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Abstract

The function of a given brain region is often defined by the coding properties of its individual 

neurons, yet how this information is combined at the ensemble level is an equally important 

consideration. In the present study, multiple neurons from the anterior cingulate cortex (ACC) and 

the dorsal striatum (DS) were recorded simultaneously as rats performed different sequences of 

the same three actions. Sequence and lever decoding was remarkably similar on a per-neuron basis 

in the two regions. At the ensemble level, sequence-specific representations in the DS appeared 

synchronously but transiently along with the representation of lever location, while these two 

streams of information appeared independently and asynchronously in the ACC. As a result the 

ACC achieved superior ensemble decoding accuracy overall. Thus, the manner in which 

information was combined across neurons in an ensemble determined the functional separation of 

the ACC and DS on this task.

INTRODUCTION

A fundamental goal in neuroscience is to determine the specific function and information 

processing capabilities of anatomically distinct brain regions. A common approach to this 

problem is to infer function based on the sensory, motor or cognitive events that evoke 

neural responses in a given region. While this approach has been invaluable in advancing our 

understanding of sensory areas, it can be problematic for regions such as the frontal cortex, 

which is comprised of neurons that are highly multi-modal1,2. Furthermore, single neuron 

correlates in frontal regions are often very similar to those found in its efferent targets, such 

as the dorsal striatum. Perhaps in this case further insight could be gained by considering 

how neurons collectively respond rather than what they respond to.
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How a neuron responds is determined by many factors including its biophysical properties, 

the input it receives, as well as the structure of the local microcircuit. In the neocortex, 

pyramidal neurons form massive, interconnected networks with interneurons exerting 

relatively weak inhibition3,4. This arrangement favors recurrent excitation and with it, 

persistent activity patterns through time. Overall, cortical ensemble patterns are usually 

well-balanced with equal numbers of neurons slightly increasing or decreasing their 

response to any given event5,6. By contrast, local regions of the striatum receive strong 

excitatory inputs from the cortex, which generate responses that are temporally restricted by 

powerful and widespread inhibition produced by local interneurons7–9. Accordingly, when 

recorded from behaving animals, striatal neurons tend to be activated transiently and 

synchronously10,11. This synchronized activity may be an asset in the context of movement 

generation and learning10,12, but may also be a detriment if it concurrently amplifies 

variability or ‘noise’ in the neural responses over time13. By understanding how these 

differences might influence the way in which neural ensembles within the frontal cortex 

versus striatum encode the same information, we hope to gain new insight into their unique 

functions of these two interrelated brain regions.

To address this issue, we used bundles of tetrodes to simultaneously record from neurons in 

the anterior cingulate cortex (ACC) and the central portion of the dorsal striatum (DS)14,15 

while rats performed a sequential action task. Although there is already a rich literature on 

the responses of individual frontal cortex and striatal neurons on such tasks 16–30, our aim 

was to better understand how coherent ensemble representations emerged from the activity 

of single neurons. The task required rats to presses three levers in different temporal orders 

(termed ‘sequence blocks’ below) to receive reward. We found that even though single 

neurons in the ACC and DS represented information about sequences and lever presses with 

similar overall accuracy, the unique way this information was combined across the neurons 

through time in the ACC yielded far superior overall ensemble sequence decoding accuracy 

than we observed in the DS.

RESULTS

Behavior

The experimental apparatus is depicted schematically in Fig. S1a and the task structure in 

Fig. S1b. Different sequences of actions (referred as ‘sequence blocks’) consisted of presses 

on the same physical levers in different temporal orders. Each lever was distinguished by 

specific cues temporarily affixed to the area immediately surrounding the levers. The 

sequence of cues was always the same for a given rat, but the cues were moved to different 

lever locations for each of the two or three sequence blocks. This task design permitted an 

examination of the manner in which the two regions encoded objective information about 

discrete lever press actions versus more abstract information about ‘sequences’ of actions. 

The rats were required to perform three different sequences of operant responses in a single 

session, and did so with a high degree of accuracy (% correct response: mean ± SD: 89.2 

± 5.4%). Overall behavioral performance across different sequences in all sessions did not 

differ (1-way ANOVA, F2,48=0.22, p=0.80). Across all trials in all sequence blocks, the 
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latencies from the first to the second lever, and those from the second to the third lever were 

also equivalent (unpaired t-test, t1102=0.89, p=0.38).

The neural analysis described below will compare neural activity associated with presses on 

the same physical lever in different sequence blocks. Even though we will focus on presses 

on the identical physical lever, the lever may be approached at a different body angle, along 

a different trajectory or at a different velocity in each sequence block. This could be 

problematic because differences in movements or movement paths leading up to an action 

can affect ACC activity31,32. In an attempt to minimize the behavioral variability across 

sequence blocks, we focused on ‘common segment’ elements. ‘Common segments’ consist 

of presses on the same lever when approached from the same preceding lever in two 

sequence blocks. As shown in Fig. 1a, the average X,Y trajectories, the angle of approach to 

the lever and the approach velocity were similar for common segment lever presses 

performed in different sequence blocks. None of the behavioral measurements differed 

significantly across sequence blocks (repeated-measures ANOVA, no effect of sequence for 

x-position: F1,78=1.24, p=0.27; for y-position: F1,78=3.37, p=0.07; for approach angle: 

F1,78=0.0063, p=0.94; for approach velocity: F1,78=0.055, p=0.82; no interaction between 

time and sequence: for x-position: F5,390=0.061, p=1; for y-position: F5,390=0.49, p=0.79; 

for approach angle: F5,390=1.91, p=0.093; for approach velocity: F5,390=1.18, p=0.32).

