | Specimens examined

Between 1979 and 2016, 589 pocket gophers were collected for 
analyses of the contact zone along the Río Grande between La 

Joya and Escondida, Socorro Co., New Mexico; 425 of these were 
brushed to collect chewing lice (Hafner et al., 1998; Smith et al., 
1983; this study; see Appendix 1; Figures 2 and 3). All specimens 
were collected under permits from the New Mexico Department 
of Game and Fish using methods approved by the University of 
Northern Iowa Institutional Animal Care and Use Committee and 
the American Society of Mammalogists (Sikes, 2016).

Sample size of chewing lice assayed from each pocket gopher 
for species assignment varied with method of analysis and location 
within or outside of the replacement zone: n̄ = 45 for morphologi‐
cal identification of mounted specimens from throughout the study 
area; n ≤ 20 (n̄ = 19) for allozyme analysis within the replacement 
zone, n ≤ 10 (n̄ = 6) outside of the zone; and n̄ = 31 for most DNA 
analyses except for n = 4 or 5 for 18 samples of chewing lice from 
south of the zone.

There is no evidence of interbreeding between the two louse 
species at this replacement zone (Demastes, 1990); thus, we were 

F I G U R E  3   Chewing louse 
(Geomydoecus) samples collected in 
(a) 1989–1991, (b) 1996, (c) 2001, and 
(d) 2016 (all at same scale). Circles 
indicate individual pocket gopher hosts 
where filled circles = pocket gophers 
with only Geomydoecus aurei, open 
circles = G. centralis only, and half‐filled 
circles = mixed‐species samples. White 
areas indicate habitat preferred by pocket 
gophers; stippled pattern indicates the 
sandy ridges and settling basin associated 
with the San Lorenzo Arroyo. Locations 
of transition zone metrics are shown in 
a‐e: northernmost G. centralis (nGc); 80% 
(0.8), ~50% (IP), 20% (0.2) frequencies 
of G. aurei on a pocket gopher; and 
southernmost G. aurei (sGa). (e) Changes 
in transition zone metrics over time; 
light shading indicates full width of the 
zone (nGc to sGa), dark shading indicates 
0.2–0.8 width of the replacement zone
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able to use simple genetic methods (described below) to assign each 
louse to the correct species. The chewing louse sample from each 
pocket gopher was scored as all G. aurei, mixed‐species, or all G. cen‐
tralis. Hosts (and their chewing louse samples) were grouped into 
200‐m wide bins perpendicular to a north–south transect with the 
zero mark set at the San Acacia diversion dam immediately south of 
the San Acacia Constriction (Figure 2c). For each bin, the percentage 
of pocket gophers hosting G. aurei was calculated, with individuals 
hosting both species (regardless of the proportions) counting as one‐
half G. aurei and one‐half G. centralis. For example, a bin containing 
five pocket gophers, four of which hosted only G. aurei and one of 
which hosted both species, would result in a value of 90% of pocket 
gophers hosting G. aurei.

2.2 | Genetic analyses

The pocket gopher hybrid zone initially was described based on 
chromosomes, allozyme electrophoresis, and morphometric analy‐
sis of cranial and pelage characters (Smith et al., 1983). Subsequent 
studies analyzed diagnostic allozymes (glucose‐6 phosphate dehy‐
drogenase and mannose phosphate isomerase), mitochondrial DNA 
haplotypes (Demastes et al., 1998), and mitochondrial and nuclear 
DNA (Harper et al., 2015).

More than 6,300 individual Geomydoecus lice were identified to 
species. Specimens collected in 1991–2001 were identified to species 
using allozyme electrophoresis methods of Nadler and Hafner (1989) 
and Demastes (1990). Chewing lice from 2016 and selected individ‐
uals from 1991–2001 were identified to species using one of three 
molecular methods, each of which began with isolation of DNA from 
individual lice as described in Harper et al. (2015). Some individuals 
were identified to species using the Group 1 microsatellite primers 
and conditions published by Light, Harper, Johnson, Demastes, and 
Spradling (2018), which consistently amplify three loci for G. aurei 
and only two for G. centralis (Loci Ga3702 and Ga6020, but not 
Ga4103). Others were identified using a 379‐bp (base pair) region 
of the COI gene amplified using conditions described by Hafner et 
al. (1994) and either sequenced or cut with the restriction enzyme, 
Sau3AI (Optizyme; Thermo Fisher Scientific). Digested COI products 
for G. aurei yielded two fragments, 96 and 283 bp plus primer length, 
while G. centralis samples were not cut by Sau3AI.

