
Frontiers in Genetics | www.frontiersin.org

Edited by:
Quan Zou,

University of Electronic Science and
Technology of China, China

Reviewed by:
Xingpeng Jiang,

Central China Normal University,
China

Cuncong Zhong,
University of Kansas, United States

*Correspondence:
Min Li

limin@mail.csu.edu.cn

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal
Frontiers in Genetics

Received: 23 October 2019
Accepted: 20 December 2019
Published: 31 January 2020

Citation:
Tang L, Li M, Wu F-X, Pan Y and

Wang J (2020) MAC: Merging
Assemblies by Using Adjacency

Algebraic Model and Classification.
Front. Genet. 10:1396.

doi: 10.3389/fgene.2019.01396

METHODS
published: 31 January 2020

doi: 10.3389/fgene.2019.01396
MAC: Merging Assemblies by Using
Adjacency Algebraic Model and
Classification
Li Tang1, Min Li1*, Fang-Xiang Wu1,2, Yi Pan1,3 and Jianxin Wang1

1 School of Computer Science and Engineering, Central South University, Changsha, China, 2 Division of Biomedical
Engineering, University of Saskatchewan, Saskatoon, SK, Canada, 3 Department of Computer Science, Georgia State
University, Atlanta, GA, United States

With the generation of a large amount of sequencing data, different assemblers have
emerged to perform de novo genome assembly. As a single strategy is hard to fit various
biases of datasets, none of these tools outperforms the others on all species. The process
of assembly reconciliation is to merge multiple assemblies and generate a high-quality
consensus assembly. Several assembly reconciliation tools have been proposed.
However, the existing reconciliation tools cannot produce a merged assembly which
has better contiguity and contains less errors simultaneously, and the results of these tools
usually depend on the ranking of input assemblies. In this study, we propose a novel
assembly reconciliation tool MAC, which merges assemblies by using the adjacency
algebraic model and classification. In order to solve the problem of uneven sequencing
depth and sequencing errors, MAC identifies consensus blocks between contig sets to
construct an adjacency graph. To solve the problem of repetitive region, MAC employs
classification to optimize the adjacency algebraic model. What’s more, MAC designs an
overall scoring function to solve the problem of unknown ranking of input assembly sets.
The experimental results from four species of GAGE-B demonstrate that MAC
outperforms other assembly reconciliation tools.

Keywords: adjacency algebraic model, contig classification, contig reconciliation, de novo assembly,
next-generation sequencing
INTRODUCTION

Next-generation sequencing technologies (NGS) offer a large volume of short sequences with relatively
short insert size compared to the traditional Sanger sequencing technology and the third generation
sequencing technologies, e.g., Pacific Biosciences (Eid et al., 2009) and Oxford Nanopore (Clarke et al.,
2009). Although considerable third generation sequencing data has been produced, due to the higher
cost per base and higher sequencing errors, NGS sequencing data still plays an important role in tackling
an increasing list of biological problems. The de novo genome assembly is a fundamental process for
computational biology (Schatz et al., 2010), which drives the generation of many assemblers to complete
the construction of genome sequences, such as Velvet (Zerbino and Birney, 2008), ABySS (Simpson et al.,
2009), ALLPATHS- LG (Gnerre and Jaffe, 2011), SOAPdenovo (Li et al., 2010), EPGA2(Luo et al., 2015),
Miniasm (Li, 2015), BOSS (Luo et al., 2017), SCOP (Li et al., 2018a), ARC (Liao et al., 2018), iLSLS
January 2020 | Volume 10 | Article 13961

https://www.frontiersin.org/article/10.3389/fgene.2019.01396/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01396/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01396/full
https://loop.frontiersin.org/people/887617/overview
https://loop.frontiersin.org/people/637225
https://loop.frontiersin.org/people/59633
https://loop.frontiersin.org/people/748396
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:limin@mail.csu.edu.cn
https://doi.org/10.3389/fgene.2019.01396
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01396
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01396&domain=pdf&date_stamp=2020-01-31

Tang et al. MAC: Merging Assemblies
(Li et al., 2018b), MEC (Wu et al., 2017), EPGA-SC (Liao et al.,
2019a), PE-Trimmer (Liao et al., 2019b), and so on.

However, there is no single assembler that could perform
optimal ly in every qual i ty metr ic , which has been
demonstrated repeatedly (Earl et al., 2011; Salzberg et al.,
2012; Bradnam et al., 2013). The situation is caused by
various factors: (1) Assembly algorithms are mainly based on
overlap-layout-consensus graphs or de Bruijn graphs, these
two types of algorithms use different strategies to deal with
errors, inconsistencies, and ambiguities; (2) NGS genome
assemblies suffer from long repeats and duplications, which
is the primary reason why some assemblers outperform others
in specific regions and specific species (Alkan et al., 2010); (3)
the uneven sequencing coverage of NGS data increases the
complexity of assembly, which makes the parameters having
great influence on the assembly results, such as k-mer size; (4)
the sequencing errors and chimeric reads cause direct
assembly mistakes. Besides, different sequencing platforms
usually introduce different bias (Harismendy et al., 2009), so
the assemblies generated by various platforms may present
different features, and there is usually complementarity
between them (Diguistini et al., 2009). Thus, it is appealing
merging different assemblies to generate a high-quality
assembly by using complementary, which is first proposed by
Zimin et al., called assembly reconciliation. The main goal of
assembly reconciliation is to increase the contiguity of
assembly results while reducing (or at least not increasing)
the errors in assembly.

Many assembly reconciliation algorithms have been
proposed, for some earlier ones, such as Reconciliator (Zimin
et al., 2005) and GAM (Casagrande et al., 2009). Reconciliator
detects apparent errors in the assembly, and then the error
regions are modified by using the alternative draft assembly,
through which the gaps between sequences are reduced. GAM
defined supercontig to facilitate the integration, which takes two
assemblies as input, and regards the former one as reference. For
some reference-based algorithms, such as eRGA (Francesco
et al., 2011), RAGOUT (Kolmogorov et al., 2014), and MAIA
(Nijkamp et al., 2010), if there is no corresponding reference or
relative reference genome, they cannot work properly, so we
don’t discuss these methods here. The algorithm CISA is used to
integrate the assemblies of bacterial genome in the four major
phases (Lin and Liao, 2013). Firstly, CISA extracts the largest
contig as a representative contig, and aligns the remaining
contigs to the representative coting, then conducts extension
with the contig whose alignment rate is more than 80%. This step
is repeated iteratively until there is no representative contig
found. Secondly, CISA identifies two types of misassemble
contigs: for the misjoined error, CISA removes the contig; for
the insertion error, CISA splits the contig. Thirdly, CISA merges
contigs which have at least 30% overlap, and also estimates the
size of repeats. Finally, if the overlap between two contigs is
greater than the maximum size of repeats, CISA merges the
contigs. CISA could be used to merge more than two assemblies.