While similar, they were not completely overlapping and in order to determine whether this 

remaining behavioral variability may have impacted the neuronal responses, the behavioral 

variables shown in Fig. 1a were used as factors in a multi-linear regression model performed 

individually on each neuron (see Methods). The analysis revealed that the total amount of 

variability in firing rate that could be accounted for by the 5 factors was on average 3.04% 

for ACC neurons and 3.39% for DS neurons. In fact, in only 3.99% of the ACC neurons and 

5.64% of DS neurons did the behavioral variables collectively account for more than 10% of 

firing rate variance during the common segment lever press periods (Fig. 1b). Among these 

neurons, the percentages of variance accounted for by the model did not differ (unpaired t-

test, t39= −1.21, p=0.23). While this percentage would likely be larger if all task periods had 

been considered, at least for the common segment lever press periods, any impact of the 

differences in behavior across sequence blocks was relatively small for most individual 

neurons.

Single neuron correlates of sequence differentiation

The selectivity of single ACC and DS neurons for sequences was assessed using signal 

detection approach by calculating for each neuron a selectivity index (see Methods). The SI 

for ‘sequence’ was calculated by comparing the firing rates in the 6 bins surrounding 

common segment lever presses performed in different sequence blocks. Even though the 

effects of behavioral variability on instantaneous firing rates (iFRs) were small for the 

common segment periods (Fig. 1b), we nevertheless tested whether they could impact SI-

based sequence discrimination. We re-calculated the SI values using the residual firing rate 

matrix generated from the multi-linear regression analysis performed above since in the 

residual matrix, the impact of these variables had theoretically been regressed off.
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Across all neurons recorded (NACC=637, NDS=351), 24.0% of individual ACC neurons and 

24.0% of individual DS neurons were selective for sequence (i.e. had absolute SI values 

>=0.5), a difference which was not statistically significant (2-way ANOVA, no effect of 

region: F1,60=0.11, p=0.74, unequal N HSD test: ACC vs. DS: p=1; Fig. 2a). When the 

calculation of SIs was repeated using the residual matrices, 24.1% of ACC neurons and 

25.2% of DS neurons were found to be sequence selective. The differences in the number of 

sequence-selective neurons detected using the full versus residual matrices were not 

significant for the ACC (2-way ANOVA, no effect of regression: F1,60=0.17, p=0.69, 

unequal N HSD test: ACC original vs. residuals: p=1), or the DS (unequal N HSD test: 

p=0.96). In order to test the strength of the sequence signals, we compared the SIs of all the 

neurons possessing SI values >=0.5. The average SIs of these putatively sequence-selective 

neurons did not differ between the two regions (ACC=0.79; DS=0.73; 2-way ANOVA, 

F1,916=1.34, p=0.25, unequal N HSD test: ACC vs. DS: p=0.34; Fig. 2b). Furthermore, the 

mean SI values of these neurons were similar if they were calculated using the full or 

residual matrices (unequal N HSD test, original vs. residuals for ACC: p=1; for DS: p=0.24; 

Fig. 2b). These results implied that the ACC and DS had remarkably similar numbers of 

neurons that were equally selective for sequence differentiation. The extraordinary similarity 

in the distribution of SI sequence values for the two regions is evident from Fig 2c. 

Examples of two ACC neurons and a DS neuron that exhibited significant sequence 

selectivity are shown in Fig. 2d, e and f respectively.

Sequence information by neurons versus ensembles

Next we asked how single neurons compared to ensembles in terms of sequence 

differentiation and whether this relationship varied between the two regions. To compare the 

sequence decoding properties of single neurons versus ensembles on an equal footing, a 

modified Receiver Operator Characteristic (ROC) analysis approach was employed. The 

ROC analysis has an advantage in situations where the distributions are unknown because it 

assesses performance over a range of threshold values rather than being forced to evaluate 

differences at a single threshold level relative to some theoretical distribution. The signal 

detection characteristics of individual ACC and DS neurons were investigated by creating 

for each neuron a sequence-specific template for the 1.4s period leading up to and including 

a common segment lever press in half of the trials in one sequence block. As the data were 

binned at 200ms, the template was a vector of 7 instantaneous firing rate (iFRs) values for 

each single neuron. The template was then moved through both sequence blocks and bin by 

bin correlations were calculated. This process was repeated using templates created from 

different groups of trials and the results averaged. A ‘true positive’ or ‘hit’ occurred when a 

correlation score larger than a threshold value was found in the lever press interval of the 

remaining half of trials of the sequence block from which the original template was 

constructed. A ‘false alarm’ occurred when a correlation score larger than the threshold 

value was found between the template and the ‘common segment’ lever presses performed 

in the alternate sequence block. If hits and false alarms occur at the same rates at all 

thresholds, the ROC curve would be a straight-line with a 45° slope, with an area-under-the-

curve (AUC) of 0.5.
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In order to compare ensembles to single neurons using this approach, a similar analysis was 

performed, except in this case rather than the vectors being 7 iFR values, they were N × 7 

iFR values, with N being the number of recorded neurons per session. Because the templates 

were much larger than those of any individual neuron, one would expect a low probability of 

recurrence of a similar ensemble activity state pattern, thereby reducing false alarm rates. 