2.3 | Zone characteristics

Five‐parameter (5‐p) logistic regressions were conducted using the 
nplr package (version 0.1‐7) of R (version 3.3.3, R Core Team, 2013) 
to model the sigmoidal nature of the variables over geography. Unlike 
the typically employed tanh curve (Barton, 1979; Barton & Hewitt, 
1981,1985; Bull & Burzacott, 2001; Szymura & Barton, 1986), the 
5‐p logistic regression allows for asymmetry in the resultant sigmoi‐
dal curve. To assess position and width of the louse replacement 
zone for each of four time periods (1989–1991; 1996; 2001; and 
2016), nine variables describing the resulting logistic curves were re‐
corded as follows: (a) “nGc,” defined as the northernmost location of 

the southern louse, G. centralis; (b) “0.8,” the point at which G. aurei 
represents 80% of the lice on gophers (the 0.8 frequency point of a 
conventional zone width; May, Endler, & McMurtrie, 1975); (c) “IP,” 
the inflection (or null) point, where G. aurei and G. centralis each 
represent 50% of the louse population; (s) “0.2,” the point at which 
G. aurei represents 20% of lice on gophers (the 0.2 frequency point 
of a conventional zone width); (e) “sGa,” defined as the southernmost 
location of the northern louse, G. aurei; (f) full width of the replace‐
ment zone from northernmost G. centralis to southernmost G. aurei; 
(g) 0.2–0.8 width of the replacement zone; (h) goodness‐of‐fit (GOF); 
and (i) weighted GOF. From north to south, the replacement zone is 
characterized by the nGc, 0.8, IP, 0.2, and sGa variables. Bivariate 
linear regression analyses (SYSTAT 7.0; Wilkinson, 1997) were used 
to evaluate the statistical significance of trends in zone variables 
1–5 versus geographic placement in the zone, and time of arrival of 
G. aurei at the San Acacia diversion dam was estimated by calculat‐
ing X (year) when Y (distance south, in m) = 0 for significant regres‐
sions. Because it was obvious from both field observations and initial 
examination of the data that all five of these variables were mov‐
ing southward (all show monotonic increasing trends), we employed 
one‐tailed t tests for significance of each linear trend at the p = 0.05 
level. The null hypothesis is no significant bivariate linear association 
(r = 0), while the alternative hypothesis is that r > 0.

The expected proportions of single‐species and mixed‐species 
samples from within the 0.2–0.8 replacement zone were calculated 
based on Hardy–Weinberg predictions and compared to observed 
proportions using Chi‐square tests. Panmictic breeding among all 
pocket gophers and equal persistence of both species of chewing 
lice when living together on an individual host should follow Hardy–
Weinberg predictions of proportions of single‐species and mixed‐
species samples. Assuming that there are equal proportions of both 
species of chewing lice within the 0.2–0.8 replacement zone, the ex‐
pected proportions of pure G. aurei, mixed‐species, and pure G. cen‐
tralis are 1:2:1.

3  | RESULTS

3.1 | Movement of the chewing louse replacement 
zone

We identified samples of chewing lice from 377 pocket gophers 
from the study area (San Acacia to south of Lemitar, Figures 2c and 
3) as pure G. aurei, mixed‐species samples, or pure G. centralis. These 
included 124 samples from 1989–1991 (Figure 3a), 47 from 1996 
(Figure 3b), 56 from 2001 (Figure 3c), and 150 from 2016 (Figure 3d). 
Five separate variables (variables 1–5 of Table 1; Figure 3e) and the 
results of 5‐p logistic regressions for each time period (Figure 4) 
indicate a steady southward advance of G. aurei. Average rates of 
change in these variables for each time interval were fairly consist‐
ent, except for values from 1996 (full width and 0.2–0.8 width in 
Table 1). For the full 25‐year period represented by the data (1991–
2016), the northernmost limit of G. centralis distribution has moved 
southward at a slower rate (84 m/year) relative to rates of movement 
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of the 0.2–0.8 replacement zone (0.2, IP, and 0.8; 144–163 m/year, 
̄X = 152.4), whereas the rate of movement of the southernmost 
G. aurei is substantially higher (232 m/year). Regressions of variables 
1–5 and the distribution of pure and mixed populations of lice along 
the north–south transect for each sample year (Figure 5) also indi‐
cate a relatively constant rate of southern movement for each vari‐
able throughout the 25‐year study period, with the 0.2, 0.8, and IP 
variables of the 0.2–0.8 replacement zone moving at a similar rate 
( ̄X = 150 m/year) that is faster than that of the nGc rate ( ̄X = 91 m/
year) and slower than that of the sGa rate ( ̄X = 244 m/year). The re‐
gressions for all five variables were significant (p = 0.004–0.044).

