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Abstract

Original Article

IntroductIon

Artificial intelligence (AI) has been successfully applied to 
many tasks including image detection and classification, sound 
processing, and natural language processing. In the area of 
image classification and detection of everyday objects, AI 
algorithms such as deep learning have been tremendously 
successful. Nowadays, smartphone cameras can detect user 
faces and surrounding objects accurately.

There has been an exponential growth in the application of 
AI in the health and medical fields. Deep learning algorithms 
have been built to segmentation organs from X‑rays, computed 
tomography, and magnetic resonance imaging images. 
Recently, physicians and computer scientists have jointed work 
in building deep learning algorithms to diagnose COVID‑19 

pneumonia features.[1] Up to September 2020, the Food and 
Drug Administration has approved 76 AI algorithms in the 
field of diagnostic radiology, according to the Data Science 
Institute of American College of Radiology.[2]

In the field of diagnostic pathology, we have also seen deep 
learning applications in histopathological images. Many of 
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these applications are specifically aimed at hematoxylin and 
eosin (H and E)‑stained images and have the potential of 
transforming diagnostic pathology, like what has already been 
happening in the field of radiology.[3] Progresses have been 
made in areas such as prostate cancer biopsy diagnosis[4] and 
evaluation of cervical cytology.[5] Research group in University 
of Pittsburg Medical Center claimed that they have developed a 
deep learning model for prostate cancer surveillance with high 
performance and have deployed the model in routine work of 
Maccabi Healthcare Services in Israel.[6]

There is no doubt that AI has tremendous power and has great 
potential in application in diagnostic pathology. With the 
emerging progress of AI in pathology images, there will be 
great progress in the near future. However, deep learning models 
are not without challenges: “Model generalization” is the most 
common hurdle. As described in book Deep Learning,[7] “The 
central challenge in machine learning is that we must perform 
well on new, previously unseen inputs – not just those on which 
our model was trained. The ability to perform well on previously 
unobserved inputs is called generalization.”

The deep learning model development routine is to split 
the input data to training and testing datasets. The model is 
developed using the training dataset and tested on the testing 
dataset. Model generalization abilities are estimated on the 
testing dataset or additional validation dataset. Cross‑validation 
techniques are often used for assessing model generalization.

The most common pitfall of a deep learning model is 
overfitting. Overfitting means the model goes through too 
much learning and the model performs well on the training 
dataset, but poorly on the new data. This arises from the lack 
of variability between the test or validation dataset and the 
data in the real world.[8]

A large number of studies of applying deep learning models to 
histopathological images have been published in recent years, 
and many of these studies have a very similar schema: the 
authors collect sets of images of different categories, such as 
normal tissue, benign tumor, malignant tumor, different stages 
of tumors, or metastatic tumor. The images are randomly split 
into train and test datasets. Deep learning model is trained 
on the training dataset and model performance is reported 
from the test dataset. The authors usually claimed high model 
performances in terms of high accuracy and high sensitivity 
and specificity. Model accuracies were often claimed to be 
higher than 0.99. Many studies even claimed that the models 
have higher performance than experienced pathologists in the 
specific test sets.

However, it is likely that some of these studies fall into the 
pitfall of overfitting. The models surely perform very well on 
the specific test sets used in the author’s study, but because 
the training and testing datasets lack variability compared with 
the real‑world data, the trained models will fail on the new 
real‑world data that is of the same diagnosis, but with different 
image presentations.

Here, we looked at the performance and generalization of a deep 
learning model in a previously published paper.[9] The authors 
used osteosarcoma biopsy images to build a classification 
model for benign tissue, viable tumor, and nonviable tumor. 
We rebuilt the deep learning model using the same image 
datasets and the same model schema that the authors have made 
publicly available at the Cancer Imaging Archive (TCIA).[10,11] 
We achieved comparable model performance using the same 
train/test schema as stated in the paper. We then use the same 
dataset but a different train/test split schema for a new model: 
all images that come from one specific patient were used as 
the test dataset and the images of all other patients were used 
as training set. This refitted new model using the same deep 
learning schema shows good performance on the training 
dataset but poor performance on the test set of one patient 
data left out, indicating a possibility of overfitting. We suspect 
that the overfitting comes from the similarity among images of 
the same patient. The overfitting problem is exposed after we 
restrict the test dataset to patient images that are not included 
in the training dataset. In other words, the new model is not 
generalizable to the one patient left out.

