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Personalized medicine refers to the tailoring of diagnostics and therapeutics to individuals
based on one’s biological, social, and behavioral characteristics. While personalized dental
medicine is still far from being a reality, advanced artificial intelligence (Al) technologies with
improved data analytic approaches are expected to integrate diverse data from the individual,
setting, and system levels, which may facilitate a deeper understanding of the interaction of
these multilevel data and therefore bring us closer to more personalized, predictive, preven-
tive, and participatory dentistry, also known as P4 dentistry. In the field of dentomaxillofacial
imaging, a wide range of Al applications, including several commercially available software
options, have been proposed to assist dentists in the diagnosis and treatment planning of
various dentomaxillofacial diseases, with performance similar or even superior to that of
specialists. Notably, the impact of these dental Al applications on treatment decision, clinical
and patient-reported outcomes, and cost-effectiveness has so far been assessed sparsely. Such
information should be further investigated in future studies to provide patients, providers, and
healthcare organizers a clearer picture of the true usefulness of Al in daily dental practice.
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Personalized and precision dentistry and data-driven technologies

Current concepts of managing dental diseases have
by large been developed over the course of the last
50 years. While knowledge generated by continuous
research efforts towards the biological foundation of
the main dental diseases (caries and periodontitis) has
been gradually integrated into contemporary therapy
approaches, the backbone of treatments employed in
dental practices has been established decades ago. For
example, restorative treatments remain the cornerstone
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for carious lesions while deep scaling and root planing
remain central for periodontal disease, both of which
are increasingly accompanied by preventive efforts.!?
Given the evolving understanding of dental diseases,
their etiology and pathogenesis, and the resulting
chance and need to adequately describe different disease
stages and grades to deduct appropriate therapies, this
simplification may not suffice any longer. Notably, it is
grounded in a similarly simplified diagnostic approach;
what is missing is a systematic and holistic evaluation
of individual health and disease on patient, tooth, and
site level, and the synthesis of the gathered data into
adequately granular diagnoses. Such an approach would
need to be built on a detailed multimodal data collection
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Figure 1 The confluence of different data sources and technologies (e.g, Al, specifically deep learning, systems medicine involving genomic,
metabolomic, or microbiomic data, as well as clinical data sources or those provided publicly or by the patient) will enable P4 medicine and

dentistry.*

and would allow to assign individualized treatment
pathways based on personalized diagnosis.

At present, however, such individualized diagnos-
tics and treatment pathways are not at all available in
dentistry. Instead, we are stuck in the era of stratification
of individuals and lesions into risk groups, characterized
mainly by simple shared phenotypic characteristics (e.g.,
caries experience for caries risk assessment, smoking or
poor oral hygiene for periodontal risk assessment, etc.).
Currently, the accuracy and generalizability of most
of these risk assessment systems are insufficiently vali-
dated. Even if these risk assessment systems were valid,
they would only describe groups of individuals and
lesions sharing a similar “risk” and subsequently assign
identical management strategies to all individuals in a
certain risk group (i.e., the one-size-fits-all approach).?

While being the next step beyond stratification, true
personalized management is not possible at the moment.
Personalized management is closely linked to “preci-
sion medicine”, defined as “the tailoring of a therapy
to individuals with one’s biological (genomic, micro-
biomic, proteomic, etc.), social (economic, educational,
etc.) and behavioral (lifestyle) characteristics”.* Person-
alized care should, ideally, allow to provide the safest,
most efficacious and efficient diagnostics and therapies,
which is jointly with precision medicine and closely
related to another concept “P4 medicine”.* The four Ps
stand for a more precise, personalized, preventive, and
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participatory healthcare approach (Figure 1). What is
needed, however, to make personalized, precision, and
P4 dentistry come true is a deep understanding of indi-
viduals and the option to predict what will happen to
this individual, a specific organ or lesion.

To allow such understanding and prediction, the
discussed concept of stratification and the employed
few risk indicators or factors (Table 1) are obviously
insufficient. What is needed is a shift towards a health-
care model centered around broad and deep data. As
discussed elsewhere,” many recent academic break-
throughs in astronomy,® biology®’ and other disciplines
are mainly driven by making use of large amounts of
data. Dentistry should also make use of the wealth of
available dental data and transform into something that
was previously referred to as “data dentistry”.” The data
needed could be generated from advanced sensor tech-
nologies, including wearables, ingestibles, and implant-
ables as well as social media and electronic health records
(eHR), to name a few.!” Many of these data sources will
not solely rely on being collected in clinical settings,
but routinely, even by patients who may actively donate
data from social media, food consumption, healthcare
apps, behavioral diaries, or toothbrushes. In addition,
prospectively collected omics data may become more
available if costs for generating them decrease further
and technologies are becoming available in routine
settings.'”
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Risk factor

Risk indicator

Definition

removed reduces the probability”.®
Caries Diet rich in carbohydrates
Oral hygiene, fluoridated toothpaste
Medication causing hyposalivation/xerostomia
Periodontal disease Oral hygiene, smoking
Bacterial composition, genetic factors (SNPs)
Medication inducing immunosuppression
Oral cancer Smoking
Betel quid

Alcohol consumption

“A characteristic that may make an individual more
susceptible to a certain disease™ ; can be “environmental,
behavioral, or biologic and “if present directly increases
the probability of a disease occurring, and if absent or