3.2 | Proportions of mixed‐species samples

The proportion of G. aurei in 15 mixed‐species samples of chew‐
ing lice with sample sizes ≥25 indicates an imbalance in proportions 
of the two species (n̄ of lice per pocket gopher = 40, resulting in a 
confidence level of p = 0.025 of detecting a mixed population). We 
collected a total of 30 pure G. aurei, 30 mixed‐species samples, and 
33 pure G. centralis from the 0.2–0.8 replacement zone during the 
entire study, which represents fewer mixed‐species samples than 
would be predicted under a process of random association and equal 
persistence of single‐species and mixed‐species samples (Chi‐square 
test, p = 0.039).

4  | DISCUSSION

In this study, the dispersal rate of chewing lice across the landscape 
is dependent on a complicated set of nonindependent factors in‐
cluding pocket gopher density, rate of pocket gopher dispersal, fre‐
quency of physical contact among pocket gophers, rate of successful 
colonization of new host individuals by chewing lice, and rate of spe‐
cies replacement on a newly colonized pocket gopher. Further study 
is needed to reveal the nature of competitive interaction between 

these two species of chewing lice, be it competition for specific mi‐
crohabitats on an individual pocket gopher, different reproductive 
rates, breeding interference, or some other interaction. Each of the 
metrics that we have employed to describe the replacement zone, 
and the rate of change in each (Tables 1 and 2; Figure 3e), is consist‐
ent across the time periods with the exception of the values from 
1996. The narrowing of the replacement zone width and changes 
in rates of change in the 1996 period might be attributed to a nar‐
rowing of the Río Grande Valley floor that coincides with the cross‐
ing of a sandy arroyo, associated flood control dikes, and a settling 
pond (San Lorenzo Arroyo in Figure 3d). However, it is more likely 
that these departures are artifacts of the relatively narrow width of 
sampling along the north–south transect in 1996, and that additional 
mixed‐species samples, northern G. centralis, and southern G. aurei 
were outside of our sampling zone (Figure 5).

4.1 | Interpretations of zone metrics

Studies of contact zones usually describe only the line of contact or, 
at most, the width of the contact zone (Buggs, 2007). Our use of ad‐
ditional metrics allows more detailed description of the replacement 
zone, its movement, and the relative roles of both pocket gopher and 
chewing louse dispersal in effecting zone width and other param‐
eters. All of our calculated rates of pocket gopher and chewing louse 
movement suggest that northern pocket gophers (T. b. connectens) 
bearing northern lice (G. aurei) from a source population near La Joya 
first came into contact with southern pocket gophers (T. b. opulentus) 
bearing southern lice (G. centralis) sometime after the catastrophic 
floods of 1929. Zone metrics can be used in two ways to estimate the 
year northern lice arrived at the San Acacia diversion dam (the zero 
point on the north–south transect in Figure 4). First, the southern‐
most G. aurei (sGa), which marks the leading edge of southward dis‐
persal of the species, moved 5,800 m from 1991–2016 (Table 1), or 
232 m/year (Table 2). The location of sGa in 2016 was at the 9,700‐m 
point on the north–south transect (Table 1), so extrapolating back in 
time using the rate estimate of 232 m/year yields 41.81 years, which 
means that the northern lice reached the diversion dam by around 
1974 (2016 minus 42 years). Examination of the significant regres‐
sions of the zone metrics (Figure 5) provides another way to estimate 
time of arrival of G. aurei at San Acacia. Using the linear solutions in 
Figure 5b–e when Y (distance along the north–south transect) = 0, X 
(estimated year of arrival) = 1969.5 ± 5.92 SD (both methods include 
the 2016 location of sGa, and so are not fully independent). Note 
that these two estimates (~1974 and ~1970), based solely on zone 
metrics, compare favorably with the observed presence of G. aurei 
in San Acacia (based on museum specimens of lice) in 1979. Also, by 
extrapolating back farther in time using the rate estimate of 232 m/
year, it would have taken G. aurei 39 years to pass through the San 
Acacia Constriction (8,970 m by river north of the San Acacia diver‐
sion dam; Figure 2c). Thus, pocket gophers bearing G. aurei would 
have entered the constriction in 1935, soon after completion of 
major flood control measures (Scurlock, 1998).