Histopathological images are notoriously highly variable. 
Even experienced pathologists sometimes do not have 
consensus diagnosis. The variation comes from many levels, 
such as specimen preparation and artifacts, patient level 
variations, tumor stages, tumor types/subtypes, and tumor 
heterogeneity. Some tumor types are especially highly 
variable. Osteosarcoma, for example, has around 10 different 
morphologic subtypes.[12] Some subtypes are very similar 
in morphology to benign bone tumors such as osteoma 
and osteoid osteoma.[13] It is our hypothesis that the lack 
of variability in the training data can be a main obstacle in 
building a robust diagnosing model.

To illustrate the effects of lacking variability in deep learning 
models, we built a series of deep learning models for classifying 
osteosarcoma vs. benign tissue or benign bone tumors using 
different combinations of training datasets. We collected 
histopathological images for each of the osteosarcoma 
subtypes, benign bone tumors that should be differentiated 
with osteosarcoma including osteoma and osteoid osteoma, as 
well as benign tissues that may appear in bone biopsies, such 
as normal bone, soft bone, muscle, and connective tissues. The 
test dataset we built is fixed for all models; it is composed of 
all subtypes of osteosarcoma and all types of benign tissues 
and tumors. In contrast, for the training datasets, each of the 
subtypes of osteosarcoma and add‑up of different subtypes 
are used. We find that while the model performances on the 
training datasets are consistently high, the performances on 
the fixed test set composed of all osteosarcoma subtypes 
increase as more and more subtypes are included in the training 
dataset. From this experiment, our primitive conclusion is 
that higher variability in training dataset is beneficial for a 
robust model to be applicable to the real‑world data. Tumor 
subtype classification, in a way, is the human intelligence in 
clustering the tumor based on their variability. The hypothesis 
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that the inclusion of multiple tumor subtypes is one of the most 
efficient ways to boost the data variability; thus, improving the 
robustness of the models has also been observed and supported 
in other studies.[14]

Thus, using the example of osteosarcoma subtypes, we 
demonstrated the effects of lacking variability in training 
data on the model generalization ability. We also proposed 
a methodology to check the issue of overfitting of the deep 
learning models. Our study proposes a possible reference for 
the development of highly robust deep learning models for 
diagnostic pathology in the future.

Methods

The Cancer Imaging Archive dataset
Leavy et al. have made the osteosarcoma data they used to train 
the classification model publicly available. We downloaded the 
data from TCIA website.[10,11]

The dataset is composed of 1144 H and E‑stained osteosarcoma 
histology images, from the four patients who had been treated 
at Children’s Medical Center, Dallas, between 1995 and 2015. 
Table 1 shows the crosstab table of different tumor types and 
different patients.

Out of these images, there are 536 (47%) nontumor images, 
263 (23%) necrotic tumor images, and 292 (25%) viable tumor 
tiles. A total of 53 images have unclear status between viable 
and nonviable; they were emitted in model fitting.

The images were of 1024 × 1024 pixels each; they were split 
into 128 × 128 image tiles. The same data preprocessing steps 
including red, green, and blue channel to Lab color space 
conversion, addition of original 1024 × 1024 images to training 
data, and removal of images containing only white pixels or 
empty background pixels were followed.

Data augmentation including vertical and horizontal 
flip and height and width shift was applied using Keras 
ImageDataGenerator class.

We tried two different methods to generate the train 
and test datasets. The first method was the conventional 
random split of the whole dataset by 0.7/0.3 ratio similar 
to the method used in the original journal. As the entire 
dataset is composed of images from four patients, we 

suspected that there is lack of variability in the training 
dataset and the high performance reported by the authors 
probably comes from overfitting. To illustrate that, in the 
second method, we used all the images of patient “Case 
4” as the test dataset, while the images of the rest three 
patients were used as the training set. The patient “Case 
4” of this dataset contained all 3 types of the tumor, thus 
making it a good test set.

All subtypes dataset and benign dataset
Osteosarcoma subtypes include conventional variants, surface 
types, and other variants like small cell, extraskeletal, and 
secondary osteosarcoma like complicating Paget’s disease. 
Conventional variants include osteoblastic, chondroblastic, 
telangiectatic, and fibroblastic subtypes,[15] and surface 
osteosarcomas include periosteal and parosteal and high‑grade 
surface types.[16] In Figure 1, we show the different subtypes 
of osteosarcoma.