The objective of GAA is to generate an accordance assembly
from two or more large genome assemblies (Yao et al., 2012).
Frontiers in Genetics | www.frontiersin.org 2
GAA takes a target assembly and a query assembly as input,
then uses BLAT aligner (Kent, 2002) to align the query
assembly to target assembly. The high scoring matches are
used to construct the accordance graph, GAA finds the
maximal sub-paths from the graph, and the gaps can be
divided into two types, between contigs and inside contigs.
For the gaps between contigs, GAA compares the observed
value and expected value of gap size, then decides whether to
merge two contigs. For the gaps inside contigs, a compression-
expansion(CE) statistic module (Zimin et al., 2005) is used to
evaluate the gap regions. The 454 and Illumina de novo
assemblies are used to examine the performance of GAA.

GAM-NGS (Vicedomini et al., 2013) is the updated version of
GAM, GAM-NGS can be used on all NGS-based assemblies,
especially for eukaryote genomes. Two assemblies and a SAM
alignment file are taken as input, GAM-NGS first searches the
mapping file to identify highly similar fragments between two
assemblies, which is called “blocks”, then a graph is used to record
and weight the information of blocks, and the conflicts are resolved
in the graph. A semi-global alignment between contigs is computed
by GAM-NGS, and two contigs are merged if the identity between
them is larger than 95%. The CE statistic module (Zimin et al., 2005)
is used to choose which assembly can be merged.

The main purpose of MIX (Soueidan et al., 2013) is to reduce
both the fragmentation of contig sets and reduce the time
consumption of genome finishing. MIX builds an extension
graph where vertices represent the terminals of contigs, and
the edges represent the alignment situation between contigs.
MIX attempts to solve the maximal independent longest path set,
which is NP-hard. The performance of algorithm is evaluated on
the GAGE-B (Tanja et al., 2013) bacterial dataset.

Metassembly (Wences and Schatz, 2015) merges all the
input assemblies into a final one, which is better than or as
good as the original assemblies. Metassembly regards one of
the inputs as a “primary” assembly, then the others are
“secondary” assemblies, the secondary assemblies are used to
add useful information to the primary assembly. A pairwise
algorithm is used to merge multiple assemblies, the
primary assembly is aligned to the secondary assembly, and
the best aligned position can be evaluated by LIS (longest
increasing subsequence) function. The CE statistic (Zimin
et al., 2005) is used to assess the conflicts and select the
locally best sequence.

In general, most of the methods described above are based
on the CE statistic (Zimin et al., 2005), which is used to detect
compression or expansion misassemblies between two input
assemblies. However, the CE statistic is obtained by aligning
paired-end or mate-pair reads to the assembly, which is
impacted by the alignment quality and the false positive
within error detection leads to the misassembly directly. In
addition, most of the current reconciliation tools are designed
for merging short sequences (<100bp), like CISA and GAM-
NGS, which performed poorly in merging longer sequences
(>200bp). Therefore, there is an urgent require for the robust
reconciliation tool to increase the length and quality of
assembly, as well as adapt to longer sequencing data.
January 2020 | Volume 10 | Article 1396

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Tang et al. MAC: Merging Assemblies
In this study, we propose a novel assembly reconciliation tool,
namedMAC, which uses alignment information and GC-content of
paired-end reads to classify all the contigs into two types. Then,
consensus blocks between contig sets are identified, and the
unreliable fragments caused by uneven sequencing depth or
sequencing errors could be filtered out. In addition, MAC utilizes
the adjacency algebraic model to facilitate the merging process, in
which the adjacent graph is used to fulfill accurate fusions between
consensus blocks. The classification result of contigs is used to
optimize the model, and the repetitive regions could be eliminated
by splitting contigs and reconstructing the adjacent graph. What’s
more, an overall scoring function is proposed to solve the problem of
unknown ranking of input assemblies, the scoring function evaluates
the overall quality of assembly sets by alignment quality and coverage
information. The experimental results from the datasets of GAGE-B
demonstrate that MAC performs better than other
reconciliation tools.
METHOD

MAC employs the adjacency algebraic model (Sankoff et al.,
2000) and the classification to merge assemblies. The
identification of consensus blocks is to filter out the unreliable
fragments caused by uneven sequencing depth and sequencing
errors; the addition of classification is to optimize the adjacency
algebraic model and eliminate the influence of repetitive regions.
The outline for the whole algorithm is as follows: (1)
Preprocessing: MAC aligns paired-end/mate-pair reads to
contig sets, and filters out the low-quality alignment; (2)
Ranking input assemblies: MAC designs an overall scoring
function to rank the input assemblies; (3) Classifying contigs:
MAC utilizes the alignment results and GC-content of paired
reads to classify contigs; (4) Adopting the adjacent algebraic
model: MAC constructs an adjacent graph to fulfill some
accurate fusions of consensus blocks, then uses classification
results of contigs to optimize the remaining processing steps. The
flowchart of MAC algorithm is shown in Figure 1.

Preprocessing
MAC takes multiple contig sets and paired-end/mate-pair reads
as input, the aligner Bowtie2 needs to be installed in advance.
The input reads are aligned to each contig set, respectively. For
reads aligning to multiple positions, MAC only maintains the
highest score alignment for each read, and removes the
redundant alignments. According to the paper of Luo et al.,
the length of insert size follows a normal distribution N (mis, sis),
so the distance between two paired reads, which align to the same
contig, should be in the range of [mis– 3*sis, mis+ 3*sis]. For the
reads which violate this rule, MAC removes the corresponding
alignment. To reduce the impact of sequencing errors, MAC
extracts the sequencing quality of every base in reads, and
calculates the average and standard deviation of sequencing
quality for the remaining alignment, denoted by Mq and sra,
respectively. Let Qi represent the mean value of sequencing
Frontiers in Genetics | www.frontiersin.org 3
quality for the i-th alignment. If Qi < Mq- 3*sra, MAC
removes the alignment information.