“A marker that is not necessarily causally linked, but can be
used to predict risk, like past disease experience or social,

educational or economic factors” *; “may be a probable, or

putative, risk factor, but [...] a temporal association usually
cannot be specified”.®

Caries experience

Low social, educational or economic status

Periodontitis experience
Low social, educational or economic status

Low social, educational or economic status
Male sex
High age

Artificial intelligence and its use in dental medicine

The analysis of such diverse, multimodal, large, and
complex data, including speech and imagery, requires
advanced data analytic approaches.!! One major
strategy adopted over recent years for this purpose is
“artificial intelligence” (AI). The term was coined in
the 1950’s and refers to the idea of building machines
that are capable of performing tasks that are normally
performed by humans. Machine learning (ML) is a
subfield of Al where algorithms are applied to learn
the inherent statistical patterns and structures in data,
which allows for predictions of unseen data. More
complex machine learning algorithms frequently used
for data like images are neural networks (NNs), which
are constituted of artificial neurons (i.e., mathematical
non-linear models that can be stacked and concate-
nated in layers using mathematical operations to form
a network). The term “deep learning” is a reference to
deep (multilayered) NNs, which are able to represent
hierarchical features in complex data and frequently
used for detecting edges, corners, shapes, and macro-
scopic patterns in images.'?

ML and NNs as a subtype of Al are “trained” to
automatically perform specific tasks, and the most
common type of training is supervised learning where
data points and corresponding data information (e.g,
labels, tasks, etc.) are repetitively passed through the
network to detect the intrinsic statistical patterns in
the data. During the training process, the connections
between the neurons, also referred to as model weights,
are optimized to minimize the so-called prediction error
(difference of the true vs the predicted data informa-
tion). A trained NN can predict the outcome of unseen
data by passing the new data point through the network.
Al, ML, and NNs are increasingly used in dentistry to
work with the increasing amount of data available, as
described above. A number of such forms of use are
currently discussed or already clinically available:

1. Data analytics and precision dentistry

As discussed, there is an increasing strive towards more
precise data-centered dentistry, making use of not only
clinical and historical data, claims and treatment data,
image and further test data, but also data provided by
patients as outlined above. A big advantage in dentistry
is that these multimodal datasets are usually available
repeatedly as many patients visit dentists regularly.
Using such longitudinal data will help to foster a deeper
understanding of individual health and disease and to
develop AI models to predict disease onset or progres-
sion individually. Currently, however, many of these
data remain siloed or unavailable. Meanwhile, existing
Al prediction models remain limited in their predictive
power and generalizability as useful predictions need to
be better than plainly guessing the so-called majority
class (i.e, the more frequent event).? Predicting this
majority class is easy but models which focus on exclu-
sively predicting it may not be clinically useful.!?

2. Evidence-based care

Gathering a more comprehensive picture of an individ-
uals’ health and objectifying diagnosis through imagery
and Al-assisted analysis will support evidence-based
care. Data-centric approaches will further allow to
embed external evidence, for example from guidelines
and standards of care, into decision making, and then
fostering reliable high-quality and cost-effective care.!
An additional benefit of more data-driven care is the
option to objectively assess treatment needs, actually
provided treatments, and the yielded outcomes. Ulti-
mately, this should foster value-based care (i.e., quan-
tifying the “value” of a certain treatment to individuals
and the society).

3. Beyond the dental chair

Al and data-driven approaches will facilitate better
information and decision making on the dental public
health level, including workforce planning. Automated
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data generation in routine settings in addition to prospec-
tive epidemiologic surveys will allow a more up-to-date
and detailed picture of a populations’ health, its oral
health demands, and the effectiveness and efficiency
of services.!® This will facilitate the informed setup or
buy-in of services as well as benchmarking of healthcare
interventions and policy. It will support a needs-based
and adaptive workforce planning. Enabling providers
of different levels, Al and data-driven approaches will
further support modularized models of care, fostering
affordable, accessible, and specialized services. Al will
further change dental education by employing non-
synchronous learning models. Learning using simulation
including augmented or virtual reality-based teaching
and training will be more common in the future.!

Current use of Al in dentomaxillofacial imaging

Radiographic examination is an integral component in
most diagnostic and treatment planning processes in
daily dental practice. With the growing use of digital
dental radiography, images generated by dental radio-
graphic examinations are commonly automatically
stored as digital data in the archiving system and associ-
ated databases. These data can be analyzed using Al and
specifically deep learning based on convolutional NNs.!”
Currently, a range of deep learning models have been
trained and tested on dentomaxillofacial radiographic
images to fulfill tasks of image classification (e.g, “is
there a certain pathology detectable on this image?”),
object detection (e.g., “in which image area is this certain
pathology located?”) and pixelwise segmentation (e.g.,
“which pixels of this image show a certain pathology”),
and for image quality improvement (Table 2).95%

Diagnosis

1. Dental caries

Intraoral radiographic examination is essential for the
detection of dental carious lesions, particularly early
non-cavitated ones. The sensitivity and specificity of
intraoral radiography for detecting dental caries were
reported to range from 27-66% and 76-97%, respec-
tively.””?® The relatively low sensitivity reported implies
a high underdetection of dental caries, which may be
related to clinicians’ experience and caries lesion depth
(i.e., enamel or dentin caries).