Concurrently, the larger templates would be equally disadvantageous as it is equally unlikely 

that a match between the template and activity patterns during the remaining half of the 

trials in the same sequence block (i.e. hits) would ever occur. Because the ROC analysis 

weighs hits versus false alarms in this way, it is an effective means to directly compare 

signal detection of single neurons versus ensembles. It is important to emphasize that simply 

having a larger template confers no advantage on its own. As proof of this, the performance 

of the ensembles following random time block shuffles is given by the thick dashed lines in 

each panel (Fig. 3a, b) which are essentially at 45°.

For sequence decoding, as shown in Fig. 3a, the hit:false alarm ratios for ACC ensembles 

(solid black curve) were higher than 96.77% of individual neurons (gray curves) during the 

‘common segment’ periods of the two sequence blocks. In contrast, only 9.12% of 

individual DS neurons (gray curves, Fig. 3b) were superior to the DS ensembles for the 

same periods (solid black curve, Fig. 3b). Overall, single DS neurons were superior to DS 

ensembles significantly more often than was the case for single ACC neuron compared to 

ACC ensembles (Pearson’s chi-square: χ2 =12.1, df=1, p=0.0005). It is clear from Fig. 3a, b 

that the reason for this difference is not that DS neurons were superior to ACC neurons on a 

single neuron basis, in fact they were not (independent-sample t-test: t941=1.59, p=0.11), 

instead, when DS neurons were combined into ensembles, their performance was 

significantly worse than when ACC neurons were combined into ensembles (independent-

sample t-test: t31=4.44, p=1.1×10−4).

To examine the relative superiority of ACC ensembles for sequence decoding in greater 

detail, neurons were selected randomly from the population of 637 ACC and 351 DS 

neurons to create ensembles of different sizes and then we performed the ROC analysis on 

each ensemble. Every data point shown in Fig. 3c is the average of 100 draws. This analysis 

reveals that the ACC ensembles achieved superior signal detection across all ensemble sizes. 

Additionally, the steeper ACC curve, in comparison to the DS curve, indicated that signal 

detection improved progressively as more ACC neurons were added. Based on the functions 

fit to the data, we extrapolate that on average a randomly drawn ensemble of 112-neurons 

would be required for the DS to achieve the same level of sequence-signal detection as an 

ensemble of 19 neurons drawn randomly from the ACC. This is quite striking when one 

considers that individual neurons in the two areas performed equally on a per neuron basis 

(Fig. 2a–c). Paradoxically, the DS is at a disadvantage when its neurons are combined into 

ensembles for sequence decoding.

Unique activity states represent sequence information

In order to understand how ACC ensembles achieved better ROC performance, we probed 

more deeply into the nature of the ensemble codes themselves. Fig. 4a and b show 3-

dimensional representations of the multiple single unit activity (MSUA) spaces from 
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representative ACC and DS ensembles respectively. As illustrated in these plots, ensemble 

activity states during lever presses in one sequence block were tightly clustered but shifted to 

another region of the MSUA space when the same lever was pressed as part of a different 

sequence block. A shift in the MSUA space means that the ensembles entered a distinct 

activity state pattern for each sequence block.

In order to quantify the differences in firing patterns associated with different sequence 

blocks, the Mahalanobis distance (DMah) 5,33 was calculated between population vectors in 

the MSUA spaces. The DMah between the activity states associated with common-segment 

lever presses in different sequence blocks was significantly larger than the DMah between 

shuffled control blocks (Kruskal-Wallis test: F3,140=96.34, p=9.5×10−20), for both the ACC 

(Tukey’s test, p=0) and the DS (Tukey’s test, p=1.0×10−6; Fig. 4c). Once again the ACC was 

superior, as the DMah between the neural patterns associated with presses on the same lever 

occurring in different sequence blocks was significantly larger for ACC ensembles than for 

DS ensembles (Tukey’s test, p=0.023).

In order to show that these activity state patterns functionally important for sequence 

decoding, a leave-one-out variant of the DMah analysis was applied to the common-segment 

lever press periods. Using this form of Mahalanobis discriminant analysis (MDA), the 

correct sequence-block could be accurately predicted in 66.6% of cases for ACC ensembles 

and in 61.9% of cases for DS ensembles both of which were significantly better than when 

the procedure was repeated using shuffled sequence-block assignments (2-way ANOVA, 

main effect of sequence F1,140=204.89, p=1.8×10−29, main effect of region F1,140=20.53, 

p=1.3×10−5; Fig. 4d). More importantly, ACC ensembles classified each specific sequence 

with higher accuracy than did DS ensembles (Tukey’s test, p=0.00022).

Regional differences in ensemble variance/covariance

The sequence classification and decoding measures used above weigh differences between 

the patterns (i.e. the ‘signal’) relative to the variance and covariance in the patterns across 

time. Therefore, ACC ensembles could be superior to DS ensembles either in terms of the 

strength of their ‘signals’ or because they exhibited less variance/covariance through time. In 

order to disambiguate these two possibilities we examined each separately.

