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Personalized medicine refers to the tailoring of diagnostics and therapeutics to individuals 
based on one’s biological, social, and behavioral characteristics. While personalized dental 
medicine is still far from being a reality, advanced artificial intelligence (AI) technologies with 
improved data analytic approaches are expected to integrate diverse data from the individual, 
setting, and system levels, which may facilitate a deeper understanding of the interaction of 
these multilevel data and therefore bring us closer to more personalized, predictive, preven-
tive, and participatory dentistry, also known as P4 dentistry. In the field of dentomaxillofacial 
imaging, a wide range of AI applications, including several commercially available software 
options, have been proposed to assist dentists in the diagnosis and treatment planning of 
various dentomaxillofacial diseases, with performance similar or even superior to that of 
specialists. Notably, the impact of these dental AI applications on treatment decision, clinical 
and patient-reported outcomes, and cost-effectiveness has so far been assessed sparsely. Such 
information should be further investigated in future studies to provide patients, providers, and 
healthcare organizers a clearer picture of the true usefulness of AI in daily dental practice.
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Personalized and precision dentistry and data-driven technologies

Current concepts of managing dental diseases have 
by large been developed over the course of the last 
50 years. While knowledge generated by continuous 
research efforts towards the biological foundation of 
the main dental diseases (caries and periodontitis) has 
been gradually integrated into contemporary therapy 
approaches, the backbone of treatments employed in 
dental practices has been established decades ago. For 
example, restorative treatments remain the cornerstone 

for carious lesions while deep scaling and root planing 
remain central for periodontal disease, both of which 
are increasingly accompanied by preventive efforts.1,2 
Given the evolving understanding of dental diseases, 
their etiology and pathogenesis, and the resulting 
chance and need to adequately describe different disease 
stages and grades to deduct appropriate therapies, this 
simplification may not suffice any longer. Notably, it is 
grounded in a similarly simplified diagnostic approach; 
what is missing is a systematic and holistic evaluation 
of individual health and disease on patient, tooth, and 
site level, and the synthesis of the gathered data into 
adequately granular diagnoses. Such an approach would 
need to be built on a detailed multimodal data collection 
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and would allow to assign individualized treatment 
pathways based on personalized diagnosis.

At present, however, such individualized diagnos-
tics and treatment pathways are not at all available in 
dentistry. Instead, we are stuck in the era of stratification 
of individuals and lesions into risk groups, characterized 
mainly by simple shared phenotypic characteristics (e.g., 
caries experience for caries risk assessment, smoking or 
poor oral hygiene for periodontal risk assessment, etc.). 
Currently, the accuracy and generalizability of most 
of these risk assessment systems are insufficiently vali-
dated. Even if  these risk assessment systems were valid, 
they would only describe groups of individuals and 
lesions sharing a similar “risk” and subsequently assign 
identical management strategies to all individuals in a 
certain risk group (i.e., the one-size-fits-all approach).3

While being the next step beyond stratification, true 
personalized management is not possible at the moment. 
Personalized management is closely linked to “preci-
sion medicine”, defined as “the tailoring of a therapy 
to individuals with one’s biological (genomic, micro-
biomic, proteomic, etc.), social (economic, educational, 
etc.) and behavioral (lifestyle) characteristics”.3 Person-
alized care should, ideally, allow to provide the safest, 
most efficacious and efficient diagnostics and therapies, 
which is jointly with precision medicine and closely 
related to another concept “P4 medicine”.4 The four Ps 
stand for a more precise, personalized, preventive, and 

participatory healthcare approach (Figure  1). What is 
needed, however, to make personalized, precision, and 
P4 dentistry come true is a deep understanding of indi-
viduals and the option to predict what will happen to 
this individual, a specific organ or lesion.

To allow such understanding and prediction, the 
discussed concept of stratification and the employed 
few risk indicators or factors (Table  1) are obviously 
insufficient. What is needed is a shift towards a health-
care model centered around broad and deep data. As 
discussed elsewhere,7 many recent academic break-
throughs in astronomy,8 biology9 and other disciplines 
are mainly driven by making use of large amounts of 
data. Dentistry should also make use of the wealth of 
available dental data and transform into something that 
was previously referred to as “data dentistry”.7 The data 
needed could be generated from advanced sensor tech-
nologies, including wearables, ingestibles, and implant-
ables as well as social media and electronic health records 
(eHR), to name a few.10 Many of these data sources will 
not solely rely on being collected in clinical settings, 
but routinely, even by patients who may actively donate 
data from social media, food consumption, healthcare 
apps, behavioral diaries, or toothbrushes. In addition, 
prospectively collected omics data may become more 
available if  costs for generating them decrease further 
and technologies are becoming available in routine 
settings.10

Figure 1  The confluence of different data sources and technologies (e.g., AI, specifically deep learning, systems medicine involving genomic, 
metabolomic, or microbiomic data, as well as clinical data sources or those provided publicly or by the patient) will enable P4 medicine and 
dentistry.4
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Artificial intelligence and its use in dental medicine

The analysis of  such diverse, multimodal, large, and 
complex data, including speech and imagery, requires 
advanced data analytic approaches.11 One major 
strategy adopted over recent years for this purpose is 
“artificial intelligence” (AI). The term was coined in 
the 1950’s and refers to the idea of  building machines 
that are capable of  performing tasks that are normally 
performed by humans. Machine learning (ML) is a 
subfield of  AI where algorithms are applied to learn 
the inherent statistical patterns and structures in data, 
which allows for predictions of  unseen data. More 
complex machine learning algorithms frequently used 
for data like images are neural networks (NNs), which 
are constituted of  artificial neurons (i.e., mathematical 
non-linear models that can be stacked and concate-
nated in layers using mathematical operations to form 
a network). The term “deep learning” is a reference to 
deep (multilayered) NNs, which are able to represent 
hierarchical features in complex data and frequently 
used for detecting edges, corners, shapes, and macro-
scopic patterns in images.12