TA B L E  1   Replacement zone parameters (position south of the 
San Acacia diversion dam, in meters) and goodness‐of‐fit values for 
5‐parameter logistic curves for each time period

 Parameter 1991 1996 2001 2016

1. Northernmost G. 
centralis

2,300 3,800 3,600 4,900

2. 0.8 (80% G. aurei) 2,492 4,106 3,736 6,558

3. Inflection (null) point 
(50% G. aurei)

3,420 4,231 4,547 7,026

4. 0.2 (20% G. aurei) 3,760 4,266 4,786 7,516

5. Southernmost G. aurei 3,900 4,300 6,400 9,700

6. Full width (#1–#5) 1600 500 2,800 5,200

7. 0.2–0.8 width (#2–#4) 1,268 160 1,050 958

8. Goodness‐of‐fit 9.641 9.960 9.547 9.586

9. Weighted 
goodness‐of‐fit

9.989 9.999 9.985 9.985
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Zone metrics can be used to investigate aspects of the zone not 
normally associated with traditional studies of contact zones. For 
example, the question, “How long does it take one parasite species 

to replace another within a population of hosts?” can be addressed 
using zone metrics alone. Width of the 0.2–0.8 replacement zone 
reflects the speed with which northern lice invade and replace 

F I G U R E  4   Logistic curves resulting from 5‐parameter logistic regressions of frequency of Geomydoecus aurei in samples of chewing lice 
from pocket gophers along a north–south transect (beginning at the San Acacia diversion dam) across four time intervals. Hosts and their 
chewing louse samples were grouped into 200‐m bins along the north–south transect. Shading indicates the 95% confidence interval about 
the regression, and triangles outline the conventional 0.2–0.8 cline width for each time period
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southern lice on a local population of pocket gophers, and so mea‐
sures diffusion dispersal from the perspective of the chewing louse. 
Zone width narrows as frequency of invasion (contact between the 
asocial pocket gophers, which allows transfer of northern lice to 
pocket gophers bearing only southern lice) and rate of replacement 
of southern lice by northern lice increase. Zone width calculated 
using the conventional 0.2–0.8 method (May et al., 1975) is relatively 
constant at ~1 km (1,092 ± 159.2 SD m) for the periods 1991, 2001, 
and 2016. At a rate of 150 m/year, the 0.2–0.8 replacement zone 
takes nearly 7 years to move 1 km. In other words, it takes ~7 years 

for G. aurei to grow from 20% of the overall louse population at a 
locality to 80% of the population. The additional time required for 
G. aurei to expand from 80% to 100% of the population is estimated 
below using a different zone metric.

Because louse dispersal is directly dependent on gopher disper‐
sal, the rate of southward movement of the 0.2–0.8 replacement 
zone reflects the average annual dispersal distance of pocket go‐
phers. Our estimated rate of mean annual dispersal distance for 
pocket gophers based solely on zone metrics ( ̄X of regression slopes 
of 0.2, IP, and 0.8 parameters, Figure 5b–d) is 149.96 ± 5.65 SD m/

F I G U R E  5   Locations of chewing louse 
(Geomydoecus) populations along a north–
south transect beginning at the San Acacia 
diversion dam (0 km south on the Y‐axis) 
and linear regressions of zone metrics 
from Table 2. The Y‐axis is reversed to 
show meters south of the diversion dam
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sGa (   southernmost G. aurei)
y = 243.957x - 482169.778
r = 0.988, p = 0.006 E

IP (   Inflection Point)
y = 143.589x - 282566.047
r = 0.993, p = 0.004 C

0.8 (   80% G. aurei)
y = 151.939x - 299859.894
r = 0.959, p = 0.020 B
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0.2 (   20% G. aurei)
y = 154.359x - 303844.882
r = 0.990, p = 0.005 D
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0.8
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TA B L E  2   Average annual rates of movement of parameters of the replacement zone in three time intervals and over the 25 years of the 
study. The estimated year of arrival of Geomydoecus aurei at the San Acacia diversion dam ( ̄X = 1969.5 ± 5.9 SD) is the average value of X 
(year) when Y (m south) = 0. Values involving 1996 (boldface) were likely affected by limited sampling along the north–south transect (see 
text)

 Time interval (year)
northernmost G. 
centralis (m) 0.8 G. aurei (m)

inflection point 
(m) 0.2 G. aurei (m)

southernmost 
G. aurei (m)

1991–1996 5 300 322 162 101 80

1996–2001 5 −40 −74 63 104 420

1991–2001 10 130 124 113 103 250

2001–2016 15 87 188 165 182 220

1991–2016 25 104 163 144 150 232

~1971–2016 45 98 146 156 167 213
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year. This estimate, based on 25 years of monitoring over a distance 
of 10 km, is higher than those reported in the literature based on 
direct observation, usually trapping data (e.g., 62 m/year, Howard & 
Childs, 1959; 78 m/year, Vaughan, 1963; 117 m/year, Daly & Patton, 
1990), but it is widely acknowledged that annual dispersal distances 
are probably site specific and depend on resource availability, pop‐
ulation density, and potentially many other ecological factors that 
influence animal movement.