In order to assess potential difference in ‘signal’ strength we calculated the Euclidean 

distance (DEuc) rather than the DMah between points in the MSUA spaces associated with 

each sequence block. DEuc and DMah both measure the distance between the sets of points in 

the MSUA space but differ in that DEuc is a simple measure of the geometric distances 

between the centers of clusters, whereas DMah weighs these distances relative to the 

individual variances and pooled covariance of the two sets of points. Therefore, DEuc 

represents a pure measure of the ensemble signal independent of variance/covariance. Unlike 

DMah, DEuc between common-segments in different sequence blocks did not differ between 

the ACC and the DS ensembles (independent-sample t-test: t70 = −1.09, p=0.28) suggesting 

that the difference between the ACC and DS was not due to differences in the sequence 

‘signal’. This was not unexpected given the similarities in sequence differentiation by single 

ACC and DS neurons described above.
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Therefore, the differences in decoding accuracy must be related to the differences in the 

variance/covariance between the two areas. Accordingly, the variance across bins within a 

trial was indeed higher in the DS than the ACC (post hoc Tukey’s test, p=0.00015; Fig. 5a, 

dark bars) as was the absolute covariance (post hoc Tukey’s test, p=0.00017; Fig. 5b, dark 

bars).

In addition, we found that a significant portion of the variance and covariance was related to 

the coordinated firing in response to behavioral events in the DS because variance (repeated 

measures ANOVA, main effect of regression: F1,70=18.3, p=5.8×10−5, Tukey’s test: 

p=0.00017; Fig. 5a, right bars) and covariance (repeated measures ANOVA, effect of 

regression: F1,70=19.7, p=3.4×10−5; Tukey’s test: p=0.00017; Fig. 5b, right bars) were both 

lower in the residual matrices than in the full iFR matrices. In contrast, this was not true for 

the ACC, as the variance (Tukey’s test: p=0.88) and covariance (Tukey’s test: p=0.77) were 

both similar in the full and residual matrices from the behaviorally derived multi-linear 

regression discussed previously (Fig. 5a,b, left bars). Thus the responses of DS neurons to 

the behavioral variables contained more coordinated variation throughout a given action than 

did ACC neurons.

The higher degree of covariance in the responses of DS neurons to the behavioral variables 

may have contributed to the poorer performance of the DS on the ensemble measures of 

sequence decoding. To test this possibility we repeated the sequence discrimination analysis 

above using the residual matrices. This indeed improved the performance of DS ensembles 

as it led to a significant increase in the DMah between common segment lever presses 

(repeated-measures ANOVA and post hoc Tukey’s test: residuals>full matrix: p=0.00039; 

Fig. 5c) and improved sequence decoding accuracy using MDA (repeated-measures ANOVA 

and post hoc Tukey’s test: residuals>full matrix: p=0.015; Fig. 5d). In contrast, repeating the 

same analysis using the residual ACC matrices had no effect on the ability of ACC 

ensembles to separate common segments lever presses in different sequence blocks 

(repeated-measures ANOVA and post hoc Tukey’s test: residuals=full matrix: p=0.82; Fig. 

5e) nor did it have any effect on MDA based decoding accuracy (repeated-measures ANOVA 

and post hoc Tukey’s test: residuals=full matrix: p=0.99; Fig. 5f). Therefore, the firing rate 

variance of DS neurons associated with the measures of behavioral variability shown in Fig. 

1 contributed to its inferior sequence decoding at the ensemble level. This makes intuitive 

sense given that the levers being compared in the two sequence blocks were identical and 

therefore the stronger the neurons encoded this commonality, the less likely they would be 

able to differentiate between the two sequence blocks.

Regional differences in lever press action encoding

The previous analysis suggested that relative to the ACC, DS ensembles more strongly 

tracked the commonalities associated with pressing the same physical levers in different 

sequence blocks. In order to test whether the spatial lever decoding ability, the same type of 

ROC-based analysis described above was again employed. In this case, a template was 

created by randomly selecting half of all presses on a given physical lever. A ‘hit’ occurred 

when a correlation score larger than a threshold value was found in the remaining half 

responses on the same lever, while a ‘false alarm’ occurred when a correlation score larger 
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than the threshold value was found between the template and the presses performed on a 

different lever. This procedure was performed both on single units as well as ensembles as 

outlined above for the case of sequence decoding.

In support of the prediction, the decoding of spatial lever identity by DS neurons was indeed 

superior to that of ACC neurons on a single-neuron basis (2-way ANOVA, main effect of 

region: F1,2853=29.78, p=5.3×10−8). Yet surprisingly, in spite of this, ACC ensembles 

nevertheless matched DS ensembles in lever-decoding ROC performance (2-way ANOVA, 

no effect of region: F1,93=0.70, p=0.40). Likewise the DMah between population vectors 

associated with responses on the 3 different levers were similar between regions (2-way 

ANOVA, no effect of region: F1,194 =1.08, p=0.30; both regions discriminated among the 3 

levers significantly better than shuffled controls, 2-way ANOVA, F1,194 =497.3, 

p=2.0×10−55). Similar results were also obtained using MDA (2-way ANOVA: F1,194=770.4, 

p=1.8×10−69; post hoc Tukey’s test: DS=ACC, p=0.63). Therefore, even though DS neurons 

were indeed better than ACC neurons in terms of their ability to differentiate unique lever 

press actions, this advantage did not translate to the ensemble level. It would appear that on 

this task, the signals carried by individual neurons tended to be less synergistic when 

combined in the DS relative to the ACC.

ACC vs. DS in the timing of sequence and lever signals

What is it about the DS that resulted in this type of counteractive ensemble effect? One 

factor may relate to the timing of different signals. To explore this issue, a rolling F-statistic 

was used to find the proportions of neurons that exhibited their maximal firing 

differentiation of sequence versus lever identity within each trial. The proportions of ACC 

neurons differentiating sequences (Pearson’s Chi-square: χ2=9.28, df=5, p=0.098; Fig. 6a, 

left bars) or lever presses (Pearson’s Chi-square: χ2=4.79, df=5, p= 0.44; Fig. 6b, left bars) 

was equal for all time bins within a trial. Furthermore, there was no relationship between the 

bins in which the maximal differentiation among levers and the bins where the maximal 

discrimination between sequences occurred within a trial (Spearman’s rho: r=0.024, 

p=0.36). In other words, the sequence and lever press signals evolved independently in the 

ACC within each trial.