ML and NNs as a subtype of AI are “trained” to 
automatically perform specific tasks, and the most 
common type of training is supervised learning where 
data points and corresponding data information (e.g., 
labels, tasks, etc.) are repetitively passed through the 
network to detect the intrinsic statistical patterns in 
the data. During the training process, the connections 
between the neurons, also referred to as model weights, 
are optimized to minimize the so-called prediction error 
(difference of the true vs the predicted data informa-
tion). A trained NN can predict the outcome of unseen 
data by passing the new data point through the network. 
AI, ML, and NNs are increasingly used in dentistry to 
work with the increasing amount of data available, as 
described above. A number of such forms of use are 
currently discussed or already clinically available:

1. Data analytics and precision dentistry
As discussed, there is an increasing strive towards more 
precise data-centered dentistry, making use of not only 
clinical and historical data, claims and treatment data, 
image and further test data, but also data provided by 
patients as outlined above. A big advantage in dentistry 
is that these multimodal datasets are usually available 
repeatedly as many patients visit dentists regularly. 
Using such longitudinal data will help to foster a deeper 
understanding of individual health and disease and to 
develop AI models to predict disease onset or progres-
sion individually. Currently, however, many of these 
data remain siloed or unavailable. Meanwhile, existing 
AI prediction models remain limited in their predictive 
power and generalizability as useful predictions need to 
be better than plainly guessing the so-called majority 
class (i.e., the more frequent event).3 Predicting this 
majority class is easy but models which focus on exclu-
sively predicting it may not be clinically useful.13

2. Evidence-based care
Gathering a more comprehensive picture of an individ-
uals’ health and objectifying diagnosis through imagery 
and AI-assisted analysis will support evidence-based 
care. Data-centric approaches will further allow to 
embed external evidence, for example from guidelines 
and standards of care, into decision making, and then 
fostering reliable high-quality and cost-effective care.14 
An additional benefit of more data-driven care is the 
option to objectively assess treatment needs, actually 
provided treatments, and the yielded outcomes. Ulti-
mately, this should foster value-based care (i.e., quan-
tifying the “value” of a certain treatment to individuals 
and the society).

3. Beyond the dental chair
AI and data-driven approaches will facilitate better 
information and decision making on the dental public 
health level, including workforce planning. Automated 

Table 1  Risk factors and risk indicators

Risk factor Risk indicator

Definition “A characteristic that may make an individual more 
susceptible to a certain disease”3 ; can be “environmental, 
behavioral, or biologic and “if  present directly increases 
the probability of a disease occurring, and if  absent or 
removed reduces the probability”.5

“A marker that is not necessarily causally linked, but can be 
used to predict risk, like past disease experience or social, 
educational or economic factors” 3; “may be a probable, or 
putative, risk factor, but […] a temporal association usually 
cannot be specified”.6

Caries Diet rich in carbohydrates Caries experience

Oral hygiene, fluoridated toothpaste Low social, educational or economic status

Medication causing hyposalivation/xerostomia

Periodontal disease Oral hygiene, smoking Periodontitis experience

Bacterial composition, genetic factors (SNPs) Low social, educational or economic status

Medication inducing immunosuppression

Oral cancer Smoking Low social, educational or economic status

Betel quid Male sex

Alcohol consumption High age
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data generation in routine settings in addition to prospec-
tive epidemiologic surveys will allow a more up-to-date 
and detailed picture of a populations’ health, its oral 
health demands, and the effectiveness and efficiency 
of services.15 This will facilitate the informed setup or 
buy-in of services as well as benchmarking of healthcare 
interventions and policy. It will support a needs-based 
and adaptive workforce planning. Enabling providers 
of different levels, AI and data-driven approaches will 
further support modularized models of care, fostering 
affordable, accessible, and specialized services. AI will 
further change dental education by employing non-
synchronous learning models. Learning using simulation 
including augmented or virtual reality-based teaching 
and training will be more common in the future.16

Current use of AI in dentomaxillofacial imaging

Radiographic examination is an integral component in 
most diagnostic and treatment planning processes in 
daily dental practice. With the growing use of digital 
dental radiography, images generated by dental radio-
graphic examinations are commonly automatically 
stored as digital data in the archiving system and associ-
ated databases. These data can be analyzed using AI and 
specifically deep learning based on convolutional NNs.17 
Currently, a range of deep learning models have been 
trained and tested on dentomaxillofacial radiographic 
images to fulfill tasks of image classification (e.g., “is 
there a certain pathology detectable on this image?”), 
object detection (e.g., “in which image area is this certain 
pathology located?”) and pixelwise segmentation (e.g., 
“which pixels of this image show a certain pathology”), 
and for image quality improvement (Table 2).95,96

Diagnosis

1. Dental caries
Intraoral radiographic examination is essential for the 
detection of dental carious lesions, particularly early 
non-cavitated ones. The sensitivity and specificity of 
intraoral radiography for detecting dental caries were 
reported to range from 27–66% and 76–97%, respec-
tively.97,98 The relatively low sensitivity reported implies 
a high underdetection of dental caries, which may be 
related to clinicians’ experience and caries lesion depth 
(i.e., enamel or dentin caries).