To maximize the diversity in the training data for diagnosing 
osteosarcoma, we collected histopathological images of 
osteosarcoma by subtypes. As the aim of this study is to 
illustrate the effects of data variability on model performance 
instead of building a robust classification model for 
osteosarcoma, minimal numbers of histopathological images 
were collected for ease of training.

Images were collected from online sources and reviewed 
by experienced pathologists. Osteoblastic (41.7%) and 
chondroblastic (20.8%) subtypes were reported to be the more 
common subtype; thus, we collected relative more images for these 
subtypes. However, we do not claim that the composition of the 
images reflects the ensemble osteosarcoma in the real world due 
to its complex nature. Its effects are covered in the discussion part.

The design of the benign dataset is also aimed to maximize 
the variability, but within a reasonable range. We collected 
the benign tissue types that commonly appear in bone biopsy, 
including bone, soft bone, muscle, tendon, and connective 
tissue proper.

We also collected histopathological images of the benign 
bone tumors that should commonly be differentiated with 
osteosarcoma, including osteoma and osteoid osteoma. Sample 
images of the benign dataset are included in Figure 2.

The images in the subtype and benign datasets were of 
various sizes. Image tiles of size 128 × 128 pixels were 
extracted starting from the top left corner, toward the right 
and bottom edges. Tiles that cross the right and bottom edges 
were discarded. The images were rotated 90°, 180°, and 270°, 
and image tiles were collected to prevent the learning of 
position‑dependent features by models.

The collected images and their sources are available 
at https://github.com/haimingt/osteosarcoma_subtype 
_modeling/tree/master/subtypes.

Model training and evaluation
Keras implementation of the same convolution neural network 

Table 1: Crosstab table of different tumor types and 
different patients for the cancer imaging archive 
osteosarcoma dataset

Tumor_type Patient_id Total

P9 Case 3 Case4 Case48
Nontumor 212 110 78 136 536
Nonviable‑tumor 0 171 90 2 263
Viable 0 3 87 202 292
Viable: Nonviable 0 1 22 30 53
Total 212 285 277 370 1144
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schema was used for all experiments. While there are numerous 
variations of schema, we used the schema that was included 
in the previous published paper, which was extended from the 
classic LeNet5 schema by adding more convolution layers. The 
model details can be found in Supplemental Materials. Each 
of the training processes consisted of 25 epochs.

A series of experiments were performed in our study [Table 2].

Experiment A and B used the TCIA datasets to train and test 
models. Experimental C and D applied the models in A and B 
to the test set composed of all osteosarcoma subtypes, benign 
tissues, osteoma, and osteoid osteoma. Experiment E used just 

1 type of osteosarcoma to train but predict data that contains 
all osteosarcoma subtypes. Experiment F used combinations of 
the different subtypes in the training data in an add‑up manner; 
for each step, an additional subtype was added to the training 
data, while the test dataset was the same as compared to 
experiment F. The order of the “step‑by‑step add‑up” followed 
the rankings of the performance of each tumor subtype as in 
Experimental E, the subtypes with smaller area under curve 
(AUC) were added first to the combination models.

The metrics used for evaluating model performance include 
the AUC, accuracy, precision, and recall.

Figure 1: Sample images of different osteosarcoma subtypes we have collected for Experiments E and F showed in Table 2

Figure 2: Benign dataset of Experiment E and F consisting of benign bone tissues and 2 types of benign tumors, osteoma, and osteoid osteoma
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To ensure comparability, we manually converted the 
predictions of Experiments C and D from 3 categories (benign, 
noviable and viable) to 2 categories (non‑osteosarcoma and 
osteosarcoma) by combining prediction of benign and viable as 
non‑osteosarcoma.  The predicted probability of osteosarcoma 
was set to be equal to the probability of nonviable tumor, while 
the probability of benign tissue or tumor was set to be equal to 
the probability of benign and viable tumors combined.

results

Overfitting caused by lack of variability in the Cancer 
Imaging Archive training data
In Experiment A, we followed the routine way of splitting 

data into training and testing data. The model performance 
is good on the testing data, with AUC = 0.83. However, in 
Experiment B, while the training data were from the first 
three patients, and the model was tested on the 4th patient, the 
performance dropped to an average AUC of 0.70. It proves 
that the model trained on the three patients cannot predict 
the 4th patient well.