Several deep learning models have been developed
to assist clinicians in detecting and classifying dental
caries.”® Lee et al developed three CNN models to
automatically detect dental caries in posterior teeth on
periapical images.'® The models showed higher detec-
tion accuracy for premolars than for molars, which
could be related to differences in their anatomical char-
acteristics. Srivastava et al developed a CNN model
to detect dental caries on bitewings. The Al model
achieved significantly higher sensitivity (81%) than
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three general dentists (34-48%).! More recently, caries
detection using Al additionally focused on the detec-
tion of early enamel caries. The CNN model devel-
oped by Cantu et al outperformed seven experienced
dentists in detecting initial enamel and advanced dentin
caries.” The seven dentists showed greatly different
sensitivities for detecting initial (<25%) and advanced
(40-75%) caries while the model achieved robust sensi-
tivities (>70%) for both initial and advanced caries.
Currently, commercial Al software programs including
AssistDent (Manchester, UK), Denti.AI (Toronto,
Canada), Diagnocat (Tel Aviv, Israel), CranioCatch
(Eskisehir, Turkey) and dentalXr.ai (Berlin, Germany)
(Table 3) are available to assist clinicians in the diag-
nosis of dental caries on two-dimensional (2D) radio-
graphic images. The use of AssistDent and dentalXr.
ai significantly increased dentists’ sensitivity especially
for detecting enamel caries.? Notably, automatic
detection of buccal/lingual caries or secondary caries
(i.e., caries next to restorations) remains challenging for
Al models. This is, however, also the case for human
observers and mainly grounded in the 2D nature of
most intraoral images. While cone-beam computed
tomography (CBCT) allows caries detection in three-
dimensions (3D), it is not recommended for caries
diagnostics.

2. Periodontal bone loss

Deep learning models have also been developed for
the detection and segmentation of periodontal bone
loss and the associated classification of periodon-
titis stages on periapical and panoramic images. In
2018, Lee et al developed a CNN model on peri-
apical images to automatically identify periodontally
compromised posterior teeth and predict tooth loss
in the future.?® The accuracy of the model was higher
for premolars (>80%) than for molars. Thanathorn-
wong et al developed a CNN model to identify peri-
odontally compromised teeth on panoramic images.”
Kim et al?> and Krois et al* trained their CNN models
to automatically detect periodontal bone loss on
panoramic radiographs. The diagnostic accuracies of
their models (AUCs [area under the curves] of 0.89-
0.95) were higher than that of several general dentists
(AUC:s of 0.77-0.85).

In addition, periodontitis stages can also be classi-
fied automatically using deep learning on periapical and
panoramic images.’*?’ Danks et al** and Lee et al® devel-
oped CNN models to measure the extent of periodontal
bone loss on periapical images and subsequently clas-
sify the identified sites into three/four severity stages
according to the bone loss extent measured. The model
by Lee et al achieved high classification accuracy with
an AUC value of 0.98. Future applications are expected
to detect changes in the bone density and textures of
the alveolar ridge for early detection of the onset of
periodontitis.
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Table 2 Artificial intelligence applications using dentomaxillofacial imaging data

Category

Artificial intelligence application

Dental caries
Periodontal evaluation

Endodontic evaluation

Dental implants

Third molars

Radiolucent lesions in the
jaws

Maxillary sinus

Orthodontic and
orthognathic evaluation

Temporomandibular joint

Macxillofacial fracture
Sialoliths

Osteoporosis

Sjogren’s syndrome
Lymph node metastasis

Reporting of the dental
status

Detection of dental caries's?!
Detection of periodontal bone loss*?

Measurement and staging of periodontal bone loss***

Classification of periodontitis stages?*?’

Identification of periodontally compromised teeth??

Detection, classification, and measurement of apical pathologies®*!

Detection of vertical root fractures®>3

Detection® and classification®* of C-shaped canals

Detection of peri-implant bone loss*

Measurement of the peri-implant bone loss ratio and classification of the bone loss severity?*

Detection of the edentulous sites, nasal fossa, maxillary sinus, and mandibular canal, and measurement of the
heights and widths of residual alveolar bone at the edentulous sites®

Classification of dental implant systems*#?

Detection and classification of dental implant fractures*

Classification of positional relationships between lower third molars and the mandibular canal* ¢
Prediction of extraction difficulty for lower third molars*’

Prediction of paresthesia after third molar extraction*

Detection and segmentation of infections, granuloma, cysts, and tumors in the jaws*

Detection of ameloblastomas and odontogenic keratocysts®

Detection/classification of ameloblastomas, odontogenic keratocysts, dentigerous cysts, radicular cysts, and/or bone
cysts in the maxilla/mandible®'>

Differentiation of Stafne’s bone cavity from mandibular radiolucent lesions™
Detection of maxillary sinus lesions™*

Detection and segmentation of maxillary sinus lesions>*>’

Prediction of oroantral communication after tooth extraction®®

Localization of cephalometric landmarks*

Classification of skeletal malocclusion® ¢’

Assessment of facial symmetry before and after orthognathic surgery®
Diagnosis of temporomandibular joint osteoarthritis®

Diagnosis of mandibular condyle fractures™

Measurement of the cortical thickness of mandibular condyle head”
Detection and classification of mandibular fracture’™

Detection of submandibular gland sialoliths™

Diagnosis and prediction of osteoporosis™”