Several deep learning models have been developed 
to assist clinicians in detecting and classifying dental 
caries.96 Lee et al developed three CNN models to 
automatically detect dental caries in posterior teeth on 
periapical images.18 The models showed higher detec-
tion accuracy for premolars than for molars, which 
could be related to differences in their anatomical char-
acteristics. Srivastava et al developed a CNN model 
to detect dental caries on bitewings. The AI model 
achieved significantly higher sensitivity (81%) than 

three general dentists (34–48%).19 More recently, caries 
detection using AI additionally focused on the detec-
tion of  early enamel caries. The CNN model devel-
oped by Cantu et al outperformed seven experienced 
dentists in detecting initial enamel and advanced dentin 
caries.20 The seven dentists showed greatly different 
sensitivities for detecting initial (<25%) and advanced 
(40–75%) caries while the model achieved robust sensi-
tivities (>70%) for both initial and advanced caries. 
Currently, commercial AI software programs including 
AssistDent (Manchester, UK), Denti.AI (Toronto, 
Canada), Diagnocat (Tel Aviv, Israel), CranioCatch 
(Eskişehir, Turkey) and ​dentalXr.​ai (Berlin, Germany) 
(Table  3) are available to assist clinicians in the diag-
nosis of  dental caries on two-dimensional (2D) radio-
graphic images. The use of  AssistDent and ​dentalXr.​
ai significantly increased dentists’ sensitivity especially 
for detecting enamel caries.21,99 Notably, automatic 
detection of  buccal/lingual caries or secondary caries 
(i.e., caries next to restorations) remains challenging for 
AI models. This is, however, also the case for human 
observers and mainly grounded in the 2D nature of 
most intraoral images. While cone-beam computed 
tomography (CBCT) allows caries detection in three-
dimensions (3D), it is not recommended for caries 
diagnostics.

2. Periodontal bone loss
Deep learning models have also been developed for 
the detection and segmentation of  periodontal bone 
loss and the associated classification of  periodon-
titis stages on periapical and panoramic images. In 
2018, Lee et al developed a CNN model on peri-
apical images to automatically identify periodontally 
compromised posterior teeth and predict tooth loss 
in the future.28 The accuracy of  the model was higher 
for premolars (>80%) than for molars. Thanathorn-
wong et al developed a CNN model to identify peri-
odontally compromised teeth on panoramic images.29 
Kim et al22 and Krois et al23 trained their CNN models 
to automatically detect periodontal bone loss on 
panoramic radiographs. The diagnostic accuracies of 
their models (AUCs [area under the curves] of  0.89–
0.95) were higher than that of  several general dentists 
(AUCs of  0.77–0.85).

In addition, periodontitis stages can also be classi-
fied automatically using deep learning on periapical and 
panoramic images.26,27 Danks et al24 and Lee et al25 devel-
oped CNN models to measure the extent of periodontal 
bone loss on periapical images and subsequently clas-
sify the identified sites into three/four severity stages 
according to the bone loss extent measured. The model 
by Lee et al achieved high classification accuracy with 
an AUC value of 0.98. Future applications are expected 
to detect changes in the bone density and textures of 
the alveolar ridge for early detection of the onset of 
periodontitis.
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3. Endodontic evaluation
AI applications in endodontics so far mainly focus 
on apical pathologies, root fractures, and C-shaped 

canals. For apical pathologies, models on 2D radio-
graphic images were able to automatically detect and 
classify lesions while those on CBCT images were able 

Table 2  Artificial intelligence applications using dentomaxillofacial imaging data

Category Artificial intelligence application

Dental caries Detection of dental caries18–21

Periodontal evaluation Detection of periodontal bone loss22,23

Measurement and staging of periodontal bone loss24,25

Classification of periodontitis stages26,27

Identification of periodontally compromised teeth28,29

Endodontic evaluation Detection, classification, and measurement of apical pathologies30,31

Detection of vertical root fractures32,33

Detection34 and classification35,36 of C-shaped canals

Dental implants Detection of peri-implant bone loss37

Measurement of the peri-implant bone loss ratio and classification of the bone loss severity38

Detection of the edentulous sites, nasal fossa, maxillary sinus, and mandibular canal, and measurement of the 
heights and widths of residual alveolar bone at the edentulous sites39

Classification of dental implant systems40–42

Detection and classification of dental implant fractures43

Third molars Classification of positional relationships between lower third molars and the mandibular canal44–46

Prediction of extraction difficulty for lower third molars47

Prediction of paresthesia after third molar extraction48

Radiolucent lesions in the 
jaws

Detection and segmentation of infections, granuloma, cysts, and tumors in the jaws49

Detection of ameloblastomas and odontogenic keratocysts50

Detection/classification of ameloblastomas, odontogenic keratocysts, dentigerous cysts, radicular cysts, and/or bone 
cysts in the maxilla/mandible51,52

Differentiation of Stafne’s bone cavity from mandibular radiolucent lesions53

Maxillary sinus Detection of maxillary sinus lesions54,55

Detection and segmentation of maxillary sinus lesions56,57

Prediction of oroantral communication after tooth extraction58

Orthodontic and 
orthognathic evaluation

Localization of cephalometric landmarks59–64

Classification of skeletal malocclusion65–67

Assessment of facial symmetry before and after orthognathic surgery68

Temporomandibular joint Diagnosis of temporomandibular joint osteoarthritis69

Diagnosis of mandibular condyle fractures70

Measurement of the cortical thickness of mandibular condyle head71

Maxillofacial fracture Detection and classification of mandibular fracture72

Sialoliths Detection of submandibular gland sialoliths73

Osteoporosis Diagnosis and prediction of osteoporosis74,75

Sjögren’s syndrome Diagnosis of Sjögren’s syndrome76

Lymph node metastasis Segmentation and identification of metastatic cervical lymph nodes77

Reporting of the dental 
status

Segmentation of teeth and jaws, numbering of teeth, detection of caries, periapical lesions, and periodontitis78

Identification of missing tooth, caries, filling, prosthetic restoration, endodontically treated tooth, residual root, 
periapical lesion, and periodontal bone loss79

Tooth numbering and detection of dental implants, prosthetic crowns, fillings, root remnants, and root canal 
treatment80

Detection, segmention, and labeling of teeth, crowns, fillings, root canal fillings, implants, and root remnants81,82