The southernmost occurrence of G. aurei (sGa) measures jump 
dispersal (Lomolino, Riddle, & Brown, 2006) from the perspective 
of the chewing louse, as it marks the maximum southward dispersal 
distance of a successful pocket gopher colonist bearing G. aurei lice. 
Such long‐distance dispersal starts a new colony of G. aurei deep 
within the range of G. centralis, much as wind‐borne embers can 
start a “jump fire” far beyond the main body of the original fire. Our 
estimate of maximum annual dispersal distance for pocket gophers 
based solely on zone metrics (sGa; ̄X = 232 m/year for the period 
1991–2016, Table 2; regression slope of 239 m/year, Figure 5e) com‐
pares favorably with the maximum dispersal distances reported in 
the literature based on direct observation (e.g., 274 m/year, Howard 
& Childs, 1959; 122 m/year, Vaughan, 1963; 300 m/year, Daly & 
Patton, 1990; the mean of these three estimates is 232 m/year).

The northernmost occurrence of G. centralis (nGc) lags behind the 
0.2–0.8 replacement zone, reflecting the additional time it takes for 
G. aurei to fully replace G. centralis (i.e., expand from 80% to 100% of 
the louse population) in a local population of hosts following initial 
colonization. The regression for nGc based on the 1991–2016 data 
(Figure 5a) indicates southward movement of the nGc at 91 m/year. 
The full width of the replacement zone (from nGc to sGa) continu‐
ally expands over time because of differences in the average rates 
of southern movement of nGc (91 m/year), the 0.2–0.8 replacement 
zone (150 m/year; the average annual southward dispersal distance 
of the hosts), and sGa (the maximum annual southward dispersal dis‐
tance of the hosts; 244 m/year).

Based on transect data from 2016 (Table 1) and rates of move‐
ment estimated solely from zone metrics, a stationary observer 
monitoring louse populations in late 2015 at a point 9,700 m south 
of the San Acacia diversion dam (the 2016 location of the south‐
ernmost G. aurei) would have witnessed the arrival of the first 
northern lice (G. aurei “jump dispersers”) in a louse population 
that had previously been 100% southern lice (G. centralis). Nearly, 
15 years would pass (9,700 − 7,516 = 2,184 m at 150 m/year) be‐
fore G. aurei louse populations in the vicinity of the observer were 
20% northern lice, and another 6.4 years would pass (958 m at 
150 m/year) before G. aurei expands to 80% of the louse popula‐
tion. Finally, 27 additional years would pass (2,459 m at 91 m/year, 
for a total of 48 years, the year 2064) before all lice in the vicinity 
of the observer are G. aurei. Forty‐eight years for one parasite to 
completely replace another seems slow from the human perspec‐
tive, but it is a mere wink of the eye in terms of ecological, much 
less, geological time.

New knowledge about this contact zone, including rate of zone 
movement, average and maximum dispersal distance of gophers 

(hence their lice), and rate of replacement of one parasite by another, 
would not have been discovered in a traditional contact zone study 
involving a single (or a few) localities at a single point in time. The 
common assumption that contact zones are geographically station‐
ary belies the empirical fact that species’ ranges change frequently, 
often as a result of replacement of one species by another at zones 
of competitive parapatry.

4.2 | Geographic and temporal context of the 
contact zone

Contact between these two subspecies of pocket gophers occurred at 
a biogeographically unique location along the Río Grande at a singular 
time in the history of the river's flood regime. In a larger geographic 
context, the San Acacia Constriction marks the meeting place be‐
tween the Great Basin and Chihuahuan Desert biomes (Bailey, 1913; 
Küchler, 1985), including the two major genetic groups of Thomomys 
bottae represented by T. b. connectens and T. b. opulentus (Great Basin 
and Basin and Range clades, respectively, as defined by Patton & 
Smith, 1990; Figure 2a). In a larger temporal context, contact be‐
tween the Great Basin and Chihuahuan Desert clades of T. bottae oc‐
curred following a major, human‐induced change in the natural flood 
cycle of the Río Grande. Historically, the Río Grande Valley experi‐
enced regular and often extreme spring flooding from snowmelt and 
summer‐monsoon flash flooding (Scurlock, 1998), and the bosque 
ecosystem evolved in this annual flood regime (Cartron, Lightfoot, 
Mygatt, Brantley, & Lowrey, 2008). These floods must have regularly 
scoured pocket gophers from the San Acacia Constriction and tem‐
porarily reduced population density elsewhere along the river. The 
catastrophic San Marcial floods of 1929 occurred prior to comple‐
tion of flood control measures (Harden, 2006; Lee, 1907; Patterson, 
1965; Scurlock, 1998; Sodrensen & Linford, 1967). Eventually, how‐
ever, flood control and diversion dams, as well as systems of irriga‐
tion ditches and local channelization of the Río Grande, moderated 
both flooding and drought periods of the river and constrained the 
river to a narrower channel, permitting year‐around agriculture of 
the Río Grande floodplain, particularly extensive growing of alfalfa. 
These same flood control measures also allowed the two Thomomys 
bottae subspecies of pocket gophers to come into contact. Instead of 
the major floods of the 1920s and 1930s eradicating any evidence of 
previous contact (as argued by Hafner et al., 1998), we contend that 
contact prior to the establishment of flood control measures was pre‐
vented by the historical flood regime of the Río Grande.