Diagnosis of Sjogren’s syndrome’®

Segmentation and identification of metastatic cervical lymph nodes”
Segmentation of teeth and jaws, numbering of teeth, detection of caries, periapical lesions, and periodontitis™

Identification of missing tooth, caries, filling, prosthetic restoration, endodontically treated tooth, residual root,
periapical lesion, and periodontal bone loss™

Tooth numbering and detection of dental implants, prosthetic crowns, fillings, root remnants, and root canal
treatment®

Detection, segmention, and labeling of teeth, crowns, fillings, root canal fillings, implants, and root remnants®'-*?
Tooth detection and numbering®$
Tooth segmentation and classification®5¢

Image quality improvement Correction of blurred panoramic radiographic images®’

Multimodal image
registration

Reduction of metal artifacts on CBCT images®
Improvement of the resolution of CT/CBCT images*'
Registration of CBCT with intra oral scan,’? optical dental model scan,” or MRI*

3. Endodontic evaluation
Al applications in endodontics so far mainly focus
on apical pathologies, root fractures, and C-shaped

canals. For apical pathologies, models on 2D radio-
graphic images were able to automatically detect and
classify lesions while those on CBCT images were able
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Table 3 Examples of commercially available Al software for dental applications

Origin
Al software ( City, Country) Type of image data Application Website
AssistDent Manchester, UK Bitewing images Detecting proximal enamel and https://www.assistdent.net
dentin caries
WebCeph Seongnam, Korea Cephalometric images Cephalometric tracing and https://webceph.com/en/about/
analysis
Ceppro Seoul, Korea Cephalometric images Cephalometric tracing and https://www.ddhinc.net/en/
analysis
dentalXr.ai Berlin, Germany Bitewing, periapical and * Identifying and numbering https://www.dentalxr.ai/en/home
panoramic images teeth
*  Detecting caries, apical
lesions, fillings, crowns,
bridges, dental implants,
root canal fillings, retained
teeth, calculus, and
periodontal bone loss
* Anatomical structure
segmentation
*  Generating findings report
Relu Leuven, Belgium CBCT images * Identifying and numbering https://relu.cu/
teeth
»  Segmenting teeth, jaws,
mandibular canal, and
pharyngeal airway
Denti. Al Toronto, Canada Periapical, bitewing, * Identifying and numbering https://www.denti.ai/
panoramic, and CBCT images teeth
*  Detecting caries, fillings,
apical lesions, and
endodontic treatment
»  Charting for dental X-rays,
CBCT, and voice data
Promaton Amsterdam, Netherlands ~ Panoramic and CBCT images < Identifying and numbering https://www.promaton.com
teeth
*  Detection of dental
implants, prosthetic crowns,
fillings, root remnants, and
root canal treatment
*  Tooth segmentation
* Dental implant planning
*  Alignment of optical and
CBCT scans
Diagnocat Tel Aviv, Israel Periapical, bitewing, * Identifying and numbering https://diagnocat.com
panoramic, cephalometric, and teeth
CBCT images *  Detecting caries, apical
lesions, periodontal
bone loss, open margins,
overhangs, impactions,
filling, prosthetic
restoration, endodontically
treated tooth, calculus, and
residual root.
*  Anatomical structure
segmentation
*  Generating findings report
CranioCatch Eskisehir, Turkey Periapical, bitewing, * Identifying and numbering https://www.craniocatch.com/en/
panoramic, cephalometric, and teeth
CBCT images *  Detecting caries, apical

lesions, impacted teeth,
alveolar bone loss,
furcation defects, jaw
pathologies, and dental
restorations

*  Evaluating bone changes
in the temporomandibular
joint

*  Orthodontic analysis

*  Anatomical structure
segmentation

*  Treatment plan
recommendation

Al, artificial intelligence; CBCT, cone-beam computed tomography
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to additionally provide volumetric information of the
detected lesions. Krois et al'® and Ekert et al*® devel-
oped CNN models on panoramic images or image
crops to detect apical pathologies and classify teeth into
(1) teeth without apical lesions, (ii) teeth with widened
periodontal ligament or uncertain apical lesions, and
(ii1) teeth with clearly visible apical lesions. Krois et al
trained their CNN models with images acquired from
one or two centers, respectively, and reported low cross-
center generalizability of the model trained with images
acquired only from one center.!® The low generaliz-
ability mainly resulted from differences in the dental
status shown on images from different centers, specif-
ically the association between root canal fillings and
apical lesions being present differed. CNNs learnt this
association structure on data from one center (where
root canal fillings were frequent) but were then unable
to reproduce this based on data from the other center
(where root canal fillings were less frequent). Based on
their findings, cross-center training seems to be able
to improve a model’s generalizability. Hamdan et al
reported that the diagnostic ability of eight dental prac-
titioners to detect apical radiolucencies on periapical
images increased with the aid of a commercially avail-
able Al software named Denti.Al (Toronto, Canada;
Table 3), as demonstrated by an increased sensitivity
from 59.6 to 73.3%.!"" Orhan et al used 109 CBCT scans
to test an Al software named Diagnocat (Tel Aviv, Israel;
Table 3) and reported high detection accuracy and no
significant differences in the lesion volumes measured by
the software and a radiologist.’! Notably, the presence
of endo-perio lesions, buccal-lingual cortical perfora-
tions, incomplete apex, endodontically treated teeth,
and large lesions associated with multiple teeth detri-
mentally affected the model’s performance.