Tooth detection and numbering83,84

Tooth segmentation and classification85,86

Image quality improvement Correction of blurred panoramic radiographic images87

Reduction of metal artifacts on CBCT images88

Improvement of the resolution of CT/CBCT images89–91

Multimodal image 
registration

Registration of CBCT with intra oral scan,92 optical dental model scan,93 or MRI94
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Table 3  Examples of commercially available AI software for dental applications

AI software
Origin
(City, Country) Type of image data Application Website

AssistDent Manchester, UK Bitewing images Detecting proximal enamel and 
dentin caries

https://www.assistdent.net

WebCeph Seongnam, Korea Cephalometric images Cephalometric tracing and 
analysis

https://webceph.com/en/about/

Ceppro Seoul, Korea Cephalometric images Cephalometric tracing and 
analysis

https://www.ddhinc.net/en/

dentalXr.ai Berlin, Germany Bitewing, periapical and 
panoramic images

•	 Identifying and numbering 
teeth

•	 Detecting caries, apical 
lesions, fillings, crowns, 
bridges, dental implants, 
root canal fillings, retained 
teeth, calculus, and 
periodontal bone loss

•	 Anatomical structure 
segmentation

•	 Generating findings report

https://www.dentalxr.ai/en/home

Relu Leuven, Belgium CBCT images •	 Identifying and numbering 
teeth

•	 Segmenting teeth, jaws, 
mandibular canal, and 
pharyngeal airway

https://relu.eu/

Denti.AI Toronto, Canada Periapical, bitewing, 
panoramic, and CBCT images

•	 Identifying and numbering 
teeth

•	 Detecting caries, fillings, 
apical lesions, and 
endodontic treatment

•	 Charting for dental X-rays, 
CBCT, and voice data

https://www.denti.ai/

Promaton Amsterdam, Netherlands Panoramic and CBCT images •	 Identifying and numbering 
teeth

•	 Detection of dental 
implants, prosthetic crowns, 
fillings, root remnants, and 
root canal treatment

•	 Tooth segmentation
•	 Dental implant planning
•	 Alignment of optical and 

CBCT scans

https://www.promaton.com

Diagnocat Tel Aviv, Israel Periapical, bitewing, 
panoramic, cephalometric, and 
CBCT images

•	 Identifying and numbering 
teeth

•	 Detecting caries, apical 
lesions, periodontal 
bone loss, open margins, 
overhangs, impactions, 
filling, prosthetic 
restoration, endodontically 
treated tooth, calculus, and 
residual root.

•	 Anatomical structure 
segmentation

•	 Generating findings report

https://diagnocat.com

CranioCatch Eskişehir, Turkey Periapical, bitewing, 
panoramic, cephalometric, and 
CBCT images

•	 Identifying and numbering 
teeth

•	 Detecting caries, apical 
lesions, impacted teeth, 
alveolar bone loss, 
furcation defects, jaw 
pathologies, and dental 
restorations

•	 Evaluating bone changes 
in the temporomandibular 
joint

•	 Orthodontic analysis
•	 Anatomical structure 

segmentation
•	 Treatment plan 

recommendation

https://www.craniocatch.com/en/

AI, artificial intelligence; CBCT, cone-beam computed tomography

http://birpublications.org/dmfr
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to additionally provide volumetric information of the 
detected lesions. Krois et al100 and Ekert et al30 devel-
oped CNN models on panoramic images or image 
crops to detect apical pathologies and classify teeth into 
(i) teeth without apical lesions, (ii) teeth with widened 
periodontal ligament or uncertain apical lesions, and 
(iii) teeth with clearly visible apical lesions. Krois et al 
trained their CNN models with images acquired from 
one or two centers, respectively, and reported low cross-
center generalizability of the model trained with images 
acquired only from one center.100 The low generaliz-
ability mainly resulted from differences in the dental 
status shown on images from different centers, specif-
ically the association between root canal fillings and 
apical lesions being present differed. CNNs learnt this 
association structure on data from one center (where 
root canal fillings were frequent) but were then unable 
to reproduce this based on data from the other center 
(where root canal fillings were less frequent). Based on 
their findings, cross-center training seems to be able 
to improve a model’s generalizability. Hamdan et al 
reported that the diagnostic ability of eight dental prac-
titioners to detect apical radiolucencies on periapical 
images increased with the aid of a commercially avail-
able AI software named Denti.AI (Toronto, Canada; 
Table  3), as demonstrated by an increased sensitivity 
from 59.6 to 73.3%.101 Orhan et al used 109 CBCT scans 
to test an AI software named Diagnocat (Tel Aviv, Israel; 
Table 3) and reported high detection accuracy and no 
significant differences in the lesion volumes measured by 
the software and a radiologist.31 Notably, the presence 
of endo-perio lesions, buccal-lingual cortical perfora-
tions, incomplete apex, endodontically treated teeth, 
and large lesions associated with multiple teeth detri-
mentally affected the model’s performance.

Diagnosis of root fractures, especially vertical root 
fractures, is a challenging and experience-dependent 
task, commonly accomplished by combined clinical 
and radiographic examination. Root fractures are cate-
gorized as horizontal and vertical fractures. Horizontal 
root fractures frequently occur in the anterior teeth due 
to dentoalveolar trauma while vertical root fractures 
are common in endodontically treated teeth as a result 
of excessive root canal preparation or occlusive force. 
CNN models have been developed to automatically 
detect vertical root fractures on 2D and 3D radiographic 
images.32,33 Despite promising diagnostic accuracy, the 
models still have to overcome a relatively low accuracy 
on non-endodontically treated teeth and the potential 
impact of caries, fillings, dental restorations, and metal 
artifacts on their performance.