The southern louse species in this study, G. centralis, represents 
an isolated and geographically restricted population of a spe‐
cies that is widespread across the Great Basin (Price & Hellenthal, 
1981a). Prior to ~1971, this isolated population of G. centralis hosted 
by T. b. opulentus ranged from San Acacia southward 70 km to San 
Marcial, but has surrendered nearly 15% of its estimated 17,500 ha 
distribution to G. aurei during the course of our study. At the cur‐
rent rate of replacement and zone movement, G. aurei will reach San 
Marcial in ~250 years, and, unless conditions change, will completely 
extirpate this population of G. centralis in ~650 years.
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4.3 | Congruence between pocket gopher and 
chewing louse distributions

The association between pocket gophers chewing lice is liter‐
ally a textbook example of cospeciation (Coyne & Orr, 2004; Esch 
& Fernández, 1993; Futuyma, 2005; Lehane, 2005; Lomolino et 
al., 2006; Morris, 2013; Nardon, 2000; Noble, Noble, Schad, & 
MacInnes, 1989; Page & Holmes, 1998; Price, Denno, Eubanks, 
Finke, & Kaplan, 2011; Ridley, 2004; Taubes, 2001; Willmer, Stone, & 
Johnston, 2005). As such, we expect—and usually observe—congru‐
ence between the geographic distribution of a gopher taxon and the 
taxon of louse parasitizing that gopher. Hellenthal and Price (1984) 
found a general correspondence between the distribution of the 
then four recognized species of pocket gophers of the Thomomys 
subgenus Megascapheus and 8 species complexes of their chewing 
lice (comprising 29 species of Geomydoecus). Advances in the under‐
standing of evolutionary relationships within T. bottae (Belfiore et al., 
2008; Patton & Smith, 1990; Smith, 1998) and T. umbrinus (now itself 
composed of four species; Hafner, Hafner, Patton, & Smith, 1987; 
Hafner, Gates, Mathis, Demastes, & Hafner, 2011; Mathis, Hafner, 
Hafner, & Demastes, 2013a; Mathis, Hafner, Hafner, & Demastes, 
2013b; Mathis, Hafner, & Hafner, 2014) permit a more informed 
evaluation of general patterns of distributional relationships within 
these pocket gophers and their chewing lice.

To date, the distribution of species of Geomydoecus lice rela‐
tive to their hosts has been evaluated at one other hybrid zone of 
Thomomys. Patton, Smith, Price, and Hellenthal (1984) studied a hy‐
brid zone between T. bottae (hosting G. shastensis) and T. townsendii 
(hosting G. idahoensis) in northeastern California that had been de‐
scribed previously by Thaeler (1968). Patton et al. (1984) concluded 
that the pocket gopher hybrid zone had been stationary for at least 
25 years without introgressive hybridization, and that the contact 
zone between their nonhybridizing chewing louse species was con‐
cordant with the narrow host hybrid zone.

This contact zone, a zone of competitive parapatry (sensu 
Haffer, 1986; Bull, 1991) from the louse's perspective, is likely to 
be only one of many such zones among the mosaic of 29 species 
of chewing lice hosted by the seven species of Thomomys in the 
subgenus Megascapheus that cover most of the western United 
States and northern Mexico. Comparison of the distributions of 
Geomydoecus species (Hellenthal & Price, 1984) and Thomomys 
(subgenus Megascapheus) species and genetic groups (Mathis et al., 
2014; Patton & Smith, 1981,1990; Smith, 1998) indicate multiple 
instances of apparent range overlap that may have resulted from 
past host switching or may represent current zones of competitive 
parapatry between species of chewing lice (summarized in Table 3). 
Published records of louse localities (Hellenthal & Price, 1980; Price 
& Hellenthal, 1979, 1980, 1981a, 1981b) already reveal 35 specific 
sites where multiple species of lice have been collected from a single 
population of pocket gophers (Table 3). These localities of sympatry 
not only confirm many of the apparent instances of range overlap, 
but may represent geographically stable zones of competitive para‐
patry or moving zones of species replacement. Just as “movement of H
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hybrid zones in the present and recent past could be a widespread 
phenomenon” (Buggs, 2007:307), untested assumptions of stasis of 
species contact (without hybridization) may mask a more widespread 
existence of ongoing species replacement following recent environ‐
mental perturbations or ongoing climatic change. Thus, the localities 
of sympatry may provide additional opportunities to evaluate the 
spatio‐temporal dynamics of both the louse species and their pocket 
gopher hosts over long periods of time, as well as the nature of spe‐
cies interactions in the zone of competitive parapatry. Such zones 
may signal past or ongoing human disturbances (as in this study) or 
other ecological change not previously detected. Our demonstration 
that zone metrics can be used to estimate natural history parameters 
of the species involved is a relatively new finding that portends well 
for future contact zone studies in which preserved specimens are not 
available to verify dating estimates based exclusively on zone met‐
rics and empirical studies of dispersal distance are not available to 
corroborate distance estimates, again based solely on zone metrics. 
Comparison of multiple zones of parapatry within Geomydoecus may 
reveal common patterns among zones of parapatry in Geomydoecus 
that may better inform future studies of zones of competitive para‐
patry in other taxa.
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APPENDIX 1