Ranking Input Assemblies
As most existing assembly reconciliation tools depend on the
ranking of input, and the results usually change when the order
of input assemblies change. To achieve better results, users
have to evaluate the contiguity and correctness of every input
assembly by taking the reference into Quast (Gurevich et al.,
2013) or other evaluation tools. In the study, MAC utilizes the
mapping quality and read coverage to rank the input
assemblies. The compact idiosyncratic gapped alignment
report (CIGAR) can be obtained from files in the SAM
format, in which “M” represents match/mismatch, “I”
represents insertion, “D” represents deletion, and the
number before a character represents its corresponding
quantity. Assume that the length of contig C is L, j (1≤j≤L)
is the position at C, qj represents the CIGAR of position j,
which is calculated as follows.

qj =
1, if j = M

−1, if j = M*or I or D,

(
(1)

where M denotes match and M* denotes mismatch. In fact, we
cannot distinguish match and mismatch from a single
character “M”, so MAC calculates the average mapping score
of the SAM file. If the mapping score of the corresponding read
is larger than or equal to the average mapping score, the
character “M” is thought to be match, otherwise, “M” is
thought to be mismatch.

To take the coverage into consideration, MAC extracts the
alignment of contig C, to calculate the average rc, and standard
deviation src of read coverage. Assume that rci is the read
coverage of the spanning region of read i, RC is used to
indicate whether the coverage of the region deviates too much,
which is computed as follows.

RC =
1, if (rci > rc + 2 * src) or (rci < rc − 2 * src)

−1, otherwise

(
(2)

In order to comprehensively consider the mapping quality
and read coverage, MAC employs an overall scoring function to
rank the input assemblies, which is calculated as follows.

score =o
N

c=1oL

j=1qj −oN

c=1oK

i=1RC

N
(3)

Classifying Contigs
In this step, MAC evaluates the quality of contigs by using the
alignment result and GC-content, and then classifies all the
contigs into two types. Due to the problems of sequencing
errors, uneven depth, existence of repetitive regions and the
b ias o f a lgor i thm st ra tegy , cont ig s o f t en conta in
misassemblies, which influence the subsequent assemblies
directly. Therefore, MAC estimates the correctness of
January 2020 | Volume 10 | Article 1396

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Tang et al. MAC: Merging Assemblies
contigs, and marks the type for every contig, and records the
potential error positions.

For a contigC, whose length is L, the coordinate of position j is in
the range of [1, L]. The fragment coverage fc(j) could be defined as
the number of reads with the high alignment scores which span the
position j. Because low coverage regions more likely contain error
joints, MAC employs a cutoff fc* to identify the potential error
positions, fc* can be calculated by the average of fragment coverage
for all the positions of contig C as follows (Wu et al., 2017).

fc* = a*
oL

j=1fc(j)

L
(4)

The parameter a can be set by users. If the fragment coverage
of position j is less than the cutoff, that is fc(j) ≤ fc*, the position j
is regarded as a potential error position. If there are multiple
continuous potential error positions, the region covering these
positions can be group into a region set T (T = {[m, n] | n ≥m, ∀
j∈ [m, n], fc(j) ≤ fc*}). For every region in set T, MAC chooses
the position whose fragment coverage is the lowest as the
breakpoint, Bp (m≤ Bp≤ n).

Owing to the uneven sequencing depth, some low-depth regions
may be mistakenly categorized as containing error positions.
Therefore, MAC estimates the coverage condition of the neighbor
flanking regions for breakpoint Bp to reduce false positives.Ms is the
Frontiers in Genetics | www.frontiersin.org 4
number of paired reads whose left mate maps to the left flanking
region of Bp, and rightmatemaps to other contigs.Mp is the number
of paired reads whose rightmatemaps to the right flanking region of
Bp, and left mate maps to other contigs. Then two rates: Pcs and Pcp,
are calculated as follows (Wu et al., 2017).

Pcs =
fc(Bp)

fc(Bp) +Ms
(5)

Pcp =
fc(Bp)

fc(Bp) +Mp
(6)

Pcs and Pcp are used to estimate whether the region [m, n] is
low-depth or not. If Pcs>b or Pcp>b, the region is thought to be
a low-depth region, and should be removed from the
potential set.

Owing to the GC-content bias, some regions may cover less
reads or even no reads, and these regions are mistakenly
categorized as containing error positions. Therefore, MAC
evaluates whether the GC-content of the neighbor flanking
regions for Bp is too high or too low. PGC is the GC-content
rate of the potential error region which contains Bp, and Pg is the
GC-content of the whole genome, Pg is calculated as follows (Wu
et al., 2017).

Pg =
oN

i=1oLi

j=1Ij

oN

i=1Li
, (7)

where N represents the number of contigs, Li is the length of
the i-th contig, Ij is an indicator variable, when the base at
position i is G or C, Ij equals to 1, otherwise, Ij equals to 0. If
PGC ≥ Pg + 1, the region is thought to be GC-rich, otherwise, the
region is thought to be GC-poor. Both GC-rich and GC-poor
regions are removed from the potential set.

After removing the low-depth regions and GC-bias regions,
the remaining single potential positions and potential regions are
certainly false. which satisfy the following conditions at the
same time:

① fc(j) ≤ fc*;

② Pcs ≤ b and Pcp ≤ b;
③ PGC < Pg + 1 and PGC > Pg + 1.

The regions estimated as low-depth or GC-bias are thought to
be uncertain regions, and the positions in these regions satisfy
the following conditions simultaneously:

① fc(j) ≤ fc*;

② Pcs > b or Pcp > b;
③ PGC ≥ Pg + 1 or PGC ≤ Pg + 1.

After excluding the above two types of positions, the rest
positions are certainly true. For the certainly false positions/
regions, MAC breaks the corresponding contigs at the false
position or the Bp position of the false region, and eliminate
certainly false positions. Based on the above evaluation, all the
FIGURE 1 | Flowchart of MAC algorithm.
January 2020 | Volume 10 | Article 1396

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Tang et al. MAC: Merging Assemblies
input contigs can be divided into two types: Uncertain (U) and True
(T). If the contig contains one or more uncertain regions, the contig
is classified as U contig, while the contig only containing true
positions is classified as T contig.

Adopting Adjacency Algebraic Model
The order of merging is determined by the ranking of overall
scores, which are calculated in the previous step. MAC merges
two assemblies at a time, the next assembly and the resultant
assembly are merged iteratively. In the merging process, MAC
utilizes an adjacency algebraic model (Sankoff et al., 2000) to
find the conjunctions between contigs. The adjacency algebraic
model was introduced by Feijã£O and Meidanis to find a
permutation to minimize the algebraic rearrangement
distance (Feijã£O and Meidanis, 2013), and the adjacency
algebraic model was proved to be efficient on the problem of
contig ordering (Chen et al., 2018). In this study, MAC uses the
adjacent graph to represent the adjacency algebraic model and
utilizes the classification of contigs to optimize the model, the
pseudo-code of adopting the adjacency algebraic model is as
shown in Algorithm 1 of Supplementary Material.