Automatic detection and classification of C-shaped 
canals in mandibular second molars have been seen as 
another field of AI application. Several CNN models 
on 2D and 3D radiographic images have been developed 
to automatically detect, segment, and classify C-shaped 
canals.34–36 Their performance has been shown similar or 
superior to both general dentists and specialists.34,36

4. Dental implants
CNN models were also developed to detect peri-implant 
bone loss and implant fractures on 2D radiographic 
images. Liu et al developed a CNN model to auto-
matically detect peri-implant bone loss on periapical 
images.37 The model performed similarly to two general 
dentists but inferior to one specialist. Another CNN 
model on periapical images measured peri-implant 
bone loss ratio and classified the bone loss severity into 
normal, early, moderate, and severe.38 Lee et al devel-
oped CNN models on periapical, panoramic, or both 
images to detect implant fractures and to classify the 
fractured implants into horizontal or vertical frac-
tures.43 The models achieved AUCs of 0.90–0.98 for 
the detection task and 0.75–0.87 for the classification 
task. The highest detection and classification accuracies 
were achieved on periapical images, likely due to higher 
spatial resolution of periapical images compared with 
panoramic images.

5. Maxillofacial pathologies
Treatment options and prognosis for patients with 
pathologies in the maxillofacial region are directly asso-
ciated with the timing and accuracy of diagnosis. The 
differential diagnosis of maxillofacial pathologies is a 
challenge for general practitioners, particularly for inci-
dental findings on diagnostic images. A delayed diag-
nosis will lead to a longer disease course, more invasive 
surgical approach, and poorer treatment outcome, espe-
cially for malignant lesions. Several researchers tried to 
develop AI tools to improve the diagnostic accuracy of 
general practitioners for various maxillofacial pathol-
ogies to reach the level of specialists. Poedjiastoeti et 
al developed a CNN model on panoramic images for 
automatic detection of ameloblastomas and odonto-
genic keratocysts, with high diagnostic performance 
(sensitivity and specificity over 80%) being on par with 
five oral-maxillofacial surgeons.50 Another CNN model 
on panoramic images detected and classified ameloblas-
tomas, odontogenic keratocysts, dentigerous cysts, and 
radicular cysts, and obtained high classification perfor-
mance with an AUC of 0.94, sensitivity of 88.9%, and 
specificity of 97.2%, respectively.51 The model by Endres 
et al outperformed 14 oral-maxillofacial surgeons in 
detecting infections, granuloma, cysts, and tumors in 
the jaws on panoramic images.49 Lee et al developed 
CNN models, respectively, on panoramic and CBCT 
images to detect, segment, and classify odontogenic 
keratocysts, dentigerous cysts, and radicular cysts.52 The 
model on CBCT images (AUC = 0.91) outperformed 
the one on panoramic images (AUC = 0.85). Ariji et 
al et al developed a CNN model on contrast-enhanced 
CT images to identify and segment metastatic cervical 
lymph nodes in patients with oral cancer.77 The model 
outperformed two radiologists in identifying cervical 
lymph nodes while its segmentation accuracy should be 
improved.
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It has been reported that inexperienced oral-
maxillofacial radiologists are prone to miss patholog-
ical changes of the parotid gland while interpreting CT 
images of the maxillofacial region, leading to underde-
tection of Sjögren’s syndrome.76 Kise et al developed a 
CNN model to assess the texture features of the parotid 
gland on CT images for automatic diagnosis of Sjögren’s 
syndrome.76 The model performed similarly to three 
experienced radiologists and superior to three inexperi-
enced radiologists.

The maxillary sinus is the largest paranasal sinus and 
frequently involved in dental surgical procedures due to 
its close proximity to the teeth in the posterior maxilla. 
Accurate diagnosis of maxillary sinus pathologies is the 
key to the success of dental surgical procedures, such 
as sinus augmentation for dental implant placement 
and apical surgery of maxillary posterior teeth.102–104 
However, it has been reported that inexperienced dental 
practitioners were less likely to accurately diagnose sinus 
pathologies on radiographic images.105 In order to assist 
clinicians in the diagnosis of the sinus pathologies, CNN 
modes have been developed to automatically detect 
and segment sinus lesions on panoramic and CBCT 
images.54–57 The models obtained favorable performance 
on both detection and segmentation tasks. Murata et al 
reported that their CNN model performed similarly to 
two radiologists and outperformed two dental residents 
in the diagnosis of maxillary sinusitis.55 The CNN model 
by Hung et al obtained high accuracy for detecting and 
segmenting mucous retention cysts and mucosal thick-
ening of the sinus on both ultra-low-dose and standard-
dose CBCT images with AUCs ranging from 0.84 to 
0.93.56

6. Temporomandibular joint
Diagnosis of temporomandibular joint (TMJ) disor-
ders requires sufficient clinical experience. Undetected 
TMJ problems can result in patients suffering for a long 
time and undergoing unnecessary examinations and 
even invasive treatment. Jung et al developed two CNN 
models on panoramic images using different pre-trained 
flameworks for automatic diagnosis of TMJ osteoar-
thritis. The models achieved excellent diagnostic accu-
racy superior to that of three general dentists and even 
three TMJ specialists.69 The CNN model by Kim et al 
obtained high accuracy for measuring cortical thickness 
of the mandibular condyle head on CBCT images.71 
Nishiyama et al developed CNN models to diagnose 
mandibular condyle fracture on panoramic images, and 
reported high diagnostic accuracy with AUCs of nearly 
0.9.70

7. Other diagnostic purposes
Apart from the abovementioned diagnostic purposes, 
deep learning models can also be developed for auto-
matic detection and classification of mandibular 
fractures,72 diagnosis and prediction of osteopo-
rosis,74,75 detection of submandibular gland sialoliths,73 

differentiation of Stafne’s bone cavity from mandibular 
radiolucent lesions53 on 2D or 3D radiographic images. 
All these models obtained high accuracies mostly with 
AUC values over 0.9.

