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ABSTRACT
Introduction Immunotherapy is the fourth leading therapy 
for lung cancer following surgery, chemotherapy and 
radiotherapy. Recently, several studies have reported about 
the potential association between the gut microbiome and 
therapeutic response to immunotherapy. Nevertheless, 
the specific composition of the gut microbiome or 
combination of gut microbes that truly predict the efficacy 
of immunotherapy is not definitive.
Methods and analysis The present multicentre, 
prospective, observational study aims to discover the 
specific composition of the gut microbiome or combination 
of gut microbes predicting the therapeutic response to 
immunotherapy in lung cancer using artificial intelligence. 
The main inclusion criteria are as follows: (1) pathologically 
or cytologically confirmed metastatic or postoperative 
recurrent lung cancer including non- small cell lung 
cancer and small cell lung cancer; (2) age≥20 years 
at the time of informed consent; (3) planned treatment 
with immunotherapy including combination therapy and 
monotherapy, as the first- line immunotherapy; and (4) 
ability to provide faecal samples. In total, 400 patients will 
be enrolled prospectively. Enrolment will begin in 2021, 
and the final analyses will be completed by 2024.
Ethics and dissemination The study protocol was 
approved by the institutional review board of each 
participating centre in 2021 (Kyushu Cancer Center, IRB 
approved No. 2021- 13, 8 June 2021 and Kyushu Medical 
Center, IRB approved No. 21- 076, 31 August 2021). Study 
results will be disseminated through peer- reviewed 
journals and national and international conferences.
Trial registration number UMIN000046428.

INTRODUCTION
Immunotherapies such as immune checkpoint 
inhibitors (ICIs) targeting programmed cell 
death- 1 (PD- 1), programmed cell death- ligand 1 
(PD- L1) and cytotoxic T- lymphocyte- associated 
protein- 4 (CTLA- 4) are widely used to treat 
various malignancies, including lung cancer. 
Immunotherapy has changed therapeutic 

approaches to cancer treatment. Anti- PD- 1 (eg, 
nivolumab, pembrolizumab), anti- PD- L1 (eg, 
atezolizumab, durvalumab) and anti- CTLA- 4 
antibodies (eg, ipilimumab) enable T- cell activa-
tion and induce an immune response to cancer. 
Many studies reported that cancer immuno-
therapies including monotherapies or combi-
nation regimens featuring platinum- based 
chemotherapy improved patient survival in 
both non- small cell lung cancer (NSCLC) and 
small cell lung cancer (SCLC).1–15 Nevertheless, 
there is no widely accepted optimal biomarker 
for predicting the efficacy of immunotherapy; 
therefore, it is necessary to establish a definite 
predictive biomarker of therapeutic response 
to cancer immunotherapy. A previous study 
reported that the gut microbiome can modu-
late the host immune response (eg, antitumour 
immunity) and optimise both innate and adap-
tive immune responses.16 Gori et al17 reviewed 
the association between the microbiome and 
host immunoregulation. They introduced that 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ The present study is a multicentre, prospective, ob-
servational study.

 ⇒ This is a study to discover the specific composition 
of the gut microbiome or combination of gut micro-
biome comprising a true predictive biomarker of 
therapeutic response to immunotherapy in patients 
with lung cancer using artificial intelligence.

 ⇒ This study could also perform the subgroup anal-
ysis for the different population enrolled such 
as non- small cell lung cancer versus small- cell 
lung cancer or mono- immunotherapy versus 
combined- immunotherapy.

 ⇒ As with all observational studies, any association 
may not be causal, and it will require evaluation in 
randomised controlled studies.
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some microbiome could sustain anticancer immunosur-
veillance through broadening T- cell receptor repertoire 
or enhancing immune response; on the other hand, some 
microbiome might suppress host immunity by interaction 
with T and Natural Killer cells.