Constructing Adjacent Graph
Given two input contig sets O and R, MAC utilizes the
NUCmer package from MUMmer (Kurtz et al., 2004) to
identify the high similarity fragments between O and R,
which are called “consensus blocks”, and numbers these
consensus blocks. Two consensus blocks are thought to be
adjacent, if they are next to each other, or if they overlap each
other end-to-end with the overlapping length of l (l ≤ lcmin*
0.01), where lcmin is the smaller one between the lengths of two
consensus blocks, l is called the adjacent region. In general,
there are two or more consensus blocks in one contig, and the
consensus blocks may connect with each other, or maybe
contain intervals between them. As described above, every
contig can be divided into two types: “U” and “T”. For the “U”
type of contigs, if potential error positions locate at the
adjacent regions of consensus blocks , the posit ion
information is retained. Otherwise, if potential error
positions locate at the center region of consensus blocks,
these positions are thought to be reliable, and could be
removed form the potential error set. For the “T” type of
contigs, MAC retains its state. MAC distributes the orientation
for every consensus block, and uses tail(“t”) to denote the
starting position, head(“h”) to denote the ending position. As
shown in the example of Figure 2, 9 consensus blocks are
found between two contig sets O and R, the adjacent
relationships are enclosed in brackets, so O and R can be
represented by O = {[1, 5], [9], [8, 2], [-3, 7], [6, 4]}, R = {[1, 6,
5], [4, 3], [2, 7, 8]}, respectively. As the orientation of
consensus block “3” in O is reversed (from 3h to 3t), we use
“-3” to represent this consensus block in O. In Figure 2, we
suppose that there were uncertain positions between [1,5] in
the first contig of O and [7,8] in the third contig of R, so these
two contigs were regarded as “U” type, which are marked by
red cycles on the contigs, and the corresponding consensus
Frontiers in Genetics | www.frontiersin.org 5
blocks are also marked with underlines in Figure 2, the detail
classification strategy has been described above.

Then the adjacent graph G = <V, E > is constructed, V is the
vertices set of the adjacent graph, the single terminals or
conjunctions of consensus blocks are regarded as vertices, in
the example of Figure 2, 1t, 9t, 9h, 6t, and so on are the single
terminals of O set, 1h5t, 6h4t, and so on are the conjunctions of
O set. E is the edges set of the adjacent graph, an edge is added
betweenO and R if two vertices have a terminal in common, such
as 1h5t of O and 1h6t of R both have 1h, so there is an edge
between 1h5t and 1h6t.

Extracting Good Paths
The major objective of the adjacent algebraic model is to
minimize the algebraic distance between two contig sets, which
can be denoted by d(O,R) = N − C − P

2 (Feijã£O and Meidanis,
2013), where N represents the number of contigs, C represents
the number of cycles, P represents the number of paths in the
adjacent graph G.

Through the demonstration of Lu et al., getting the minimum
algebraic distance is equivalent to obtaining the maximum
number of cycles, and the term of “good path” is defined for
the cycle (closing path), which can connect multiple consensus
blocks to generate a longer assembly. Here we define the
conjunctions between two consensus blocks as adjacency,
which are enclosed in square brackets in Figure 2. The paths
in adjacent graph can be summarized according to the length,
whether two ends of the path in the same set or in the same
adjacency or not. We list all the possible combinations of the
features mentioned above, as shown in Table 1 there are 9 types
of combinations in total. In the adjacent graph, two ends of the
path appear in the same contig only if they appear in the same
contig set, so if two ends of the path cannot be found in the same
contig set, they cannot be found in the same contig or adjacency,
thus for the types of No.3 and 7 in Table 1, two ends of the paths
are in different contig sets, they cannot in the same adjacency,
here we use “-” to represent the type is absent. If the length of
path is odd, two ends should be found in different contig sets, so
types of No.1 and 2 are absent. If the length of path is even, two
terminals should be found in the same set, so type of No.8 is
absent. However, there is an exceptional case, when two
terminals form a circle, they can be found in different sets and
different adjacencies.

From Table 1, four types are absent, and the type of No.6 is
regarded as a good path, whose length is even, both of the ends
are in the same set but in different adjacencies. There are two
kinds of poor paths: No.4 and No.5. As the example in Figure 2
shows, the paths of {4h, 4h3t, 3t7t, 2h7t, 2h}, {9t, 3h9t, 3h}, {7h,
7h8t, 8t} are good, which can form the cycles of [4h, 2h], [9t,
3h], and [7h, 8t]. Through the fusion of [4h, 2h], adjacencies
[8, 2] and [6, 4] can be joined into [8, 2, -4, -6]. Through the
fusion of [9t, 3h], adjacencies [9] and [-3, 7] can be joined into
[-9, -3, 7]. Through the fusion of [7h, 8t], adjacencies [8, 2] and
[-3, 7] can be joined into [-3, 7, 8, 2], and these two newly
generated results can be further merged into [-9, -3, 7, 8, 2, -4,
-6], equals to [6, 4, -2, -8, -7, 3, 9].
January 2020 | Volume 10 | Article 1396

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Tang et al. MAC: Merging Assemblies
Optimizing the Adjacency Algebraic Model
In the study of Lu et al., two odd paths (No.4 in Table 1) are
chosen to join into a cycle repeatedly, until the odd path graph
becomes an alternating cycle with the length of two. The
remaining No.4 and No.5 paths can be arbitrarily joined
together into two longer paths. However, in the actual
implementation process, they found the fusion of these two
types of paths resulting in error joints. In this study, MAC
utilizes the classification of contigs to optimize the processing of
poor paths in the adjacency algebraic model. Due to the circle
paths in the graph represent the same adjacencies between two
sets, so MAC maintains these paths without any process.

As described above, all the input contigs are divided into two
types: Uncertain (“U”) and True (“T”), the classification result is
stored in the form of a label for every contig together with the
potential error positions. After extracting good paths from the
adjacent graph, the poor-1 type of paths can be further divided
into two sub-types: single path and non-single path. The length
of single path is 1, and two terminals are the same, for example,
{1t, 1t}, {5h, 5h} and {3h, 3h} in Figure 2 are single paths, {6t,
1h6t, 1h5t, 6h5t, 6h4t, 4t} is a non-single path. MAC uses the
following steps to process poor paths:

• For non-single paths, MAC extracts the adjacencies which are
included in the path, then checks the classification of contigs
where the adjacencies are located. If contig is “U”, and there is
potential error position locating at adjacent region l, MAC
splits the contig at the potential error position, and then
reconstructs the sub-graph to extract good paths again.