In addition, as shown in Figure 3, the training process in 
Experiment A shows a stable and consistent pattern between 
the training and testing sets. The performance of Experiment 
B shows discordant trends between train and test sets; the 
training set has an upward trend through epochs, whereas the 
test set has a downward trend. It means that the more training 

Table 2: Experiments set up and performance summary

Experiment label Training set Test set Specific subtype of osteosarcoma AUC
A 70% of TCIA set 30% of TCIA set NA 0.831406
B TCIA set (P9, case 3, case 48) TCIA set (Case 4) NA 0.700612
C 70% of TCIA set 30% of all 

subtypes of 
osteosarcoma+all 
benign tissues 
, osteoma and 
osteoid osteoma

NA 0.55
D TCIA set (P9, Case 3, Case 48) NA 0.29
E 70% of dfiffernt combinatiosn 

of otsteosarcoma subtypes+70% 
of all benign tissues , osteoma 
and osteoid osteoma

Smallcellvariant_fibroblastic 0.471908
Smallcellvariant_fibroblastic_periosteal 0.524636
Smallcellvariant_fibroblastic_periosteal_telangiectactic 0.528312
Smallcellvariant_fibroblastic_periosteal_telangiectactic_
complicatingpaget

0.598128

Smallcellvariant_fibroblastic_periosteal_telangiectactic_
complicatingpaget_epithelioid

0.863568

Smallcellvariant_fibroblastic_periosteal_telangiectactic_
complicatingpaget_epithelioid_withgiantcells

0.851232

Smallcellvariant_fibroblastic_periosteal_telangiectactic_
complicatingpaget_epithelioid_withgiantcells_parosteal

0.840264

Smallcellvariant_fibroblastic_periosteal_telangiectactic_
complicatingpaget_epithelioid_withgiantcells_parosteal_
osteoblastic

0.885664

Smallcellvariant_fibroblastic_periosteal_telangiectactic_
complicatingpaget_epithelioid_withgiantcells_parosteal_
osteoblastic_chondroblastic

0.88704

F 70% of one specific type of 
osteosarcoma+70% of all 
benign tissues , osteoma and 
osteoid osteoma

Chondroblastic 0.663656
Complicatingpaget 0.451864
Epithelioid 0.457356
Fibroblastic 0.392112
Osteoblastic 0.630856
Parosteal 0.542764
Periosteal 0.396016
Smallcellvariant 0.388852
Telangiectactic 0.399856
Withgiantcells 0.457676

G 70% of one specific type of 
osteosarcoma+70% of all 
benign tissues

30% of all 
subtypes of 
osteosarcoma+all 
benign tissues

Chondroblastic 0.916284
Complicatingpaget 0.826564
Epithelioid 0.906808
Fibroblastic 0.732032
Osteoblastic 0.94616
Parosteal 0.761204
Periosteal 0.783428
Smallcellvariant 0.535136
Telangiectactic 0.569512
Withgiantcells 0.660888

TCIA: The cancer imaging archive, NA: Not available, AUC: Analytical ultracentrifugation



J Pathol Inform 2021, 1:30 http://www.jpathinformatics.org/content/12/1/30

Journal of Pathology Informatics6

is performed and the better the performance of the model on 
the training set, the worse the performance is on the test set. 
This lack of the model generalization on the new data reveals 
the typical error of model overfitting on the training data.

We then applied the models in Experiment A and B to the 
newly collected test sets that consist of 10 different subtypes 
of osteosarcoma, benign tissues, and 2 benign bone tumors. 
As examined by the pathologist, the osteosarcoma images in 
the TCIA datasets all belong to the osteoblastic type. Thus, 
the test dataset contains far more variability than the training 
data used in Experiment A and B. It is not surprising that the 
models of A and B will lack generalization toward these new 
data. Moreover, the performance confirms our hypothesis, the 
model in Experimental A has an AUC of 0.57, and the model 
in Experiment B has an AUC of 0.40 [Figure 4].