Reporting of the dental status
Charting of teeth, restorations, and present dental 
diseases is the first step in the routine assessment of 
dental patients. Any mistakes or oversights in the 
resulting dental records may lead to misdiagnosis and 
erroneous treatment decisions, such as extraction or 
endodontic treatment of the wrong tooth. As electronic 
dental health records are by now widely used in dental 
practice, automated charting using AI seems highly 
useful. Some studies reported excellent performance of 
CNN models for automated detection and numbering 
of deciduous and permanent teeth on panoramic 
images.83,84 Shaheen et al developed a CNN model on 
CBCT images for automated tooth segmentation and 
classification.85 The model achieved high accuracies 
for both segmentation and classification tasks, and has 
found its way into a commercially available software 
named Relu (Leuven, Belgium; Table  3). Fontenele et 
al reported that the presence of dental fillings in CBCT 
images negatively affected Relu’s performance on tooth 
segmentation.86 Some CNN models were developed for 
automated detection, segmention, and labelling of teeth, 
crowns, restorative fillings, root canal fillings, and dental 
implants.79–82 Commercially available systems including 
dentalXrai (Berlin, Germany), Denti.AI (Toronto, 
Canada), and Diagnocat (Tel Aviv, Israel) (Table  3) 
allow such charting in similar accuracy to practitioners.78 
Moreover, CNN models were able to automatically clas-
sify various implant systems and their prosthetic status 
on periapical and panoramic images.40–42 These models 
achieved excellent classification accuracy and some even 
outperformed periodontists. Automatic implant classifi-
cation models could be used to recognize and record the 
system of the placed implants in the dental recording 
systems, which can facilitate regular maintenance and 
future repairs.

Treatment planning
AI has great potential to help dental practitioners with 
treatment planning and time-consuming tasks in the 
digital dental workflow. Segmentation, localization, and 
measurement of anatomical structures or pathologies on 
radiographic images as well as multimodal image regis-
tration are common manual steps required in the plan-
ning of oral and maxillofacial surgical procedures.106 
So far, several AI applications have been proposed for 
automated landmark localization,59–64 skeletal classifica-
tion,65–67 facial symmetry assessment,68,107 and decision-
making on tooth retention or extraction for orthodontic 
treatment108,109 on 2D or 3D images.

Kunz et al developed a CNN model to automatically 
localize anatomical landmarks and measure their linear/
angular parameters on cephalometric radiographs.60 
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The mean absolute differences in the linear/angular 
analyses were 0.44–0.64 mm/0.46–2.18° for the model 
and 0.35–0.88 mm/0.55–1.80° for 12 orthodontists, 
which demonstrates similar performance. Bulatova et 
al63 and Mahto et al64 tested AI driven automated ceph-
alometric analysis software applications named Ceppro 
(Seoul, Korea; Table  3) and WebCeph (Seongnam, 
Korea; Table  3), respectively. Ceppro achieved mean 
absolute localization differences ranging from 1.3 to 
8.7 mm, with no significant differences between auto-
mated and manual localization for eleven out of sixteen 
selected landmarks. WebCeph obtained high agreement 
with intraclass correlation coefficients over 0.9 between 
automated and manual measurements on seven out of 
twelve cephalometric parameters. Some deep learning 
models on cephalometric or CBCT images classified 
skeletal malocclusion for orthodontic and orthognathic 
treatment planning and obtained excellent accuracies 
over 93%.65–67 Lin et al developed a CNN model to assess 
facial symmetry before and after orthognathic surgery 
on CBCT images and reported high accuracy of 90%.68

Another group developed a CNN model for auto-
matic detection of edentulous sites, nasal fossa, maxil-
lary sinus, and mandibular canal, and measurement of 
the heights and widths of residual alveolar bone at the 
edentulous sites on CBCT images for dental implant 
treatment planning.39 The model’s detection accuracy 
was high for edentulous sites (95.3%) and moderate for 
the mandibular canal (72.2%) and nasal fossa/maxil-
lary sinus (66.4%). On the sites of maxillary premo-
lars/molars and mandibular premolars, the automated 
bone height measurements were similar to the manual 
measurements (i.e., ground truth). The automated bone 
height measurements on the sites of maxillary/mandib-
ular anterior teeth and mandibular molars as well as the 
automated bone width measurements on all tooth sites 
were significantly different from the manual measure-
ments, with median measurement deviations of 1.7–11.3 
mm. The significant differences between automated and 
manual measurements might be due to the incorrect 
localization of the measuring points.

Assessment of the difficulty of planned third molar 
surgery is also a field of increased interest in AI research. 
Yoo et al developed a CNN model on panoramic images 
to classify the difficulty of third molar removal according 
to several parameters, such as the depth and angulation 
of the molar.47 CNN models were also developed to 
classify the positional relationship between lower third 
molars and the mandibular canal on panoramic and 
CBCT images.44–46 Choi et al developed a CNN model 
to determine whether lower third molars are truly in 
contact with or positioned buccally/lingually to the 
mandibular canal when they are shown as overlapped 
on panoramic images (CBCT readings served as ground 
truth), and to classify the non-contact molars as being 
buccally or lingually positioned.46 The model obtained 
accuracies of 72% for determining the true contact posi-
tion and 81% for classifying the bucco-lingual position, 

outperforming six oral-maxillofacial specialists. Kim 
et al developed a CNN model on panoramic images to 
predict paresthesia due to damage of the inferior alveolar 
nerve during lower third molar removal, and reported 
high prediction accuracy with an AUC of 0.92.48 Apart 
from third molars, Vollmer et al attempted to develop 
CNN models on panoramic images to predict oroantral 
communication after tooth extraction.58 The prediction 
accuracy of the best model was similar to that of four 
oral-maxillofacial experts.