SPECIMENS E X AMINED

Specimens of Thomomys bottae (n = 589) included in this study are 
housed in either the Louisiana State Museum of Natural Science 
(LSUMZ; specimens from 1989–1996), Museum of Southwestern 
Biology, University of New Mexico (MSB; 1990–2001), Museum of 
Vertebrate Zoology, University of California (MVZ; 1979–1989), or 
the Texas A&M University Biodiversity and Research Teaching 
Collections (TCWC; 2011–2016). Specimens of Geomydoecus in‐
cluded in this study (populations from 425 hosts; approximately 
6,300 specimens examined for this study) are maintained at −80°C 
at the University of Northern Iowa. In addition, dried specimens of 
Geomydoecus brushed from 15 of the Thomomys collected in 1979–
1980, mounted on slides and identified to species, are housed in the 
Insect Collection of the University of Minnesota (UMSP). Samples of 
Thomomys are plotted in Figure 2; populations of Geomydoecus are 
plotted in Figures 2 and 3. Sample sizes for each analysis are indi‐
cated (LM = mounted specimens from UMSP; LA = louse allozymes; 
LS = louse sequences).

Thomomys bottae connectens (n = 152): New Mexico: Socorro Co.; 
1979–1980 (n = 125, used in analyses of morphology [n = 57], pelage 
color [n = 69], allozymes [n = 112], and chromosomes [n = 25]; only 
grouped localities listed in Smith et al., 1983); 0.5 mi. S La Joya (1979, 
n = 12, LM = 2; MVZ 159,103–158,114); 2 mi. S La Joya (1980, n = 22, 
LM = 2; MVZ 158,568–158,589); 3 mi. S La Joya (1980, n = 13, 
LM = 2; MVZ 158,590–158,602); 3.5 mi. S La Joya (1980, n = 23, 
LM = 1; MVZ 158,603–158,625); 3.5 mi. S La Joya, W side Río 
Grande (1980, n = 39; MVZ 158,626–158,664); 4.0 mi. S La Joya 
(1980, n = 16, LM = 2; MVZ 158,665–158,678, 198,540–198,541). 
1989–1993 (n = 16; Hafner et al., 1998); 1 mi. S La Joya (1992, n = 10, 
LS = 4; LSUMZ 30,737, 30,740, 30,742–30,744, 30,785–30,786, 
33,915, 36,134, 36,213); 3.5 mi. S La Joya, W side Río Grande (1989, 
n = 6, LM = 1, LA = 6; LSUMZ 29,545–29550); 2011–2016 (n = 11; 
this paper); 0.9 mi. S, 0.1 mi. W La Joya (2011, n = 5, LS = 4; TCWC 
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64,971–64,975); S of La Joya (2016, n = 6, LS = 5; TCWC 
64,297–64,302).