Host immunity is clearly associated with the response to 
ICIs, and the internal microbiome is regarded as a controlling 
factor of host immunity, which supported our recent finding 
that the pretreatment host immunonutritional condition 
was a prognostic biomarker for patients with NSCLC who 
received immunotherapy.18 In fact, preclinical analyses illus-
trated that the gut microbiome composition and its modi-
fication in murine models could influence the efficacy of 
ICIs.19 20 Therefore, the microbiome has been emphasised 
as a predictive biomarker of immunotherapy mainly based 
on reports from the USA or Europe. In addition, the abun-
dance of specific gut microbiome components or the gut 
microbiome diversity has also been reported to be related 
to the efficacy of anti- PD- 1 antibodies in patients with mela-
noma.21 Moreover, faecal microbiome transplantation 
(FMT) in murine models potentially restored the response 
to ICIs.22 23 In a recent study, FMT from ICI responders to 
ICI non- responders resulted in ICI efficacy in patients with 
melanoma.24

Remarkably, there are definite differences in the micro-
biome composition among ethnicities.25 Thus, we recently 
reported that high gut microbiome diversity and the pres-
ence of specific microbes such as the genus Blautia and 
order RF32 unclassified were significantly correlated with 
the therapeutic response to immunotherapy in Japanese 
patients with NSCLC. However, the study had several 
limitations. First, the gut microbiome was examined 
‘during’ immunotherapy opposed to ‘before’ treatment. 
Second, the sample size was small. Therefore, additional 
large multicentre studies to clarify the ‘genus- level gut 
microbiome’ as a predictive biomarker of cancer immu-
notherapy before treatment initiation are needed. In 
addition, the specific composition and combination of 
gut microbiome species that influence the response to 
immunotherapy are numerous, meaning there is limited 
ability to clarify the specific composition or significant 
combinations of gut microbiome species using statistical 
analysis via human intelligence.

Recently, the development of artificial intelligence (AI)- 
based technologies for medical data has progressed, and 
evidence has been discovered that could not be clarified by 
conventional methods.26 27 Such technologies are expected 
to be used for decision- making in medical fields. It is also 
expected that AI will be applied in the clinical treatment 
of lung cancer. Compared with conventional medical statis-
tics methods, machine- learning models can more easily 
capture the non- linearity of medical data, and they exhibit 
higher prediction performance. These models are effective 
for diverse and large amounts of medical data, and extract 
contribution variables for the purpose.

In this analysis, we will conduct a prospective observa-
tional study to clarify the specific gut microbiome compo-
sition or combination of gut microbes associated with the 

response to immunotherapy in patients with lung cancer 
using AI.

METHODS AND ANALYSIS
Study objectives
Our objective is to discover the specific composition 
of the gut microbiome or combination of gut species 
comprising a predictive biomarker of immunotherapy 
efficacy in patients with lung cancer using AI.

The study was approved by institutional review board of 
each participating centre.

Study setting
The present study is a multicentre, prospective, observa-
tional study.

Observational points
In the present study, we will clarify the following items:
1. The specific composition of the gut microbiome or 

combination of gut microbes associated with clinical/
graphical therapeutic responses to immunotherapy.

2. The diversity of the gut microbiome associated with 
clinical/graphical therapeutic responses to immuno-
therapy.

3. The specific composition of the gut microbiome or 
combination of gut microbes associated with immune- 
related adverse events (irAEs, ≥grade 3).

4. The diversity of gut microbes associated with irAEs 
(≥grade 3).

5. The association of the composition, combination or 
diversity of gut microbes with clinicopathological fea-
tures including PD- L1 expression, haematological 
data, immunonutritional indices, the use of medicines 
(corticosteroids, antibiotics, proton pomp inhibitors, 
and probiotics) within 28 days before the initiation of 
immunotherapy and patients’ dietary habits such as 
the consumption of milk and fermented foods.

6. Progression- free survival (PFS), overall survival, effica-
cy (response rate, time to treatment and disease con-
trol rate) and safety according to the following items: 
type of pathology, the use of medicines at baseline, sex, 
age at baseline, Eastern Cooperative Oncology Group 
performance status at baseline, patients’ dietary hab-
its, regimens, the number of treatments and regimens 
after the failure of immunotherapy, the number of 
immunotherapy cycles completed, the best response 
to immunotherapy, tumour proportional score (tu-
morous PD- L1 expression), the past history of autoim-
mune disease, smoking history and the status of driver 
mutations.