Diagnosis of root fractures, especially vertical root
fractures, is a challenging and experience-dependent
task, commonly accomplished by combined clinical
and radiographic examination. Root fractures are cate-
gorized as horizontal and vertical fractures. Horizontal
root fractures frequently occur in the anterior teeth due
to dentoalveolar trauma while vertical root fractures
are common in endodontically treated tecth as a result
of excessive root canal preparation or occlusive force.
CNN models have been developed to automatically
detect vertical root fractures on 2D and 3D radiographic
images.’>** Despite promising diagnostic accuracy, the
models still have to overcome a relatively low accuracy
on non-endodontically treated teeth and the potential
impact of caries, fillings, dental restorations, and metal
artifacts on their performance.

Automatic detection and classification of C-shaped
canals in mandibular second molars have been seen as
another field of AI application. Several CNN models
on 2D and 3D radiographic images have been developed
to automatically detect, segment, and classify C-shaped
canals.?*3¢ Their performance has been shown similar or
superior to both general dentists and specialists.?*3

Personalized dental medicine, Al and their relevance for DMFR
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4. Dental implants

CNN models were also developed to detect peri-implant
bone loss and implant fractures on 2D radiographic
images. Liu et al developed a CNN model to auto-
matically detect peri-implant bone loss on periapical
images.’’” The model performed similarly to two general
dentists but inferior to one specialist. Another CNN
model on periapical images measured peri-implant
bone loss ratio and classified the bone loss severity into
normal, early, moderate, and severe.® Lee et al devel-
oped CNN models on periapical, panoramic, or both
images to detect implant fractures and to classify the
fractured implants into horizontal or vertical frac-
tures.* The models achieved AUCs of 0.90-0.98 for
the detection task and 0.75-0.87 for the classification
task. The highest detection and classification accuracies
were achieved on periapical images, likely due to higher
spatial resolution of periapical images compared with
panoramic images.

5. Maxillofacial pathologies

Treatment options and prognosis for patients with
pathologies in the maxillofacial region are directly asso-
ciated with the timing and accuracy of diagnosis. The
differential diagnosis of maxillofacial pathologies is a
challenge for general practitioners, particularly for inci-
dental findings on diagnostic images. A delayed diag-
nosis will lead to a longer disease course, more invasive
surgical approach, and poorer treatment outcome, espe-
cially for malignant lesions. Several researchers tried to
develop Al tools to improve the diagnostic accuracy of
general practitioners for various maxillofacial pathol-
ogies to reach the level of specialists. Poedjiastoeti et
al developed a CNN model on panoramic images for
automatic detection of ameloblastomas and odonto-
genic keratocysts, with high diagnostic performance
(sensitivity and specificity over 80%) being on par with
five oral-maxillofacial surgeons.®® Another CNN model
on panoramic images detected and classified ameloblas-
tomas, odontogenic keratocysts, dentigerous cysts, and
radicular cysts, and obtained high classification perfor-
mance with an AUC of 0.94, sensitivity of 88.9%, and
specificity of 97.2%, respectively.’! The model by Endres
et al outperformed 14 oral-maxillofacial surgeons in
detecting infections, granuloma, cysts, and tumors in
the jaws on panoramic images.* Lee et al developed
CNN models, respectively, on panoramic and CBCT
images to detect, segment, and classify odontogenic
keratocysts, dentigerous cysts, and radicular cysts.>> The
model on CBCT images (AUC = 0.91) outperformed
the one on panoramic images (AUC = 0.85). Ariji et
al et al developed a CNN model on contrast-enhanced
CT images to identify and segment metastatic cervical
lymph nodes in patients with oral cancer.” The model
outperformed two radiologists in identifying cervical
lymph nodes while its segmentation accuracy should be
improved.
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It has been reported that inexperienced oral-
maxillofacial radiologists are prone to miss patholog-
ical changes of the parotid gland while interpreting CT
images of the maxillofacial region, leading to underde-
tection of Sjogren’s syndrome.” Kise et al developed a
CNN model to assess the texture features of the parotid
gland on CT images for automatic diagnosis of Sjogren’s
syndrome.” The model performed similarly to three
experienced radiologists and superior to three inexperi-
enced radiologists.

The maxillary sinus is the largest paranasal sinus and
frequently involved in dental surgical procedures due to
its close proximity to the teeth in the posterior maxilla.
Accurate diagnosis of maxillary sinus pathologies is the
key to the success of dental surgical procedures, such
as sinus augmentation for dental implant placement
and apical surgery of maxillary posterior teeth.!%>104
However, it has been reported that inexperienced dental
practitioners were less likely to accurately diagnose sinus
pathologies on radiographic images.'” In order to assist
clinicians in the diagnosis of the sinus pathologies, CNN
modes have been developed to automatically detect
and segment sinus lesions on panoramic and CBCT
images.>*>’ The models obtained favorable performance
on both detection and segmentation tasks. Murata et al
reported that their CNN model performed similarly to
two radiologists and outperformed two dental residents
in the diagnosis of maxillary sinusitis.>® The CNN model
by Hung et al obtained high accuracy for detecting and
segmenting mucous retention cysts and mucosal thick-
ening of the sinus on both ultra-low-dose and standard-
dose CBCT images with AUCs ranging from 0.84 to
0.93.%¢