In marked contrast, the proportions of DS neurons maximally differentiating between 

sequences (Pearson’s Chi-square: χ2=21.62, df=5, p=0.00062; Fig. 6a, right bars) or 

between levers (Pearson’s Chi-square: χ2=17.98, df=5, p=0.0030; Fig. 6b, right bars) were 

highly non-uniform across the bins within each trial. More importantly, there was a small but 

significant correlation between the bins where the greatest proportions of DS neurons 

maximally differentiated sequences and lever press actions (Spearman’s rho: r=0.097, 

p=0.013). Specifically, the maximal point of differentiation for both sequences and lever 

press actions occurred concurrently at ~600ms prior to the actions in the DS (Fig. 6a, b). 

This was also close to the point where generalized activity was also highest (Fig. 6c). This 

effect can be seen in the example DS neuron responses shown in Fig. 6d,e.

Collectively, these results can be summarized as follows. In order to make a correct choice 

on this task a rat must maintain a representation of the overall sequence block as well as the 

actual physical lever to be pressed. DS neurons collectively exhibited large firing rate 
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fluctuations in response to the specific lever press actions and this coherent fluctuation 

appeared at the same point within each trial where the ensembles maximally differentiated 

sequence blocks. Because the two streams of information were at odds during common 

segment lever presses of this task, the decoding accuracy for each stream suffered. In 

contrast, ACC ensembles excelled not because they had more neurons selectively coding the 

correct action or sequence block, but because the two streams of information remained 

independent across neurons through time.

DISCUSSION

Previous studies have observed robust responses of single neurons in the frontal cortex and 

striatum during actions16–22,24,27,34,35. The present study focused on how information about 

sequential actions carried by single neurons was combined into ensemble codes and whether 

this differed in the ACC versus the DS. The results showed that the key factor that separated 

the two regions was the manner in which information was combined across the population 

through time rather than specific responses of single neurons.

At the single neuron level, ACC and DS neurons consistently performed similarly across 

various measures including single neuron sequence selectivity and single neuron ROC 

performance. However, DS neurons performed more poorly on almost all ensemble-based 

measures of sequence differentiation, including the separation of the sequence activity state 

patterns based on DMah, MDA and ROC performance. The one exception was the separation 

of the activity state clusters using DEuc. This was the only measure of pure sequence 

differentiation (i.e. ‘signal’) that was completely independent of variance/covariance across 

time. DS neurons tended to exhibit larger variance and covariance and respond more as a 

collective. The point where the largest proportion of DS neurons tended to maximally 

differentiate sequence identity was also the point where most neurons differentiated lever 

identity and this coincided with the point of maximal overall activity. Since in our task, the 

sequences were different yet the actual physical levers pressed were identical across the two 

sequence blocks, if sequence and lever signals emerged simultaneously but transiently across 

the ensemble, the decoding of either would suffer. By contrast in ACC ensembles, 

information about the physical lever was functionally independent from the information 

about the overall sequence (Fig. 5e, f) and as a result, sequence and lever differentiation in 

the ACC remained high across all 6 bins rather than being concurrently maximal in just one 

or two. It is also important to emphasize that this uniformity through time was not a result of 

persistent firing in individual ACC neurons that has been well characterized in the frontal 

cortex. Rather it was because the neurons had mutually independent time courses and were 

thereby able to tile all seven time bins as a population. The asynchrony in the ACC 

population allowed multiple conflicting sources of information to co-exist, while the 

synchronous nature of DS activity pitted different representations against each other within a 

small time window. Of course these differences between the two areas were not absolute, but 

were nevertheless large enough to significantly impact the accuracy of the representations 

that emerged at the ensemble level.

While generally disadvantageous in terms of sequence and lever decoding on this particular 

task, the inherent synchrony in the DS is vitally important for functions mediated by the DS 
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such as movement generation and learning12,36. The differences in persistence and 

synchrony between the ACC and DS are therefore functionally important and likely 

reflected the general properties of the two regions. The larger synchrony of DS over ACC 

neurons10 may be related to the local circuitry within the striatum itself that is able to 

transform tonic excitatory cortical drive into alternating and synchronized activity patterns37. 

In addition, because a small pool of interneurons are able to exert powerful control over 

many medium spiny neurons (MSNs), it is possible that changes in a single interneuron can 

effectively turn off a large group of MSNs8. A second important difference we observe 

between the ACC and DS is the long-tailed firing rate distributions exhibited by populations 

of DS neurons (Fig. S3, gray curve). Long-tailed distributions are consistent with firing at 

low rates interspersed with brief periods of very high activity. This activity profile is likely a 

consequence of the biophysical properties of MSNs that require large synchronous inputs 

from the cortex in order to fire since they possess hyperpolarized resting potentials and 

strong K+ currents that suppress all but the strongest synchronous inputs38,39. The firing 

characteristics we observed in the DS population are therefore consistent with the known 

physiology and anatomy of the region.

The increased variance and covariance across DS neurons may help tune DS neurons to 

promote a single coherent but intermixed signal at a very specific point in time prior to an 

action. In contrast the ACC may persistently maintain a conceptual representation of the 

general plan or action strategy that can be independent from the actual actions involved. 