• For single paths, MAC does not take any treatment, because
during the process of graph reconstruction, some single paths
would be eliminated automatically.

• For poor-2 type of paths, if both terminals of a poor-2 path
appears in any good path, then the poor-2 path is thought to
be spurious, and MAC removes this path along with the
contig contained in the path. Otherwise, the poor-2 path can
be retained temporarily.
Frontiers in Genetics | www.frontiersin.org 6
MAC repeats these processing steps iteratively until there is
no good path added, and single paths are merged into good paths
to generate new adjacencies. For the new adjacencies, if there are
overlapping blocks, the shorter adjacency is merged into a longer
one. Here we use the same example as Figure 2 to explain the
optimization process, and the detail procedure is as shown in
Figure 2.

After extracting good paths for the first time, the remaining
are two types of poor paths. For non-single path {6t, 1h6t, 1h5t,
6h5t, 6h4t, 4t}, the adjacency included in the path are: [1, 5],
[6, 4] in set O and contig [1, 6, 5] in set R, according to the
processing steps, the error position of adjacency [1, 5] locates
at the adjacent region, so the first contig of O should be split
at the position. In fact, the head of block 1 and the head of
block 6 contain the same repetitive sequences, which cause a
misjoin between 1 and 5, as shown in the dashed line box
of Figure 3. As such MAC could solve the problem of
repetitive regions. Then the sub-graph is reconstructed, two
more good paths are extracted, and there are four single paths
remaining. After merging these single paths into good paths,
the final contigs can be represented by the adjacencies: [1, 6, 4,
-2, -8, -7, 3, 9] and [1, 6, 5]. MAC identifies there is an
overlapping region between two adjacencies, and thus merges
[1, 6, 5] into [1, 6, 4, -2, -8, -7, 3, 9] to get the final adjacency [1,
6, 5, 6, 4, -2, -8, -7, 3, 9].
TABLE 1 | Nine types of paths in the adjacent graph.

No. Length of path In the same set In the same adjacency Type

1 Odd Y Y –

2 Odd Y N –

3 Odd N Y –

4 Odd N N Poor-1
5 Even Y Y Poor-2
6 Even Y N Good
7 Even N Y –

8 Even N N –

9 Even N N Circle
Janua
ry 2020 | Volume 10 | Artic
FIGURE 2 | An example for constructing adjacent graph.
le 1396

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Tang et al. MAC: Merging Assemblies
EXPERIMENTAL RESULTS AND
DISCUSSION

Datasets and Evaluation Metrics
In this study, we perform the experiments on four real
bacterial genomes: M.abscessus, B.fragilis, R.sphaeroides
and V.cholerae from GAGE-B (Genome Assembly Gold-
Frontiers in Genetics | www.frontiersin.org 7
standard Evaluation for Bacteria) (Tanja et al., 2013), GAGE-
B evaluates the performance of multiple genome assemblers on
a spectrum of bacterial genomes sequenced by the sequencing
technologies of MiSeq and HiSeq. Here, we use the sequences
generated byMiSeq technology, the average read length of these
four species is 250 bp, the coverage is 100x, and the genome
sizes are 5.1 Mb, 5.4 MB, 4.6 Mb, and 4.0 Mb, respectively. The
FIGURE 3 | Detail of optimization process.
TABLE 2 | The experimental results of M. abscessus.

Contigs num Largest contig Size Genome fraction N50 NGA50 MA

Velvet 203 226,629 5,136,825 98.965 48,155 41,485 54
ABySS 149 245,660 5,116,522 98.926 70,424 68,549 2
SOAPdenovo 91 286,460 5,133,667 99.139 131,561 113,272 19
(Velvet+ABySS)
GAA 339 129,152 5,152,501 99.094 39,271 37,715 61
MIX 118 245,660 5,376,417 98.891 108,584 70,302 18
Metassembler 200 226,629 5,130,215 98.944 48,155 41,485 54
MAC 190 317,945 9,856,881 99.304 163,219 90,766 58
(Velvet+ABySS+SOAP)
GAA 211 210,497 5,146,833 99.129 54,850 50,904 55
MIX 91 286,460 5,133,667 99.139 131,561 113,272 17
Metassembler 191 226,629 4,934,916 95.03 47,284 39,706 64
MAC 80 287,168 5,146,285 99.249 141,537 131,561 10
Ja
nuary 2020 | Volu
me 10 | Article 1
The bolded data indicates the highest value of N50 or NGA50 within each comparison.
396

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Tang et al. MAC: Merging Assemblies
insert sizes are 335 bp, 600 bp, 540 bp, and 335 bp, respectively.
The detail information of raw data is listed in Table S1 of
Supplementary Material. All the assemblies and paired-end
reads are available at the website of GAGE-B (http://ccb.jhu.
edu/gage_b/).

The evaluation tool Quast (Gurevich et al., 2013) is used to
estimate the contiguity and correctness of assemblies. For the
Frontiers in Genetics | www.frontiersin.org 8
metrics provided by Quast, N50 is the metric to evaluate
contiguity without reference, and NGA50 could compare the
assemblies to a reference genome to get more accurate and
comprehensive evaluation. The number of misassemblies is an
important metric to measure the correctness of assemblies. In
most cases, the increase of N50 and NGA50 inevitably leads to
more misassemblies. The contig sets generated by different tools
TABLE 3 | The experimental results of B. fragilis.

Contigs num Largest contig Size Genome fraction N50 NGA50 MA

Velvet 373 91,844 5,310,336 97.661 24,465 24,465 3
ABySS 87 430,487 5,380,960 98.451 130,570 130,570 2
SOAPdenovo 79 606,530 5,341,631 98.226 246,346 246,346 0
(Velvet+ABySS)
GAA 2053 16,951 10,676,299 98.811 4,999 4,999 4
MIX 87 430,487 5,380,960 98.451 130,570 130,570 2
Metassembler 256 127,644 5,317,077 97.819 40,339 39,580 3
MAC 136 568,455 10,618,547 98.812 270,064 144,965 9
(Velvet+ABySS+SOAP)
GAA 2933 429,861 15,592,962 98.896 6,079 6,075 4
MIX 55 700,546 6,089,165 98.554 353,741 380,728 9
Metassembler 194 215,440 5,317,760 97.819 57,802 57,596 3
MAC 42 1,195,331 5,355,147 98.306 485,219 455,989 2
Ja
nuary 2020 | Volu
me 10 | Article 1
The bolded data indicates the highest value of N50 or NGA50 within each comparison.
TABLE 4 | The experimental results of R. sphaeroides The highest value of N50 or NGA50 within each comparison.