Data collection
Faecal samples will be collected before the initiation 
of immunotherapy and analysed to assess the correla-
tions of the clinical/graphical therapeutic response 
to immunotherapy, severity or types of irAEs and 
the continuation/discontinuation of treatment with 
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patients’ gut microbiomes. The present study design 
is presented in figure 1 and table 1.

Eligibility criteria
Inclusion criteria
i. Pathologically or cytologically confirmed meta-

static or postoperative recurrent NSCLC or SCLC.
ii. ≥20 years old at the time of informed consent.
iii. Planned treatment with immunotherapy includ-

ing combination regimens and monotherapies as 
the first immunotherapy.

iv. Ability to provide faecal samples.

v. Provision of written informed consent.

Exclusion criteria
i. Diseases eligible for definitive chemoradiotherapy.
ii. Patients deemed inappropriate for the study by the 

investigator.

Sample size
A sample size and power calculation before study initiation 
were not performed because this is an exploratory obser-
vational study to clarify the predictive biomarker of ther-
apeutic responses to immunotherapy. The present study 
will be conducted by two high- volume centres. Therefore, 
we estimate 100 participants per year in each centre. Thus, 
we plan to include total 400 patients over a 2- year period. 
This number will be sufficient to be analysed by AI, 
although there are few data of sample sizes recommended 
due to few studies similar to the present study. In total, 400 
participants will be enrolled prospectively over 2 years.

Figure 1 Study design. irAE, immune- related adverse event.

Table 1 Summary of data collection and timeline

Items Screening

Observation period

Pretreatment During treatment Discontinuation

Informed consent ●

Patient’s background (sex, age) ●

General conditions

  Body composition (height and weight) ●

  ECOG- PS ●

  Dietary habits ●

  Use of medicines ●

  Comorbidities ●

  Smoking status ●

Laboratory data

  Haematology ● ● ●

  Biochemistry ● ● ●

Imaging

  Chest- X ray, CT, MRI, PET ● ● ●

Pathology

  Histological type

  Gene mutation ●

  TPS (PD- L1 expression) ●

Sample collection

  Faeces ●

Treatment

  Regimens (immunotherapy) ●

  Immune- related adverse events ● ●

  Prior Tx (regimen and response) ●

  Posterior Tx (regimen and response) ● ●

ECOG, Eastern Cooperative Oncology Group; PD- L1, programmed cell death- ligand 1; PET, positron emission tomography; PS, performance 
status; TPS, tumour proportion score; Tx, therapy.
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Registration
Accrual started in September 2021.

Study period
The study started in September 2021 and will end 12 
months after recruitment of the last participant, expected 
in September 2024.

Study population
We are planning to recruit eligible participants from 
participating hospitals. All enrolled patients will have at 
least one measurable target lesion based on the Response 
Evaluation Criteria in Solid Tumours, V.1.1.28 Clinical/
pathological stage will be based on the tumour node 
metastasis (TNM) classification established by the Inter-
national Union Against Cancer.29 For TNM staging, 
all patients will undergo CT of the thorax and upper 
abdomen, as well as bone scintigraphy, brain CT, MRI or 
fluorodeoxyglucose- positron emission tomography. Post-
operative local or distant recurrence will be defined as 
described previously.30 Immunotherapy will be continued 
until radiographic progression or discontinuation 
because of severe irAEs or the patient’s request. PD- L1 
protein expression will be evaluated using antibody clone 
22C3 (Dako, Agilent Technologies, Santa Clara, Cali-
fornia, USA). Adverse events will be graded according to 
Common Terminology Criteria for Adverse Events, V.5.0.

Treatment plan
The present study is allowing the immunotherapy regi-
mens presented in table 2.

Monotherapy: pembrolizumab will be administered at 
a dose of 200 mg intravenously every 3 weeks.1–3 Atezoli-
zumab will be administered at a dose of 1200 mg intrave-
nously every 3 weeks.4 5 Nivolumab will be administered at 
a dose of 3 mg/kg intravenously every 2 weeks.6