Therefore both regions are endowed with features that work together to allow the animal to 

consider the entirety of ongoing experience and yet respond in a decisive manner.

METHODS

Animals

Four experimentally naïve male Long-Evans rats (450–550g) were housed in a facility with 

12hr light-dark cycle, with all training and recording taking place during the light cycle. For 

the duration of the behavioral experiments, the rats were food-restricted to just below 90% 

of their free-feeding weights. Feeding took place in the home cage after their daily training/

recording sessions, and water was available ad libitum in the cages at all times. The animals 

were single-housed to accommodate the food restriction procedures, recovery from surgery 

and maintenance of the implant. All procedures were carried out in accordance with the 

Canadian Council of Animal Care and the Animal Care Committee at the University of 

British Columbia.

Apparatus

Within a large Plexiglas box (25″×18″), a main panel was installed with 3 levers designated 

Lever1 to 3 from right to left (Fig. S1A). On any given day of sequence training, a unique 

tactile object (velcro, cardboard or soft foam) was stuck to the lever panel (but not on the 

lever itself) and the area on the floor immediately in front of the lever panel to symbolize the 

order in which the 3 levers should be pressed. An area of 25″×13″ was left for the rat to 

move freely. On the opposing-side wall, a food cup was located at the centre, with each 

delivery of reward accompanied by a pure tone. Retractable levers and pellet dispenser were 
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controlled and recorded with a PC via a Med Associate interface system (St.Albans, VT, 

USA).

Sequence task

All training and recording took place during the light cycle. The naïve subjects were first 

trained on an FR1 schedule to press each of the 3 levers. A minimum of 60 presses within 

0.5hrs, with no less than 15 presses on each lever was required prior to the rat moving on to 

the next stage of training. After 3–5d of FR1 training, the rats were trained on sequence A: 

Right Lever→Middle Lever→Left Lever. Thereafter they were trained on sequence B 

(Middle Lever→Left Lever→Right Lever) and finally sequence C (Left Lever→Right 

Lever→Middle Lever). In each case food reward was given after the correct lever press in 

the sequence. A lever retracted only when it was pressed in the correct order, and remained 

extended in the event of an error. For training on all sequences, the percentage of correct 

response on the 3rd item of the sequence had to reach 75% before moving on to the next 

trained sequence. The order of lever presses in each sequence was given by tactile objects 

placed on the panel and the floor in front of the levers. For a given animal, each object 

consistently designated a single serial position. At any one of the 3 stages of single-sequence 

training, if after 3 days of training, the animal still hadn’t reached criterion and if day-to-day 

improvement ceased, a delay-punishment protocol was introduced to extinguish errors made 

on the 3rd lever of the given sequence. Specifically, if the 3rd lever was pressed before the 1st 

lever, all levers retracted and a 10-s time-out period ensued. This training continued until the 

animal reached criterion performance. When the criterion had reached criteria on all 3 

sequences, the rat was surgically implanted and allowed 10d to recover. After recovery, 2–3 

refresher sessions on each sequence were given before the first multi-sequence test day.

On the multi-sequence test days, the animals had to perform a minimum of 10 trials on each 

sequence at or above criterion, and switch from sequence to sequence in one of three 

possible orders pseudo-randomly: Sequence C→Sequence B→Sequence A, Sequence 

B→Sequence A→ Sequence C, or Sequence A→Sequence C→Sequence B. In-between 

sequences, the animals were taken out of the box to allow for rearrangement of the tactile 

objects. Because the task was self-paced, and because it always took the animals more than 

1s between lever presses, we defined each lever-press epoch with reference to the time stamp 

of the lever press. In all but the ROC analysis, we used six 200-ms time bins, including four 

bins prior to the LP bin, the LP bin itself, plus one bin after the LP. In the ROC analysis, we 

included one more bin after the 6-bin epoch to have 7 numbers for the purpose of having 

meaningful and reliable correlation coefficients. In addition, after the last lever-press epoch 

in each trial, a 1-s period was defined as the ‘reward approach’ period, during which the 

animals ran from the last lever towards the food cup, prior to consuming the reward. Neural 

activities during reward approach and consumption were shown in single neuron examples 

(Fig.2d–f) but were not used in any analyses.

Surgery

Stereotaxic surgeries were performed with sterilized-tip procedures under anesthesia by 

isoflurane. NSAIDs analgesic, antibiotic, and a local anesthetic, were given before incision. 

One elliptical-shaped craniotomy was made centered at: AP: +3.2mm, ML: +1.0mm, and 
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another craniotomy was made centered at AP: +1.2mm and ML: +3mm. Once the dura 

mater was retracted, the bottoms of the two bundles of 8 30-gauge tubes, containing a total 

of 16 tetrodes, were placed on the cortical surface. The bundles were of cylindrical shape 

with a bottom radius of ~0.4mm, and were angled medially by ~15 degrees. The implants 

were fixed with bone screws and dental acrylic. At the end of the surgery, tetrodes in the 

anterior bundle were extended by ~1.4mm into the brain to enter the anterior cingulate 

cortex (ACC), and tetrodes in the posterior bundle were extended by ~3mm to enter the 

dorsal striatum (DS). Animals were given 10d to recover. Prior to each recording session, 

small adjustments were made with the hyperdrives to maximize the number of neurons 

recorded.