Overfitting caused by only one subtype of osteosarcoma 
in training data
In Experiment E, training data contain only one subtype of 
osteosarcoma, all the benign tissues and benign bone tumors, 
while the testing data contain all 10 subtypes. We designed 
this experiment to roughly represent the situation in real life, 
when the training data only reflect a very small part of the 
complexities of the real‑world data. Thus, we expect the models 
in Experiment E to perform badly in the overfitting way.

As shown in Figure 3, this issue is well illustrated by the case 
of using chondroblastic subtype in the training dataset. The 

performance on the training data improves epoch by epoch, 
showing better model fitting upon each step. However, the 
performance on the test dataset shows large fluctuations, 
indicating that the features learned by the training data are not 
the “correct” features to differentiate the osteosarcoma versus 
nonosteosarcoma bone tissues. Figure 5 shows the metrics of 
the model using only the chondroblastic subtype to train in 
Experiment E. Plots for models using other subtypes can be 
found in Supplemental Materials.

Figure 6 summarizes the performances of Experiment E for 
each of the subtypes used. It shows the boxplot of the AUC of 
the 25 epochs for each of the models using only one subtype. 
As expected, the general performances of most models 
are unsatisfactory, with average AUC <0.7. Moreover, for 
models using parosteal, osteoblastic, and chondroblastic, the 
performances are slightly better, but showing great fluctuations, 
indicating a lack of fit of the trained model.

Addition of more subtypes in training data increases 
model performance
We then ranked the performance of the models of each subtype 
from low to high by the average AUC of the 25 epochs and 
sequentially added one more subtype to the training data. The 
models using different training sets were then tested on the 
same dataset that was used in Experiment E.

Figure 7 shows the boxplot of the AUC of the 25 epochs of 
subtype models in Experiment E on the same test dataset. It 

Figure 3: Model metrics: Loss and area under curve during training epochs, upper Experiment A, lower Experiment B
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shows a clear pattern of improved model performance with each 
step of adding more osteosarcoma subtypes to the training set. 
Specifically, the AUC is 0.39 for the model of using small cell 
variant subtype only, AUC performance increases to 0.47 when 
a combination of small cell variant and fibroblastic subtype was 
used, and the AUC for the final model using all subtypes is 0.89.

The only violation of the trend of performance increase comes 
from the addition of parosteal  subtype, which reduced the 

model AUC performance slightly from 0.85 to 0.84. The exact 
cause of the decline is unclear. Our suspect is that parosteal 
subtype arises from the bone surface and it is generally well 
differentiated of a lower stage (Stage I and II).[16] In the 
images we have selected, there are several images with areas 
of chondroid differentiation. The cartilage is present at the 
periphery of the lesion and may resemble a benign cartilage 
tissue. We suspect that the addition of this subtype, although 
adding slightly more images and variability to the train 
model, may not overcome the error in the test dataset caused 
by similarities between the chondroid differentiation in the 
parosteal subtype and the normal cartilage tissues.

From this experiment, we can conclude that to generate a 
deep learning model of generalization ability in the field of 
histopathology, the training dataset should contain enough data 
that is diverse enough to cover all kinds of images the model 
will be applied to. In the case of developing a deep learning 
model for diagnosing osteosarcoma versus nonosteosarcoma, 
including all subtypes of osteosarcoma may be a good method 
to increase model variability and robustness.

dIscussIons

It is important to note that our experiments only use minimal 
data. The purpose of this article is to perform experiments that 
illustrate the issues of overfitting and the lack of generalization 
in the development of deep learning models for histopathology. 

Figure 5: Metrics of the model using only chondroblastic subtype to train in Experiment E

Figure 4: Receiver operating curves for Experiments C and D, which are 
the performances of the models in Experiment A and B applied to the 
test set composed of all subtypes of osteosarcoma, benign tissues, and 
benign bone tumors
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The test data we collected have more variability than data 
containing only limited subtypes of sarcoma, but the data 
variety in the real world is significantly greater than what we 
have included in this study. The models we developed are by 
no means production models that can be applied to real‑world 
osteosarcoma data. However, we have proposed a framework 
regarding if we have a large dataset of various cancer subtypes, 
how to build a model that is more robust to the varieties of 
the images, and how to avoid overfitting during the model 
building process. By separating the training images based on 
different subtypes of corresponding diseases, this framework 
allows users to build a series of coherent models, and based 
on the performances of these models, users can thus produce 
a performance curve of these models. Ideally, the performance 
curve will grow nonlinearly until it reaches its upper limit 
caused by the law of diminishing marginal utility. We can 
derive similar performance curves using different numbers and 
qualities of training images as well. By changing the training 
image sizes, qualities, and varieties, we can potentially assess 
the robustness, reliability, and confidence of these models and 
finally derive a confident score of the model for diagnosing 
purposes.