Combined therapy: KEYNOTE 189 regimen and 
KEYNOTE 407 regimen: carboplatin (area under the 

concentration–time curve (AUC)) of 5–6 mg/mL/
min plus pemetrexed 500 mg/m2 (KEYNOTE 189) or 
paclitaxel 200 mg/m2 (KEYNOTE 407). Maintenance 
therapy with pembrolizumab with/without pemetrexed 
(KEYNOTE 189) or pembrolizumab alone (KEYNOTE 
407) is given every 3 weeks after induction therapy 
until disease progression, unacceptable toxicity, or 
death.7 8 IMpower130 regimen: atezolizumab (1200 mg 
intravenously every 3 weeks) plus carboplatin (AUC of 
6 mg/mL/min every 3 weeks) plus nab- paclitaxel (100 
mg/m² every week).9 IMpower132 regimen: atezolizumab 
(1200 mg intravenously every 3 weeks) plus cisplatin (75 
mg/ m2) or carboplatin (AUC of 6 mg/mL/min) plus 
pemetrexed 500 mg/m2 every 3 weeks.10 IMpower150 
regimen: atezolizumab (1200 mg intravenously every 3 
weeks) plus carboplatin (AUC of 6 mg/mL/min for 4 
cycles) plus paclitaxel (200 mg/m2 intravenously every 3 
weeks for 4 cycles) plus bevacizumab (15 mg/kg) intrave-
nously every 3 weeks.11 Maintenance therapy with atezoli-
zumab plus bevacizumab (IMpower150), atezolizumab 
plus pemetrexed (IMpower132) or atezolizumab alone 
(IMpower130) is given every 3 weeks after induction 
therapy until disease progression, unacceptable toxicity, 
or death. CheckMate 227 regimen: nivolumab (3 mg/kg 
intravenously every 2 weeks) plus ipilimumab (1 mg/kg 
intravenously every 6 weeks).12 CheckMate 9LA regimen: 
nivolumab (360 mg intravenously every 3 weeks) plus ipili-
mumab (1 mg/kg intravenously every 6 weeks) combined 
with histology- based platinum doublet chemotherapy 
(intravenously every 3 weeks for two cycles). The intra-
venous chemotherapy regimens consist of carboplatin 
(AUC of 6 mg/mL/min) plus paclitaxel (200 mg/m2) 
for patients with squamous histology or carboplatin (AUC 
of 5–6 mg/mL/min) or cisplatin (75 mg/m2) plus peme-
trexed (500 mg/m2) for patients with non- squamous 
histology.13 Thereafter, treatment with nivolumab plus 
ipilimumab continues until disease progression or 

Table 2 Immunotherapy regimens adopted in the present study

Study name Regimens References

KEYNOTE 010/024/042 ○ Pembrolizumab 1–3

IMpower110/OAK ○ Atezolizumab 4 5

CheckMate 017/057 ○ Nivolumab 6

KEYNOTE 189 ○ Pembrolizumab + carboplatin/cisplatin + pemetrexed 7

KEYNOTE 407 ○ Pembrolizumab + carboplatin + nab- paclitaxel 8

IMpower130 ○ Atezolizumab + carboplatin + nab- paclitaxel 9

IMpower132 ○ Atezolizumab + carboplatin/cisplatin + pemetrexed 10

IMpower150 ○ Atezolizumab+ bevacizumab + carboplatin+ paclitaxel 11

CheckMate 227 ○ Nivolumab+ ipilimumab 12

CheckMate 9LA ○ Nivolumab+ ipilimumab + carboplatin/cisplatin + pemetrexed 13

CheckMate 9LA ○ Nivolumab+ ipilimumab + carboplatin+ nab- paclitaxel 13

IMpower133 ○ Atezolizumab + carboplatin + etoposide 14

CASPIAN ○ Durvalumab + carboplatin/cisplatin + etoposide 15

https://www-sciencedirect-com.anywhere.lib.kyushu-u.ac.jp/topics/medicine-and-dentistry/carboplatin
https://www-sciencedirect-com.anywhere.lib.kyushu-u.ac.jp/topics/medicine-and-dentistry/pemetrexed
https://www-sciencedirect-com.anywhere.lib.kyushu-u.ac.jp/topics/medicine-and-dentistry/paclitaxel
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unacceptable toxicity. IMpower133 regimen: carboplatin 
(AUC of 5mg/mL/min intravenously on day 1) plus 
etoposide (100 mg/m2 intravenously on days 1–3) plus 
atezolizumab (1200 mg intravenously every 3 weeks) for 
four cycles.14 Maintenance therapy with atezolizumab 
alone is given every 3 weeks after induction therapy until 
disease progression, unacceptable toxicity, or death. 
CASPIAN regimen: carboplatin (AUC of 5–6 mg/mL/
min intravenously on day 1) or cisplatin (75–80 mg/m2) 
plus etoposide (80–100 mg/m2 intravenously on days 1–3) 
plus durvalumab (1500 mg intravenously every 3 weeks) 
for four cycles.15 Maintenance therapy with durvalumab 
alone is given every 4 weeks after induction therapy until 
disease progression, unacceptable toxicity or death.