Acquisition of electrophysiological data

For data acquisition, EIB-36TT with pre-amplifier (Neuralynx Inc., Bozeman, MT, USA), 

connected to the extracellular electrodes, were plugged into HS-36 headstages and tether 

cables (Neuralynx Inc., Bozeman, MT). Signals were converted by a Digital Lynx 64 

channel system (Neuralynx Inc., Bozeman, MT) and sent to a PC workstation, where 

electrophysiological and behavioral data were read into Cheetah 5.0 software (Neuralynx 

Inc., Bozeman, MT). Files were then read into Offline Sorter (Plexon Inc., Dallas, TX) for 

spike sorting, based on visually dissociable clusters in 3D projections along multiple axes 

for each electrode of a tetrode (peak and valley amplitudes, peak-to-valley ratio, principal 

components and area). Sorting was confirmed by examining auto- and cross-correlations, 

and ANOVAs were conducted from the 2D and 3D projections. Spike timestamps were then 

read into Matlab (Mathworks Inc., Natick, MA) for all further analysis.

Histology

At the end of the studies, the animals were deeply anesthetized using urethane i.p. injection, 

and a 100μA current was passed through the electrodes for 30s. Animals were then perfused 

with a solution containing 250ml 10% buffered formalin, 10ml glacial acetic acid, and 10 g 

of potassium ferrocyanide. This solution causes a Prussian blue reaction, which marks with 

blue the location of the iron particles deposited by passing current through the electrodes. 

The brains were then removed and stored in a 10% buffered formalin/20% sucrose solution 

for at least 1 week, before being sliced and mounted to determine precise electrode 

locations. Since multiple sessions were recorded from individual animals the precise 

recording locations could not be derived from electrode lesions, but all electrode tracks were 

inferred between the entrance point and the dyed spot. Representative recording sites are 

shown in Fig. S2a, c, and the ranges of recording are shown in Fig. S2b, d.

Analysis

Instantaneous firing rate (iFR)—A total of 33 large ensembles were collected from 4 

rats that acquired all 3 sequences and successfully switched among them within a given 

session. To obtain an estimate of the neural firing rate for each isolated cell i as a function of 

time bin t, ri(t), for each spike train in each 200-ms bin, the instantaneous firing rates (iFRs) 

were calculated as the reciprocals of the inter-spike intervals, convolved with 20-ms 

Gaussian kernels and then averaged 5,40. Neurons firing less than 0.14 Hz were excluded 
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from further analysis, because the sample of spikes was too small (250 or less) to be reliably 

representative of the cell’s activity in relation to behavior. Each lever-press epoch included 

the 1-s period centered at the moment of lever-press, while the reward-approach period was 

the 1-s period immediately after the 3rd lever-press epoch.

Multiple Linear Regression (MLR)—A model with 5 factors that characterized the 

animals’ spatial location and movements were used to isolate the effect of behavioral 

variability on neural activities during the ‘common-segment’ pairs. A linear model was 

employed simply because we could not specify any type of consistent non-linear relationship 

between the firing rate of the neurons and changes in the behavioral variables. Nevertheless 

linear regression was appropriate since for each neuron the residuals and the predicted 

values produced by the model were uncorrelated, indicating that the iFRs indeed had a linear 

relationship with the behavioral predictors. All behavioral analyses were performed using 

the common segment LPs. Common segments included instances where the same two levers 

were pressed in the same order, but as part of two different sequences. 18 out of the 19 

sessions had satisfactory tracking of behaviors and thus were included in MLR and other 

analyses involving the residual matrices (see below). In 12 out of the 18 sessions, the rats 

performed 3 sequences, and we used all 3 possible pairs of common-segments. In 6 out of 

18 sessions the rats performed 2 sequences, so only one pair of common-segments existed in 

each of these sessions, and was used in the analysis.

Behavioral variables were constructed based on video tracking data. Since the video rate was 

1 frame/33.3ms, we averaged 6 frames to synchronize the video with the 200ms iFR bins. 

The first two factors extracted from the video tracking data were the ‘X’ and ‘Y’ position of 

the animals in the chamber. For visualization purposes in Fig 1a, these positions were given 

with reference to the center of each lever. However, for the model, the positions were given 

with reference to a single fixed point (i.e. the right wall) across the three levers. To generate 

the next two factors in the model, we calculated the vector created between the animal’s 

current position and its position 200ms prior. The third factor ‘A’ was the approach angle, or 

the angle between this vector and the lever. The fourth factor ‘V’ was the bin-by-bin velocity 

of the animal during lever approach and was simply the length of this vector at each time 

step (converted into cm/s). The fifth factor ‘T’ was the time (in seconds) since the previous 

lever press:

(eq. 1)

For a given time bin t, F(t) represented the neuron’s normalized iFR within that bin. We then 

examined the distribution of the percentage of variance accounted for by the model (the R2 

statistic) for each neuron (Fig. 1b). The residual matrix resulting from the regression in each 

session was used to perform a series of control analyses, including DMah, DMah-based leave-

one-out error, and ensemble variance and covariance (see sections below). By comparing the 

results from these residual-based analyses with those from the full iFR matrices, the effect of 

behavioral variability on sequence decoding was elucidated.
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Selectivity index—To examine whether individual units were responsive to sequence, the 

selectivity for each unit i with respect to each pair of common segments—both of which 

were associated with the same lever but belonged to two different sequence blocks—was 

obtained by grouping the firing rates into two classes: the iFRs of a given neuron during one 

common segment were assigned to Class A, whereas the iFRs of the same neuron during the 

other common segment in the pair were assigned to Class B. The index was then computed 

as:

where 〈·〉 denotes the mean.