Multimodal image registration is a critical step in 
digital dental workflows where 3D images acquired 
from different imaging modalities, including CT, CBCT, 
MRI, intraoral, facial, and model scanning, are super-
imposed into the same coordinate frame to create a 
virtual augmented patient model. This is useful for 
treatment planning for dental implant placement, 
joint, salivary gland, orthognathic, and reconstruc-
tive surgeries.110 Multimodal image registration can 
be performed manually by aligning anatomical land-
marks or semi-automatically by using the surface-based 
or fiducial marker registration approach. Although 
the semi-automatic approach is less time-consuming 
than the manual approach, its registration accuracy is 
affected by the quality of the acquired images, the pres-
ence of image artifacts, the deformation of the optical 
surface, and the distribution of the employed fiducial 
markers. Therefore, manual corrections are frequently 
required after semi-automatic image registration. In 
order to improve the efficiency and accuracy of multi-
modal image registration, a range of studies developed 
AI models to automatically register CBCTs with intra-
oral scans,92 optical dental model scans,93 or MRIs.94 
Compared with conventional approaches, these models 
allow more accurate automated image registration in a 
significantly shorter time.

Image quality improvement
Due to the growing use of CBCT in daily dental prac-
tice for diagnosis and treatment planning, concerns have 
been raised regarding the increased risk of radiation-
induced stochastic effects, particularly on radiosensitive 
organs such as salivary glands, thyroid glands, and eye 
lenses. While several low-dose CBCT protocols have 
been suggested and applied in practice, the perceived 
inferior image quality of low-dose scans may hamper 
their use, with clinicians nevertheless employing stan-
dard- or even high-dose scanning mode for certain 
imaging tasks.111 In addition, the presence of severe 
artifacts in CBCT images has been reported as one of 
the common reasons for re-exposure.112 Patient motion 
during scanning and metallic dental restorations are the 
main sources for the occurrence of movement or metal 
artifacts in CBCT images.

Several researchers therefore developed AI applica-
tions to correct blurred panoramic images and reduce 
noise and metal artifacts in CT and CBCT images.87–90 
CNN-based auto-positioning can reduce blurring 
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occurred due to positioning errors in panoramic image 
by reconstructing the image with the corrected curva-
ture.87 Hu et al91 and Park et al89 developed image 
denoizing tools using deep learning to remove noise 
from low-dose CT or CBCT for improving the image 
quality to be equivalent to high-dose scans. Hatvani et 
al developed a CNN-based method to enhance the reso-
lution of teeth on cross-sectional CBCT images, which 
allows better visualization of the anatomical structure 
of teeth.90 CNN-based methods were also proposed to 
reduce metal artifacts in CT or CBCT images.88,113,114 
These methods identify and segment the areas of metal 
artifacts in the original images and then merge the orig-
inal and corrected images to suppress the artifacts.

The future of AI in dentomaxillofacial imaging

Current applications of AI in dentomaxillofacial imaging 
mainly focus on improving diagnostic accuracy and easing 
the diagnostic and/or planning workflow. More and more 
AI applications were reported to be able to perform simi-
larly to or even outperformed dentists (Table 4), oftentimes 
lifting general dental practitioners to levels equivalent to 
specialists. Notably, existing AI models are limited in their 
scope, mainly aiming to detect, segment, or classify anatom-
ical structures or common pathologies. Rare variations or 
diseases have so far seldom been the focus. Given the diffi-
culty practitioners have for diagnosing rare variations or 
diseases, AI models developed for such specific tasks could 
be truly clinically significant. With technical advances, the 
availability of larger data pools (including the pooling of 
different datasets and the uptake of federated learning,115 
and the increased usage of alternative labeling and training 
pathways in dentistry (such as weakly or self-supervised 
learning,116 these difficult diagnostic tasks are expected to 
be tackled.

In addition, it has been expected that AI at some point 
could “see” more on a certain image type than the human 
eye could. To do so, training of the AI on more sensitive 
sensor data as ground truth than the one later used during 
inference would be one option. Currently, this is not the case 
because the ground truth relies on the same sensor data and 
oftentimes involves human activity. The only way to achieve 
somewhat “superhuman” performance is by involving 
a larger number of practitioners to at least overcome the 
limitations of single dentists.14

Gradually, more and more AI models proposed have 
been tested by completely external image data acquired 
from different dental centers (Table 5) as suggested by the 
Artificial Intelligence in Dental Research guideline.117 Few 
models were able to achieve similar performance while most 
showed inferior performance on external images. Some 
studies have reported low cross-center generalizability of 
their models.70,100 It was noted that adding external images 
acquired from one dental center in the training dataset could 
increase the model’s performance on the images from that 
external center but would decrease its performance on the 
images from the original center. These findings indicate that 

although cross-center training could improve the general-
izability of AI models, the proportion of the images from 
different centers in the training dataset is also an influencing 
factor associated with the trained models’ performance. 
Therefore, future studies should focus not only on internal 
testing but also on external testing. If external testing shows 
unfavorable outcomes, cross-center training should be 
considered to increase the model’s generalizability.

The usefulness and efficacy of most proposed AI models 
in daily dental practice are still unclear based on current 
evidence. Although most studies reported that AI models 
could increase diagnostic ability of dental practitioners 
and reduce the time spent on time-consuming work in the 
treatment planning process, their true impact on real-world 
clinical practice is rarely discussed. In addition to a model’s 
accuracy, future studies should focus more on its impact on 
treatment decision, clinical and patient-reported outcomes, 
and cost-effectiveness, which may be more important to 
patients, providers, and healthcare organizers.118 Schwen-
dicke et al performed the first cost-effectiveness analysis of 
an AI application for caries detection on bitewings.14 They 
reported that AI showed significantly higher sensitivity than 
dentists, which allows more early caries to be detected, facil-
itates non- or micro-invasive management of the detected 
lesions, and thus avoids costly late retreatments. The high 
cost-effectiveness of dental AI applications implies that inte-
grating AI into clinical practice has the potential to reduce 
healthcare cost burden, revealing their economic impact on 
healthcare systems. Only clinically relevant AI tools that 
are capable of fulfilling technical requirements with prom-
ising financial potential can attract healthcare stakeholders 
to continuously support their development, optimization, 
and application in dental medicine.119,120 Therefore, future 
research should assess the clinical, technical, and financial 
aspects of cost-effectiveness of AI applications in dental 
medicine to demonstrate their true usefulness in daily 
practice.