Contigs num Largest contig Size Genome fraction N50 NGA50 MA

Velvet 332 71,713 4,485,514 97.419 23,979 24,300 2
ABySS 382 71,578 4,503,182 97.76 21,441 21,441 1
SOAPdenovo 354 115,051 4,527,360 97.98 33,491 33,491 1
(Velvet+ABySS)
GAA 1745 9,976 8,988,696 98.651 6,650 6,650 3
MIX 274 113,766 4,728,490 97.493 35,067 28,685 35
Metassembler 325 71,713 4,480,778 97.337 23,979 23,979 2
MAC 434 126,603 8,043,496 98.718 53,057 52,641 17
(Velvet+ABySS+SOAP)
GAA 2683 13,133 13,487,438 99.281 7,589 7,571 4
MIX 237 171,915 4,982,251 98.446 51,508 41,915 22
Metassembler 323 71,713 4,477,669 97.269 23,979 23,979 2
MAC 122 173,958 4,574,809 98.282 58,392 56,244 7
The bolded data indicates the highest value of N50 or NGA50 within each comparison.
TABLE 5 | The experimental results of V. cholerae.

Contigs num Largest contig Size Genome fraction N50 NGA50 MA

Velvet 156 246,346 3,944,260 97.563 92,036 63,574 14
ABySS 196 178,118 3,904,784 96.699 61,965 60,272 2
SOAPdenovo 186 246,179 3,924,635 96.94 71,357 65,464 16
(Velvet+ABySS)
GAA 271 170,890 3,958,224 97.207 73,177 56,472 14
MIX 147 310,702 4,038,894 96.915 124,754 91,942 19
Metassembler 150 246,346 3,935,482 97.48 92,036 63,574 13
MAC 232 312,914 7,221,147 97.322 174,216 163,176 21
(Velvet+ABySS+SOAP)
GAA 160 243,299 3,981,614 97.713 110,446 110,446 16
MIX 118 310,703 4,338,139 97.496 112,745 86,841 32
Metassembler 145 246,346 3,914,378 96.972 93,191 63,574 13
MAC 87 358,265 3,997,554 97.709 167,523 110,538 13
The bolded data indicates the highest value of N50 or NGA50 within each comparison.
396

http://ccb.jhu.edu/gage_b/
http://ccb.jhu.edu/gage_b/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Tang et al. MAC: Merging Assemblies
are evaluated in Tables S2–S5 of Supplementary Material. The
major objective of MAC is to increase the contiguity of
assemblies, at the same time make sure the number of
misassemblies reducing or at least not increasing.

Experimental Results
Although lots of assembly reconciliation tools have beendeveloped,
someof the tools have stoppedupdating, someneed the referenceof
relative species, and some tools don’t fit for merging relatively
longer next-generation sequences which are in ~250bp. Therefore,
we exclude these unsuitable tools, and only compare MAC with
three assembly reconciliation tools: GAA, MIX andMetassembler.
The assemblies are generated by Velvet, ABySS and SOAPdenovo.
The contigs generated by Velvet are fragmental and with poor
contiguity. ABySS could provide more reliable contigs which have
lessmisassemblies. SOAPdenovo is a powerful toolwhich produces
higher contiguityandcorrectness contigs. In theexperiment,we test
the merging performance of four reconciliation tools on the
assemblies which have different features. The experiment results
are shown inTables 2–5. For each dataset, we take the experiments
on two assemblies as input (Velvet+ABySS), and multiple
assemblies as input (Velvet+ABySS+SOAPdenovo). “MA” in
tables represent the numbers of misassemblies.

For the case of two assemblies as input, the number of
misassemblies of four reconciliation tools have increased
somewhat because the quality of input assemblies is relatively
low. Even the metrics of N50/NGA50 have remained static or
decreased for some tools, such as GAA and Metassembler. By
comparison, MAC achieves significant growth in N50 and
NGA50 compared to the original input assemblies and the
merging results of other reconciliation tools in four datasets,
although the number of misassemblies is basically flat.

For the case of three assemblies as input, the metrics of N50/
NGA50 of four reconciliation tools have increased in various
degrees, due to the addition of high quality assemblies
generated by SOAPdenovo, while there is no obvious change
in the number of misassemblies for GAA, MIX, and
Metassembler. However, MAC not only achieves the obvious
increase of N50 and NGA50, but also greatly reduces the
number of misassemblies. Especially in the dataset of
B.fragilis, the N50 and NAG50 of MAC are 485219 and
455989, which have the growth rate of 79.6% and 214.5%,
respectively, compared to the case of two assemblies as input
of MAC, and the growth rate of 96.9% and 81.7%, respectively,
compared to the high quality input of SOAPdenovo. What’s
more, the number of misassemblies has decreased from 9 to 2,
which is less than the number of velvet and equals to the
number of ABySS.

From the results of Tables 2–5, MAC outperforms the other
reconciliation tools, MAC is not only adapted to merge low
quality assemblies to generate a more continuous one, but is
also good at fusing different features between assemblies to
further improve the contiguity of high quality assemblies, at
the same time maintaining the correctness. In addition, we
evaluated the computational costs of four tools, as shown in
Table S6 of supplementary material.
Frontiers in Genetics | www.frontiersin.org 9
CONCLUSION

In this study,wehave proposed a novel assembly reconciliation tool
MAC. MAC classifies all the contigs into “U” and “T” by using
alignment results and GC-content of paired-end reads, then
identifies consensus blocks between assembly sets, through which
unreliable fragments caused by uneven sequencing depth or
sequencing errors could be filtered out. In addition, MAC utilizes
adjacency algebraic model to fulfill the merging process. The
adjacent graph is employed to identify good paths between
consensus blocks, which could be used to generate some accurate
fusions. Secondly, the classification result of contigs is used to
optimize the processing steps of poor paths, through which
repetitive regions could be eliminated by splitting contigs and
reconstructing the adjacent graph. What’s more, to solve the
problem of unknown ranking of input assemblies, MAC designs a
scoring function to evaluate the overall quality of assembly sets. The
experimental results from four real species of GAGE-B illustrate
that MAC performs better than other reconciliation tools.
DATA AVAILABILITY STATEMENT

The datasets of GAGE-B for this study can be found in https://
ccb.jhu.edu/gage_b/. The source code of MAC is available at
https://github.com/bioinfomaticsCSU/MAC.
AUTHOR CONTRIBUTIONS

LT, ML, F-XW, YP, and JW conceived the original study. LT
carried out the analysis of sequencing data and developed the
bioinformatics tool. ML contributed to designing the algorithm
structure. F-XW, YP, and JW contributed to optimizing the
performance of tool. All authors contributed to drafting
the manuscript.
FUNDING

This work was supported in part by the National Natural Science
Foundation of China [No. 61732009, No. 61772557, and
No. 61420106009].
ACKNOWLEDGMENTS

The Fourth CCF Bioinformatics Conference (CBC 2019).
SUPPLEMENTARY MATERIALS

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2019.
01396/full#supplementary-material
January 2020 | Volume 10 | Article 1396

https://ccb.jhu.edu/gage_b/
https://ccb.jhu.edu/gage_b/
https://github.com/bioinfomaticsCSU/MAC
https://www.frontiersin.org/articles/10.3389/fgene.2019.01396/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.01396/full#supplementary-material
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Tang et al. MAC: Merging Assemblies
REFERENCES

Alkan, C., Sajjadian, S., and Eichler, E. E. (2010). Limitations of next-generation
genome sequence assembly. Nat. Methods 8 (1), 61.