Sample collection, DNA extraction, gene amplification, 
sequencing and data analysis procedures
Faecal samples will be collected in sterile containers, 
immediately incubated at 4°C, and then frozen at −80°C. 
The preliminary treatment of faecal samples will follow 
a previously described method,31 followed by DNA 
extraction using an automated DNA isolation system 
(Gene Prep Star PI- 480, Kurabo, Japan). DNA will be 
extracted from faeces using a Mora- Extract kit (Kyokuto 
Pharmaceutical, Japan). The V3–V4 regions of bacterial 
16S rRNA genes will be amplified using the Pro341F/
Pro805R primers31 and dual- index method32 under 
hemi- nested PCR conditions.33 Barcoded amplicons will 
be paired- end sequenced on a 2×284 bp cycle using the 
MiSeq system with MiSeq Reagent Kit chemistry, version 3 
(600 cycle). Paired- end sequencing reads will be merged 
using the fastq- join programme with default settings.34 
The joined amplicon sequence reads will be processed 
through QIIME 2 V.2020.6.35 The chimeric and low 
quality sequences were filtred using the DADA2 denoise- 
single plugin V.2017.6.036 based on default configura-
tion. The taxonomy of representative sequences will be 
assigned using the Ribosomal Database Project Multi- 
classifier V.2.11.37 38 by training a naïve Bayes classifier 
using the q2- feature- classifier plugin. To account for 
compositional artefacts, we transformed relative abun-
dances using the centred log- ratio transformation.39 
Alpha diversity indices (Chao1, Shannon and Simpson) 
will be calculated using the alpha- rarefaction plugin. 
The statistical significance of the Chao1, Shannon and 
Simpson indices among the groups will be assessed by 
the Kruskal- Wallis test using the alpha- group- significance 
plugin. Beta diversity will be analysed by the weighted 
UniFrac, unweighted UniFrac and Bray- Curtis distances 
using the core- metrics- phylogenetic plugin. The Emperor 
tool will be used to visualise principal coordinates analysis 
plots. The statistical significance of similarity of bacterial 
communities among the groups will be assessed by the 
ANalysis Of SIMilarities (ANOSIM) test using the beta- 
group- significance plugin. The heatmap and ward clus-
tering from phylum to species will be presented using the 
feature- table heatmap plugin.

Machine-learning analysis
To develop predictive models, we will use gradient 
boosting decision trees (GBDTs).40 Additionally, the 
feature variables obtained using GBDTs will be inter-
preted using SHapley Additive exPlanation (SHAP). 
The Shapley value is a solution concept of fairly 
distributing both gains and costs, and SHAP could also 
explain the output of any machine- learning model. 
These methods are the most powerful techniques for 
building and interpreting predictive models.41 42 All 
machine- learning analyses will be performed using 
the R programme.

Statistical analysis
Categorical variables will be analysed using Fisher’s 
exact test. Continuous variables will be compared 
using the χ2 test. The Mann- Whitney U test will be 
used to determine significant differences among the 
different groups using alpha diversity, which reveals 
the diversity in each individual sample. Logistic 
regression analysis will be performed to calculate ORs 
for the response to ICIs with respect to clinicopatho-
logical characteristics. Kaplan- Meier statistics and the 
log- rank test will be applied to evaluate PFS. Statis-
tical analyses will be performed using JMP software, 
V.14.0 (SAS Institute). Significance will be indicated 
by p<0.05.

Patients and public involvement
Patients and/or public were not involved in the design of 
the present study.

ETHICS AND DISSEMINATION
Study results will be disseminated through peer- reviewed 
journals and national and international conferences.
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