6. Temporomandibular joint

Diagnosis of temporomandibular joint (TMJ) disor-
ders requires sufficient clinical experience. Undetected
TMJ problems can result in patients suffering for a long
time and undergoing unnecessary examinations and
even invasive treatment. Jung et al developed two CNN
models on panoramic images using different pre-trained
flameworks for automatic diagnosis of TMJ osteoar-
thritis. The models achieved excellent diagnostic accu-
racy superior to that of three general dentists and even
three TMJ specialists.®” The CNN model by Kim et al
obtained high accuracy for measuring cortical thickness
of the mandibular condyle head on CBCT images.”
Nishiyama et al developed CNN models to diagnose
mandibular condyle fracture on panoramic images, and
reported high diagnostic accuracy with AUCs of nearly
0.9.70

7. Other diagnostic purposes

Apart from the abovementioned diagnostic purposes,
deep learning models can also be developed for auto-
matic detection and classification of mandibular
fractures,”” diagnosis and prediction of osteopo-
rosis,”*” detection of submandibular gland sialoliths,”
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differentiation of Stafne’s bone cavity from mandibular
radiolucent lesions® on 2D or 3D radiographic images.
All these models obtained high accuracies mostly with
AUC values over 0.9.

Reporting of the dental status

Charting of teeth, restorations, and present dental
diseases is the first step in the routine assessment of
dental patients. Any mistakes or oversights in the
resulting dental records may lead to misdiagnosis and
erroneous treatment decisions, such as extraction or
endodontic treatment of the wrong tooth. As electronic
dental health records are by now widely used in dental
practice, automated charting using Al seems highly
useful. Some studies reported excellent performance of
CNN models for automated detection and numbering
of deciduous and permanent teeth on panoramic
images.®** Shaheen et al developed a CNN model on
CBCT images for automated tooth segmentation and
classification.®®> The model achieved high accuracies
for both segmentation and classification tasks, and has
found its way into a commercially available software
named Relu (Leuven, Belgium; Table 3). Fontenele et
al reported that the presence of dental fillings in CBCT
images negatively affected Relu’s performance on tooth
segmentation.® Some CNN models were developed for
automated detection, segmention, and labelling of teeth,
crowns, restorative fillings, root canal fillings, and dental
implants.”32 Commercially available systems including
dentalXrai (Berlin, Germany), Denti.AI (Toronto,
Canada), and Diagnocat (Tel Aviv, Israel) (Table 3)
allow such charting in similar accuracy to practitioners.”
Moreover, CNN models were able to automatically clas-
sify various implant systems and their prosthetic status
on periapical and panoramic images.***? These models
achieved excellent classification accuracy and some even
outperformed periodontists. Automatic implant classifi-
cation models could be used to recognize and record the
system of the placed implants in the dental recording
systems, which can facilitate regular maintenance and
future repairs.

Treatment planning
Al has great potential to help dental practitioners with
treatment planning and time-consuming tasks in the
digital dental workflow. Segmentation, localization, and
measurement of anatomical structures or pathologies on
radiographic images as well as multimodal image regis-
tration are common manual steps required in the plan-
ning of oral and maxillofacial surgical procedures.'*
So far, several Al applications have been proposed for
automated landmark localization,** % skeletal classifica-
tion,%¢7 facial symmetry assessment,*®®!1%” and decision-
making on tooth retention or extraction for orthodontic
treatment'®!% on 2D or 3D images.

Kunz et al developed a CNN model to automatically
localize anatomical landmarks and measure their linear/
angular parameters on cephalometric radiographs.®
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The mean absolute differences in the linear/angular
analyses were 0.44-0.64 mm/0.46-2.18° for the model
and 0.35-0.88 mm/0.55-1.80° for 12 orthodontists,
which demonstrates similar performance. Bulatova et
al® and Mabhto et al®* tested Al driven automated ceph-
alometric analysis software applications named Ceppro
(Seoul, Korea; Table 3) and WebCeph (Seongnam,
Korea; Table 3), respectively. Ceppro achieved mean
absolute localization differences ranging from 1.3 to
8.7 mm, with no significant differences between auto-
mated and manual localization for eleven out of sixteen
selected landmarks. WebCeph obtained high agreement
with intraclass correlation coefficients over 0.9 between
automated and manual measurements on seven out of
twelve cephalometric parameters. Some deep learning
models on cephalometric or CBCT images classified
skeletal malocclusion for orthodontic and orthognathic
treatment planning and obtained excellent accuracies
over 93%.5°67 Lin et al developed a CNN model to assess
facial symmetry before and after orthognathic surgery
on CBCT images and reported high accuracy of 90%.%

Another group developed a CNN model for auto-
matic detection of edentulous sites, nasal fossa, maxil-
lary sinus, and mandibular canal, and measurement of
the heights and widths of residual alveolar bone at the
edentulous sites on CBCT images for dental implant
treatment planning.* The model’s detection accuracy
was high for edentulous sites (95.3%) and moderate for
the mandibular canal (72.2%) and nasal fossa/maxil-
lary sinus (66.4%). On the sites of maxillary premo-
lars/molars and mandibular premolars, the automated
bone height measurements were similar to the manual
measurements (i.e., ground truth). The automated bone
height measurements on the sites of maxillary/mandib-
ular anterior teeth and mandibular molars as well as the
automated bone width measurements on all tooth sites
were significantly different from the manual measure-
ments, with median measurement deviations of 1.7-11.3
mm. The significant differences between automated and
manual measurements might be due to the incorrect
localization of the measuring points.