Bradnam, K. R., Fass, J. N., Alexandrov, A., Baranay, P., Bechner, M., Birol, I., et al.
(2013). Assemblathon 2: evaluating de novo methods of genome assembly in
three vertebrate species. Gigascience 2 (1), 10.

Casagrande, A., Fabbro, C. D., Scalabrin, S., and Policriti, A. (2009). “GAM: Genomic
Assemblies Merger: A Graph Based Method to Integrate Different Assemblies”,
2009 IEEE InternationalConference onBioinformatics andBiomedicine. 18. (IEEE
Computer Society), 321–326. doi: 10.1109/BIBM.2009.28.

Chen, K. T., Liu, C. L., Huang, S. H., Shen, H. T., Shieh, Y. K., Chiu, H. T., et al.
(2018). CSAR: a contig scaffolding tool using algebraic rearrangements.
Bioinformatics. 34 (1), 109–111. doi: 10.1093/bioinformatics/btx543

Clarke, J., Wu, H. C., Jayasinghe, L., Patel, A., Reid, S., and Bayley, H. (2009).
Continuous base identification for single-molecule nanopore DNA sequencing.
Nat. Nanotechnol. 4 (4), 265. doi: 10.1038/nnano.2009.12

Diguistini, S., Liao, N. Y., Platt, D., Robertson, G., Seidel, M., Chan, S. K., et al
(2009). De novo genome sequence assembly of a filamentous fungus using
sanger, 454 and illumina sequence data. Genome Biol. 10 (9), R94. doi: 10.1186/
gb-2009-10-9-r94

Earl, D., Bradnam, K., John, J. S., Darling, A., Lin, D., Fass, J., et al (2011).
Assemblathon 1: a competitive assessment of de novo short read assembly
methods. Genome Res. 21 (12), 2224–2241. doi: 10.1101/gr.126599.111

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., et al. (2009). Real-time dna
sequencing from single polymerase molecules. Science 323 (5910), 133–138.
doi: 10.1126/science.1162986

Feijã£O, P., and Meidanis, J. (2013). Extending the algebraic formalism for
genome rearrangements to include linear chromosomes. IEEE/ACM
Trans.Comput. Biol. Bioinf. 10 (4), 819–831. doi: 10.1109/TCBB.2012.161

Francesco,V., Alberto, P., and Federica, C. (2011). e-RGA: enhanced reference guided
assembly of complex genomes. Embnet J. 17 (1), 46–54. doi: 10.14806/ej.17.1.208

Gnerre, S., and Jaffe, D. B. (2011). High-quality draft assemblies of mammalian
genomes from massively parallel sequence data. proc natl acad sci usa. Proc.
Nat. Acad. Sci. U. S .A. 108 (4), 1513–1518. doi: 10.1073/pnas.1017351108

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). Quast: quality
assessment tool for genome assemblies. Bioinformatics 29 (8), 1072–1075. doi:
10.1093/bioinformatics/btt086

Harismendy, O., Ng, P. C., Strausberg, R. L., Wang, X., Stockwell, T. B., Beeson, K.
Y., et al (2009). Evaluation of next generation sequencing platforms for
population targeted sequencing studies. Genome Bio.l 10 (3), 1–13. doi:
10.1186/gb-2009-10-3-r32

Kent, W. J. (2002). Blat–the blast-like alignment tool. Genome Res. 12 (4), 656–664.
doi:10.1101/gr.229202

Kolmogorov, M., Raney, B., Paten, B., and Pham, S. (2014). Ragout—a reference-
assisted assembly tool for bacterial genomes. Bioinformatics 30 (12), 302–309.

Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C.,
et al (2004). Versatile and open software for comparing large genomes. Genome
Biol. 5 (2), R12. doi: 10.1186/gb-2004-5-2-r12

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., et al (2010). De novo assembly
of human genomes with massively parallel short read sequencing. Genome Res.
20 (2), 265–272. doi: 10.1101/gr.097261.109

Li, M., Tang, L., Wu, F. X., Pan, Y., and Wang, J. (2018a). SCOP: a novel
scaffolding algorithm based on contig classification and optimization.
Bioinformatics 35 (7), 1142–1150. doi: 10.1093/bioinformatics/bty773

Li, M., Tang, L., Liao, Z., Luo, J., Wu, F. X., Pan, Y., et al (2018b). A novel
scaffolding algorithm based on contig error correction and path extension.
IEEE/ACM Trans. Comput. Biol. Bioinf. 16 (3), 764–773. doi: 10.1109/
TCBB.2018.2858267

Li, H. (2015). Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences. Bioinformatics 32 (14), 2103. doi: 10.1093/
bioinformatics/btw152

Liao, X., Li, M., Luo, J., Zou, Y., Wu, F., Pan, Y., et al. (2018). Improving de novo
assembly based on reads classification. IEEE/ACM Trans. Comput. Biol. Bioinf.
14 (8). doi: 10.1109/TCBB.2018.2861380

Liao, X., Li, M., Luo, J., Zou, Y., Wu, F., Pan, Y., et al. (2019a).EPGA-SC: a
framework for de novo assembly of single-cell sequencing reads. IEEE/ACM
Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2019.2945761
Frontiers in Genetics | www.frontiersin.org 10
Liao, X., Li, M., Zou, Y., Wu, F., Pan, Y., and Wang, J. (2019b). An efficient
trimming algorithm based on multi-feature fusion scoring model for NGS
data. IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.
2019.2897558

Lin, S. H., and Liao, Y. C. (2013). Cisa: contig integrator for sequence assembly of
bacterial genomes. Plos One 8 (3), e60843. doi: 10.1371/journal.
pone.0060843