Moreover, the impact of AI on patient-provider 
interaction should not be ignored. A more positive atti-
tude regarding dental AI applications was observed in 
younger and more educated individuals than in older 
and less educated individuals.121 Compared with younger 
individuals, the elderly are more sceptical towards such 
advanced healthcare technologies. Providers need to 
frame the usage of AI individually to retain trust into 
the care process. The output of AI should be able to help 
patients to objectify any diagnosis and to support visual 
recognition of a lesion, which can improve patient-
clinician communication and increase patients’ trust in 
any derived management.

Conclusions and outlook

Personalized dental medicine should allow to provide 
the safest, most efficacious and efficient diagnostics 
and therapeutics tailored to individuals based on one’s 
biological, social, and behavioral characteristics. Based 
on current evidence, true personalized dental medicine is 

http://birpublications.org/dmfr


birpublications.org/dmfr

11 of  22

Dentomaxillofac Radiol, 52, 20220335

Personalized dental medicine, AI and their relevance for DMFR
Hung et al

T
ab

le
 4

 
P

er
fo

rm
an

ce
 o

f 
th

e 
de

ve
lo

pe
d 

A
I 

m
od

el
s 

in
 c

om
pa

ri
so

n 
to

 s
pe

ci
al

is
ts

/g
en

er
al

 p
ra

ct
it

io
ne

rs

A
ut

ho
r 

(Y
ea

r)
A

pp
lic

at
io

n
Im

ag
in

g 
m

od
al

it
y

A
I 

so
ft

w
ar

e/
 d

ee
p 

le
ar

ni
ng

 m
od

el
Te

st
 d

at
as

et

P
er

fo
rm

an
ce

 o
f 

th
e 

de
ve

lo
pe

d 
so

ft
w

ar
e/

m
od

el
 v

er
su

s 
hu

m
an

M
ai

n 
fin

di
ng

s
A

I
H

um
an

M
ea

n 
(r

an
ge

)

D
en

ta
l c

ar
ie

s

Sr
iv

as
ta

va
 e

t 
al

.
(2

01
7)

19

D
et

ec
ti

on
 o

f 
de

nt
al

 c
ar

ie
s

B
it

ew
in

g 
ra

di
og

ra
ph

y
C

N
N

50
0 

im
ag

es
 f

ro
m

 n
ea

rl
y 

10
0 

cl
in

ic
s 

ac
ro

ss
 U

SA
SE

N
 =

 0
.8

1
P

P
V

 =
 0

.6
2

F
1 

=
 0

.7

th
re

e 
de

nt
is

ts
SE

N
 =

 0
.4

2 
(0

.3
4–

0.
48

)
P

P
V

 =
 0

.7
8 

(0
.6

3–
0.

89
)

F
1 

=
 0

.5
3 

(0
.5

–0
.5

6)

T
he

 m
od

el
 a

ch
ie

ve
d 

si
gn

ifi
ca

nt
ly

 h
ig

he
r 

F
1-


sc

or
e 

an
d 

se
ns

it
iv

it
y 

fo
r 

de
te

ct
in

g 
ca

ri
es

 t
ha

n 
th

re
e 

de
nt

is
ts

.

C
an

tu
 e

t 
al

.
(2

02
0)

20

D
et

ec
ti

on
 o

f 
in

it
ia

l (
en

am
el

) 
an

d 
ad

va
nc

ed
 (

de
nt

in
) 

pr
ox

im
al

 c
ar

ie
s

B
it

ew
in

g 
ra

di
og

ra
ph

y
C

N
N

 (
U

-N
et

)
14

1 
bi

te
w

in
gs

 f
ro

m
 t

he
 

de
nt

al
 c

lin
ic

 a
t 

C
ha

ri
té
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still far from being a reality as most evidence-based up-to-
date clinical practice guidelines for the management of 
dental diseases still stratify individuals and lesions into 
risk groups, and thus assign identical management strat-
egies to all individuals in a certain risk group. A wide 
range of AI applications, including several commer-
cially available software options, have been developed 
based on diagnostic images to assist clinicians in the 
diagnosis and treatment planning of various dento-
maxillofacial diseases, with performance similar or even 
superior to that of specialists. Although these dental AI 
applications are seen to have the potential to enable a 
more precise, personalized, preventive, and participa-
tory approach for the management of dentomaxillo-
facial diseases, almost all of them only work on image 
data obtained at a certain time point in the diagnostic or 
treatment process without considering other data such 
as individual characteristics and clinical assessment. 
Advanced technologies with improved data analytic 
approaches are expected to enrich these AI applications 
with diverse, multimodal, large, and complex data from 
the individual level (e.g., demographic, behavioral, and 
social characteristics; clinical data generated by records 
mining, clinical assessment, diagnostic imaging, omics 
technologies; and real-time consumer data from wear-
ables and tracking devices), setting level (e.g., geospatial, 
environmental, and provider-related data), and system 
level (e.g., health insurance, regulatory, and legislative 
data), which may facilitate a deeper understanding of 
the interaction of these multilevel data and hopefully 
bring us closer to a truer form of personalized dental 
care for patients in the near future.3,7
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