Assessment of the difficulty of planned third molar
surgery is also a field of increased interest in Al research.
Yoo et al developed a CNN model on panoramic images
to classify the difficulty of third molar removal according
to several parameters, such as the depth and angulation
of the molar. CNN models were also developed to
classify the positional relationship between lower third
molars and the mandibular canal on panoramic and
CBCT images.**“¢ Choi et al developed a CNN model
to determine whether lower third molars are truly in
contact with or positioned buccally/lingually to the
mandibular canal when they are shown as overlapped
on panoramic images (CBCT readings served as ground
truth), and to classify the non-contact molars as being
buccally or lingually positioned.* The model obtained
accuracies of 72% for determining the true contact posi-
tion and 81% for classifying the bucco-lingual position,
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outperforming six oral-maxillofacial specialists. Kim
et al developed a CNN model on panoramic images to
predict paresthesia due to damage of the inferior alveolar
nerve during lower third molar removal, and reported
high prediction accuracy with an AUC of 0.92.%8 Apart
from third molars, Vollmer et al attempted to develop
CNN models on panoramic images to predict oroantral
communication after tooth extraction.’® The prediction
accuracy of the best model was similar to that of four
oral-maxillofacial experts.

Multimodal image registration is a critical step in
digital dental workflows where 3D images acquired
from different imaging modalities, including CT, CBCT,
MRI, intraoral, facial, and model scanning, are super-
imposed into the same coordinate frame to create a
virtual augmented patient model. This is useful for
treatment planning for dental implant placement,
joint, salivary gland, orthognathic, and reconstruc-
tive surgeries.'"” Multimodal image registration can
be performed manually by aligning anatomical land-
marks or semi-automatically by using the surface-based
or fiducial marker registration approach. Although
the semi-automatic approach is less time-consuming
than the manual approach, its registration accuracy is
affected by the quality of the acquired images, the pres-
ence of image artifacts, the deformation of the optical
surface, and the distribution of the employed fiducial
markers. Therefore, manual corrections are frequently
required after semi-automatic image registration. In
order to improve the efficiency and accuracy of multi-
modal image registration, a range of studies developed
Al models to automatically register CBCTs with intra-
oral scans,”? optical dental model scans,”® or MRIs.*
Compared with conventional approaches, these models
allow more accurate automated image registration in a
significantly shorter time.

Image quality improvement

Due to the growing use of CBCT in daily dental prac-
tice for diagnosis and treatment planning, concerns have
been raised regarding the increased risk of radiation-
induced stochastic effects, particularly on radiosensitive
organs such as salivary glands, thyroid glands, and eye
lenses. While several low-dose CBCT protocols have
been suggested and applied in practice, the perceived
inferior image quality of low-dose scans may hamper
their use, with clinicians nevertheless employing stan-
dard- or even high-dose scanning mode for certain
imaging tasks.!!! In addition, the presence of severe
artifacts in CBCT images has been reported as one of
the common reasons for re-exposure.''? Patient motion
during scanning and metallic dental restorations are the
main sources for the occurrence of movement or metal
artifacts in CBCT images.

Several researchers therefore developed Al applica-
tions to correct blurred panoramic images and reduce
noise and metal artifacts in CT and CBCT images.*"%
CNN-based auto-positioning can reduce blurring

birpublications.org/dmfr
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occurred due to positioning errors in panoramic image
by reconstructing the image with the corrected curva-
ture.¥” Hu et al’! and Park et al® developed image
denoizing tools using deep learning to remove noise
from low-dose CT or CBCT for improving the image
quality to be equivalent to high-dose scans. Hatvani et
al developed a CNN-based method to enhance the reso-
lution of teeth on cross-sectional CBCT images, which
allows better visualization of the anatomical structure
of teeth.” CNN-based methods were also proposed to
reduce metal artifacts in CT or CBCT images.®!13114
These methods identify and segment the areas of metal
artifacts in the original images and then merge the orig-
inal and corrected images to suppress the artifacts.

The future of Al in dentomaxillofacial imaging

Current applications of Al in dentomaxillofacial imaging
mainly focus on improving diagnostic accuracy and easing
the diagnostic and/or planning workflow. More and more
Al applications were reported to be able to perform simi-
larly to or even outperformed dentists (Table 4), oftentimes
lifting general dental practitioners to levels equivalent to
specialists. Notably, existing Al models are limited in their
scope, mainly aiming to detect, segment, or classify anatom-
ical structures or common pathologies. Rare variations or
diseases have so far seldom been the focus. Given the diffi-
culty practitioners have for diagnosing rare variations or
diseases, Al models developed for such specific tasks could
be truly clinically significant. With technical advances, the
availability of larger data pools (including the pooling of
different datasets and the uptake of federated learning,'*
and the increased usage of alternative labeling and training
pathways in dentistry (such as weakly or self-supervised
learning,'® these difficult diagnostic tasks are expected to
be tackled.