Thomomys bottae opulentus (n = 437): New Mexico: Socorro Co.; 
1979–1980 (n = 39, used in analyses of morphology [n = 19], pelage 
color [n = 20], allozymes [n = 39], and chromosomes [n = 2]; grouped 
localities listed in Smith et al., 1983); 1 mi. N San Acacia Dam (1980, 
n = 2, LM = 2; MVZ 158,679–158,680); San Acacia (1979, n = 10, 
LM = 2; MVZ 158,061–158,070); San Acacia Dam, E side Río Grande 
(1980, n = 19, LM = 3; MVZ 158,681–158,699); Escondida, E side Río 
Grande (1980, n = 8; MVZ 158,700–158,707). 1989–1993 (n = 145; 
Hafner et al., 1998); San Acacia (1989, n = 9, LA = 9; LSUMZ 29,509–
29,510, 29,551–29,557), 0.7 mi. S, 0.2 mi. E San Acacia (1990, n = 5, 
LA = 5, LS = 1; MSB 287,497–287,499, 287,571–287,572); 1.5 mi. S 
San Acacia (1991, n = 20, LA = 20, LS = 5; LSUMZ 30,714, 30,732, 
30,787–30,788, 30,828, 30,830, 30,865, 30,867, 30,870–30,872, 
30,874–30,875, 30,904–30,905, 30,907, 30,909, 30,913, 30,918–
30,919; 1992, n = 4, LA = 4, LS = 1; LSUMZ 30,928–30,931); 2 mi. N, 
0.5 mi. E Polvadera (1990, n = 5, LA = 5; MSB 287,478–287,480, 
287,495–287,496; 1991, n = 21, LA = 21, LS = 1; LSUMZ 30,731, 
30,789, 30,831, 30,834–30,835, 30,861–30,862, 30,869, 30,873, 
30,876, 30,902–30,903, 30,910–30,912, 30,915–30,917, 30,920–
30,922; 1992, n = 2, LA = 2, LS = 1; LSUMZ 30,924, 30,932); 1.7 mi. 
N, 0.5 mi. E Polvadera (1991, n = 12, LA = 12; LSUMZ 30,734, 
30,784, 30,790, 30,829, 30,833, 30,860, 30,866, 30,868, 30,901, 
30,906, 30,908, 30,914); 1.3 mi. N, 0.3 mi. E Polvadera (1990, n = 5, 
LA = 5; MSB 287,518, 287,532–287,535); 0.8 mi. NE Polvadera 
(1990, n = 4, LA = 4; MSB 287,476, 287,624–287,626); 0.6 mi. S, 
0.8 mi. E Polvadera (1990, n = 6, LA = 6; MSB 287,590–287,592, 
287,595, 287,609–287,610); 1.8 mi. SE Polvadera (1990, n = 4, 
LA = 4; MSB 287,477, 287,621–287,623); 2.0 mi. S, 1.0 mi. E 

Polvadera (1992, n = 8, LA = 8; LSUMZ 33,393, 33,398, 33,876–
33,879, 33,911–33,912); 0.7 mi. N, 0.5 mi. E Lemitar (1990, n = 6, 
LA = 6; MSB 287,513–287,516, 287,536–287,537); 0.5 mi. E Lemitar 
(1990, n = 5, LA = 5; MSB 287,604–287,608); 0.7 mi. S, 1.0 mi. E 
Lemitar (1990, n = 6, LA = 6; MSB 287,573–287,576, 287,593–
287,594); 1.5 mi. S, 0.9 mi. E Lemitar (1990, n = 2, LA = 2; MSB 
287,517, 287,552); 1.0 mi. N Escondida (1992, n = 12; LSUMZ 
30,725–30,726, 30,729–30,730, 30,738–30,739, 30,741, 30,923, 
30,925, 33,914, 34,032, 35,242); Escondida (1990, n = 3, LA = 3; 
MSB 287,589, 287,602–287,603; 1992, n = 5, LA = 5; LSUMZ 34,012, 
35,219, MSB 272,925–272,927; 1993, n = 1, LA = 1; LSUMZ 34,337). 
1996 (n = 47; Hafner et al., 1998); 1.5 mi. S San Acacia (n = 12, 
LA = 12, LS = 2; LSUMZ 35,999–36,000, 36,003, 36,007–36,008, 
36,010, 36,012, 36,015–36,019); 2 mi. N, 0.5 mi. E Polvadera (n = 35, 
LA = 35, LS = 3; LSUMZ 35,974–35,998, 36,001–36,002, 36,004–
36,006, 36,009, 36,011, 36,013–36,014, 36,020). 2001 (n = 56, 
Hafner et al., 1998); 1.5 mi. S San Acacia (n = 6, LA = 6, LS = 2; MSB 
273,860, 287,630, 287,873–287,874, 287,922, 287,945); 2 mi. N, 
0.5 mi. E Polvadera (n = 50, LA = 50, LS = 2; MSB 287,553–287,557, 
287,611–287,614, 287,627–287,629, 287,631–287,632, 287,824–
287,829, 287,848–287,853, 287,872, 287,875–287,877, 287,896–
287,901, 287,920–287,921, 287,923–287,925, 287,943–287,944, 
287,946–287,948, 287,968–287,971). 2011–2016 (n = 150; this 
paper); vicinity of San Acacia (2016, n = 16, LS = 5; TCWC 64,303–
64,318); vicinity of Polvadera (2016, n = 115, LS = 47; TCWC 
64,246–64,271, 64,284–64,296, 64,319–64,394); vicinity of 
Lemitar (2016, n = 17, LS = 15; TCWC 64,241–64,245, 64,272–
64,283); 1.1 mi. S, 0.75 E Lemitar (2011, n = 2; TCWC 
64,969–64,970).