Lu, C. L. (2015). An efficient algorithm for the contig ordering problem under
algebraic rearrangement distance. J. Comput. Biol. A J. Comput. Mol. Cell Biol.
22 (11), 975. doi: 10.1089/cmb.2015.0073

Luo, J., Wang, J., Li, W., Zhang, Z., Wu, F. X., Li, M., et al. (2015). EPGA2:
memory-efficient de novo assembler. Bioinformatics 31 (24), 3988–3990. doi:
10.1093/bioinformatics/btv487

Luo, J., Wang, J., Zhang, Z., Li, M., andWu, F. X. (2017). BOSS: a novel scaffolding
algorithm based on an optimized scaffold graph. Bioinformatics 33 (2), 169–
176. doi: 10.1093/bioinformatics/btw597

Nijkamp, J., Winterbach, W., Van, d. B. M., Daran, J. M., Reinders, M., and De, R.
D. (2010). Integrating genome assemblies with maia. Bioinformatics 26 (18),
i433–i439. doi: 10.1093/bioinformatics/btq366

Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu, D., Magoc, T., Koren, S., et al
(2012). GAGE: a critical evaluation of genome assemblies and assembly
algorithms. Genome Res. 22 (3), 557–567. doi: 10.1101/gr.131383.111

Sankoff, D., Nadeau, J. H., Sankoff, D., and Nadeau, J. H. (2000). Comparative
genomics: empirical and analytical approaches to gene order dynamics, map
alignment and the evolution of gene families. Kluwer Acad. Publishers , 213–
223.doi: 10.1007/978-94-011-4309-7

Schatz, M. C., Delcher, A. L., and Salzberg, S. L. (2010). Assembly of large genomes
using second-generation sequencing. Genome Res. 20 (9), 1165–1173. doi:
10.1101/gr.101360.109

Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J. M.İnanç Birol
(2009). Abyss: a parallel assembler for short read sequence data. Genome Res.
19 (6), 1117. doi: 10.1101/gr.089532.108

Soueidan, H., Maurier, F., Groppi, A., Sirand-Pugnet, P., Tardy, F., Citti, C., et al.
(2013). Finishing bacterial genome assemblies with mix. Bmc Bioinf 14 (S15), S16.
doi: 10.1186/1471-2105-14-S15-S16

Tanja, M., Stephan, P., Stefan, C., Liu, X., Su, Q., Daniela, P., et al. (2013). GAGE-
b: an evaluation of genome assemblers for bacterial organisms. Bioinformatics
29 (14), 1718–1725. doi: 10.1093/bioinformatics/btt273

Vicedomini, R., Vezzi, F., Scalabrin, S., Arvestad, L., and Policriti, A. (2013). Gam-
ngs: genomic assemblies merger for next generation sequencing. Bmc Bioinf. 14
(7), 1–18. doi: 10.1186/1471-2105-14-S7-S6

Wences, A. H., and Schatz, M. C. (2015). Metassembler: merging and optimizing
de novo genome assemblies. Genome Biol. 16 (1), 207. doi: 10.1186/s13059-
015-0764-4

Wu, B., Wang, J., Luo, J., Li, M., Wu, F., and Pan, Y. (2017). MEC: Misassembly
error correction in contigs using a combination of paired-end reads and
GC-contents, in: IEEE International Conference on Bioinformatics and
Biomedic ine IEEE Computer Soc ie ty . 216–221. doi : 10 .1109/
TCBB.2018.2876855

Yao, G., Ye, L., Gao, H., Minx, P., Warren, W. C., and Weinstock, G. M. (2012).
Graph accordance of next-generation sequence assemblies. Bioinformatics 28
(1), 13–16. doi: 10.1093/bioinformatics/btr588

Zerbino, D. R., and Birney, E. (2008). Velvet: algorithms for de novo short read
assembly using de bruijn graphs. Genome Res 18 (5), 821–829. doi: 10.1101/
gr.074492.107

Zimin, A. V., Smith, D. R., Sutton, G., and Yorke, J. A. (2005). Assembly
reconciliation. Bioinformatics 24 (1), 42–45.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Tang, Li, Wu, Pan and Wang. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use, distri-
bution or reproduction is permitted which does not comply with these terms.
January 2020 | Volume 10 | Article 1396

https://doi.org/10.1109/BIBM.2009.28.
https://doi.org/10.1093/bioinformatics/btx543
https://doi.org/10.1038/nnano.2009.12
https://doi.org/10.1186/gb-2009-10-9-r94
https://doi.org/10.1186/gb-2009-10-9-r94
https://doi.org/10.1101/gr.126599.111
https://doi.org/10.1126/science.1162986
https://doi.org/10.1109/TCBB.2012.161
https://doi.org/10.14806/ej.17.1.208
https://doi.org/10.1073/pnas.1017351108
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1186/gb-2009-10-3-r32
https://doi.org/10.1101/gr.229202
https://doi.org/10.1186/gb-2004-5-2-r12
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1093/bioinformatics/bty773
https://doi.org/10.1109/TCBB.2018.2858267
https://doi.org/10.1109/TCBB.2018.2858267
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1109/TCBB.2018.2861380
https://doi.org/10.1109/TCBB.2019.2945761
https://doi.org/10.1109/TCBB.2019.2897558
https://doi.org/10.1109/TCBB.2019.2897558
https://doi.org/10.1371/journal.pone.0060843
https://doi.org/10.1371/journal.pone.0060843
https://doi.org/10.1089/cmb.2015.0073
https://doi.org/10.1093/bioinformatics/btv487
https://doi.org/10.1093/bioinformatics/btw597
https://doi.org/10.1093/bioinformatics/btq366
https://doi.org/10.1101/gr.131383.111
https://doi.org/10.1007/978-94-011-4309-7
https://doi.org/10.1101/gr.101360.109
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1186/1471-2105-14-S15-S16
https://doi.org/10.1093/bioinformatics/btt273
https://doi.org/10.1186/1471-2105-14-S7-S6
https://doi.org/10.1186/s13059-015-0764-4
https://doi.org/10.1186/s13059-015-0764-4
https://doi.org/10.1109/TCBB.2018.2876855
https://doi.org/10.1109/TCBB.2018.2876855
https://doi.org/10.1093/bioinformatics/btr588
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1101/gr.074492.107
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	MAC: Merging Assemblies by Using Adjacency Algebraic Model and Classification
	Introduction
	Method
	Preprocessing
	Ranking Input Assemblies
	Classifying Contigs
	Adopting Adjacency Algebraic Model
	Constructing Adjacent Graph
	Extracting Good Paths
	Optimizing the Adjacency Algebraic Model

	Experimental Results and Discussion
	Datasets and Evaluation Metrics
	Experimental Results

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Materials
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