The routine schema of deep learning model building as that 
used in Experiment A may create the issue of overfitting. 
Many researches collect a limited number of images from a 
small number of patients. Moreover, these images are split into 
training and test datasets randomly.

Because of the intrinsic similarities among the images from 
the same patient, there will be overly exaggerated similarity 
between the training and testing datasets.  Thus, the high 
performance converged by the test dataset is commonly 
overestimated and the model is commonly overfitted.

To spot this issue, we recommend building the test dataset in a 
more careful way that excludes similar data from the training 
dataset. Researchers can use the images from 1 or more new 
patients, while the model is trained on images from other 
patients. Another recommendation is not to split the image 
tiles or patches from the same large image into train and test 

dataset, as image tiles or patches may share great similarities 
and can affect the model evaluation.

Histopathological images are of great variability. Research 
has shown the high interobserver variability with regard to 
histological grade of differentiated tumours.[17] Review paper 
summarizes that the diagnostic variability in breast cancer 
could be attributed to three overall root causes: (i) pathologist 
related, (ii) diagnostic coding/study methodology related, 
and (iii) specimen related. Most pathologist‑related root causes 
were attributable to professional differences in pathologists’ 
opinions about whether the diagnostic criteria for a specific 
diagnosis were met, most frequently in cases of atypia.[18]

Experiments E and F show that the lacking of variability in 
the training data greatly affects the model performance. When 
more training data reflects more complexity of the real‑world 
data, model performance increases.

A dataset should be built by maximizing the reasonable 
variability. The “do more less well” principle[19] for sampling 
efficiency of stereological studies in biology indicates that 
the variations at the lower levels of sampling are of minor 
importance. In particular, the “biological variation” between 
different subjects plays an all‑important role, whereas the 
feature‑to‑feature variation on sections is of negligible 
importance. The database by the original authors is generally 
large collection 1144 histology images. However, these images 
were from only four patients. Thus the database is still lacking 
in variability. In contrast, if the database contains the bone 
histology images from around 1000 patients, the spectrum 
of osteosarcoma and normal bone tissue appearances can be 
much better represented.

Collecting samples from different subjects is a key component 
for data variability. In addition to the subject level variability, it 
may be easiest to  the increase data variability by incorporating  
pathological knowledge grounds. For example, the inclusion 

Figure 6: Boxplot of the area under curve of the 25 epochs of subtype 
models in Experiment E on the same test dataset

Figure 7: Boxplots of the area under curve of the 25 epochs of models 
that add up different subtypes in Experiment F
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of different stages or types of a cancer. Like in the case of 
ostesarcoma diagnosing model, all different subtypes of 
osteosarcoma should be incorporated to increase the data 
variability.

This, however, will uninhibitedly require a large number 
of images of various types from a large pool of patients. 
It is often noted that due to the patient confidentiality, the 
histopathological images used in many published studies 
were not publicly accessible. Recently, more digital pathology 
datasets such as CAMELYON[20] have become publicly 
available and have pushed the frontiers of deep learning in 
pathology informatics. With the growing abundance of data 
availability and variability, we will be able to build more robust 
deep learning models for computer‑aided diagnosis systems.

conclusIon

In this article, we examined the pitfalls of overfitting 
and the lack of generalization in deep learning models in 
histopathological images through a series of experiments on 
osteosarcoma. We demonstrated that the lack of variability 
in the training data can lead to overfitting of the models and 
the random split of the train and test dataset from the same 
patient or images may disguise the overfitting problem. We 
also showed that with the addition of more data with increased 
variability to the training data, models can achieve higher levels 
of robustness. From these, we bring forward data preprocessing 
and collection tactics to build deep learning models of higher 
generalization abilities by avoiding the pitfalls of overfitting.
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suppleMental MaterIals

Supplemental materials and our histopathology image collection of osteosarcoma subtypes as well as benign tissues and benign 
bone tumors can be found at https://github.com/haimingt/osteosarcoma_subtype_modeling