In addition, it has been expected that Al at some point
could “see” more on a certain image type than the human
eye could. To do so, training of the Al on more sensitive
sensor data as ground truth than the one later used during
inference would be one option. Currently, this is not the case
because the ground truth relies on the same sensor data and
oftentimes involves human activity. The only way to achieve
somewhat “superhuman” performance is by involving
a larger number of practitioners to at least overcome the
limitations of single dentists.!*

Gradually, more and more Al models proposed have
been tested by completely external image data acquired
from different dental centers (Table 5) as suggested by the
Artificial Intelligence in Dental Research guideline.!'” Few
models were able to achieve similar performance while most
showed inferior performance on external images. Some
studies have reported low cross-center generalizability of
their models.”*!® It was noted that adding external images
acquired from one dental center in the training dataset could
increase the model’s performance on the images from that
external center but would decrease its performance on the
images from the original center. These findings indicate that
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although cross-center training could improve the general-
izability of Al models, the proportion of the images from
different centers in the training dataset is also an influencing
factor associated with the trained models’ performance.
Therefore, future studies should focus not only on internal
testing but also on external testing. If external testing shows
unfavorable outcomes, cross-center training should be
considered to increase the model’s generalizability.

The usefulness and efficacy of most proposed Al models
in daily dental practice are still unclear based on current
evidence. Although most studies reported that AI models
could increase diagnostic ability of dental practitioners
and reduce the time spent on time-consuming work in the
treatment planning process, their true impact on real-world
clinical practice is rarely discussed. In addition to a model’s
accuracy, future studies should focus more on its impact on
treatment decision, clinical and patient-reported outcomes,
and cost-effectiveness, which may be more important to
patients, providers, and healthcare organizers.''® Schwen-
dicke et al performed the first cost-effectiveness analysis of
an Al application for caries detection on bitewings." They
reported that Al showed significantly higher sensitivity than
dentists, which allows more early caries to be detected, facil-
itates non- or micro-invasive management of the detected
lesions, and thus avoids costly late retreatments. The high
cost-effectiveness of dental Al applications implies that inte-
grating Al into clinical practice has the potential to reduce
healthcare cost burden, revealing their economic impact on
healthcare systems. Only clinically relevant Al tools that
are capable of fulfilling technical requirements with prom-
ising financial potential can attract healthcare stakeholders
to continuously support their development, optimization,
and application in dental medicine.!"*!? Therefore, future
research should assess the clinical, technical, and financial
aspects of cost-effectiveness of Al applications in dental
medicine to demonstrate their true usefulness in daily
practice.

Moreover, the impact of Al on patient-provider
interaction should not be ignored. A more positive atti-
tude regarding dental Al applications was observed in
younger and more educated individuals than in older
and less educated individuals.'?! Compared with younger
individuals, the elderly are more sceptical towards such
advanced healthcare technologies. Providers need to
frame the usage of Al individually to retain trust into
the care process. The output of Al should be able to help
patients to objectify any diagnosis and to support visual
recognition of a lesion, which can improve patient-
clinician communication and increase patients’ trust in
any derived management.

Conclusions and outlook

Personalized dental medicine should allow to provide
the safest, most efficacious and efficient diagnostics
and therapeutics tailored to individuals based on one’s
biological, social, and behavioral characteristics. Based
on current evidence, true personalized dental medicine is
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Cs, o - = still far from being a reality as most evidence-based up-to-
| Ezffiz,.sT 2| 2 date clinical practice guidelines for the management of
HEEE E 55,2552 £ dental diseases still stratify individuals and lesions into
12 B - 5} © . . . .
s Esst go‘;? 582y 2 risk groups, and thus assign identical management strat-
S|ES2Ec22229% g egies to all individuals in a certain risk group. A wide
A range of Al applications, including several commer-
DS g cially available software options, have been developed
=1 = . . . . .. .
T ks based on diagnostic images to assist clinicians in the
3 T g E diagnosis and treatment planning of various dento-
S| E% Z maxillofacial diseases, with performance similar or even
S|gg S superior to that of specialists. ou ese denta
229 .y p to that of specialists. Although these dental Al
R AA zu:; applications are seen to have the potential to enable a
5 more precise, personalized, preventive, and participa-
g ; cd tory approach for the management of dentomaxillo-
K ﬁ 2 E % facial diseases, almost all of them only work on image
ilsles 23 data obtained at a certain time point in the diagnostic or
3 ;E z EE g é treatment process without considering other data such
= < O R Q2 . .. .. S
$lz|22% Z: as individual characteristics and clinical assessment.
RIS SR E % E Advanced technologies with improved data analytic
S > z approaches are expected to enrich these Al applications
S zZa wi iverse, multimodal, large, and complex data from
T U“_“ thd Itimodal, larg d plex data fi
s 5 g 55 the individual level (e.g., demographic, behavioral, and
§ 2% &8 social characteristics; clinical data generated by records
$|o0 é“é mining, clinical assessment, diagnostic imaging, omics
s wn wn . .
R AA E technologies; and real-time consumer data from wear-
o g . . . .
= g3 ables and tracking devices), setting level (e.g., geospatial,
e gg environmental, and provider-related data), and system
o g E level (e.g, health insurance, regulatory, and legislative
o Z § 32 data), which may facilitate a deeper understanding of
= o] ! . .
Sls Ei 2% the interaction of these multilevel data and hopefully
S 2 = 2 . .
S| S| 2% ° bring us closer to a truer form of personalized dental
S(3S| 55 H K . 17
S|s| 2z Q= care for patients in the near future.>
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