Receiver operating characteristic (ROC) curve and statistics—The ROC method 

was used to test classification performance of single neurons and ensembles. ROC analysis 

has an advantage in situations where the distributions are unknown because it assesses 

performance over a range of threshold values rather than being forced to evaluate differences 

at a single threshold level relative to some theoretical distribution. In a simple example, if a 

detector’s sensitivity level is set to 0.5, signals (or observations) stronger than this level are 

reported as positives (or ‘1’) and below as negatives (or ‘0’). Out of all positives, the 

proportion of incidents when the target was truly present would be the ‘hit rate’ and the 

remaining proportion would be ‘false-alarm rate’. Each threshold level yields a single dot in 

the ROC curve. In the present study, an ROC analysis was run on correlation scores as 

described in the text, for the classification of both sequences and lever locations. Because 

correlation coefficients are on a continuous scale, a large number of thresholds were used to 

produce the detailed ROC curves. We used the area-under-curve (AUC) from each individual 

curve for statistical analysis. Because a 45-degree straight-line with an AUC=0.5 indicates a 

lack of signal-noise differentiation, the AUCs can be tested for significance by a simple one-

sample t-test against a normal distribution with mean = 0.5 and unknown variance. In the 

case where AUCs from ensembles and from single-units were compared, an independent-

sample t-test was used. In all of the cases involving multiple groups, a 2-way ANOVA was 

also used with 2 control groups—random normal distributions with the same sample size 

and the same variance and mean = 0.5. The relative numbers of neurons in each region were 

not different from those obtained using the Bonferroni-corrected one-sample t-test.

In order to analyze the effect of ensemble size on the between-sequence separation of 

activity states, ensemble AUCs were calculated between pairs of common-segments (i.e. 

lever responses that differed only in their sequence identity) based on randomly selected 

ensembles with varying sizes (n=4, 7, 10, 13, 16 and 19). For each ensemble size, 100 

random draws of n neurons were performed for each session and the resulting AUC 

averaged, for a complete representation of the whole data set. For both the ACC and the DS, 

the average AUCs at each ensemble size were plotted (Fig. 3d) and a power function was 

fitted for each region. The power function was selected as it accounted for more than 99% of 

the variance.
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Multiple-single unit activity (MSUA) analysis—For population analysis, population 

vectors r(t) = [r1(t) … rN(t)] were constructed, with N equal to the number of single units 

isolated from a given recording session. The term MSUA space refers to the N-dimensional 

space spanned by all recorded units and populated by these vectors r(t). Each dot in the 

MSUA space represents the state of the entire recorded ensemble within one 200 ms bin. All 

points corresponding to different 200ms bins within the epochs of the same behavior are 

shown in the same color. All statistical analyses were performed in the full space of all 

recorded units. For the purpose of visualization, multi-dimensional scaling (MDS) was 

applied to reduce dimensionality.

To quantify the effects of sequence and lever location on network activity, the Mahalanobis 

distances (DMah) were computed between the sets of N-dimensional vectors associated with 

task epochs of interest. To control for differences in MSUA space dimensionality (i.e. 

ensemble size) in DMah comparisons, a normalization procedure was employed: Nmin was 

the minimum number of units recorded in any of the data sets to be compared, and Kmin was 

the minimum number of time bins. For data sets with N and K greater than Nmin and Kmin, 

Nmin units and Kmin data points were selected at random and DMah was computed. This 

procedure was repeated 1000 times and the results averaged to make full use of all units and 

data points recorded. The resultant normalized DMah averages were used in various 

statistical analyses. In order to determine the significance level of a given DMah value, 

between-sequence separation was compared to within-sequence separation (Fig. 4c), and 

between-lever separation was compared to within-lever separation. To calculate average 

DMah within a sequence block, bootstrap surrogate blocks were created by randomly 

shuffling 1-s blocks of the iFR matrices. The distance between the 2 shuffled blocks 

therefore represents the separation between activities during random behavioral events. The 

process was repeated 100 times and the DMah values averaged. We also used the residual 

matrices from the linear regression (see above) to calculate the DMah, and compared the 

results to the DMah calculated from the full iFR matrix in order to reveal the influence of the 

behavioral variables on sequence decoding (Fig. 5c, e).

The calculation of DMah incorporates 3 aspects of ensemble activity: the difference in mean 

firing rates (i.e., Euclidean distance or DEuc), the variance in each neuron’s activity and 

covariance between any 2 cells in the ensemble. We focused on the bin-by-bin variance and 

covariance, calculated among neurons after averaging across all trials for each time bin 

within the lever-press epochs. In order to better understand the difference between ACC and 

DS in sequence encoding on the ensemble level observed in DMah, we also analyzed DEuc, 

variance and covariance separately. From each session, 19 cells were randomly drawn and 

the total covariance was calculated and summed, and the process was repeated for 100 times 

before the results were averaged for each session. Thus the ensemble bin-to-bin variance was 

the average of summed variance in a typical 19-cell (i.e. Nmin) ensemble (Fig. 5a), and the 

ensemble covariance shown in Fig. 5b was the summed absolute covariance between each 

cell pair in an ensemble, since we were concerned with the magnitude of the covariance 

rather than its direction. We also used the residual matrices from the linear regression (see 

above) to calculate the ensemble variance and covariance in order to examine the effect of 

behavioral variation (Fig. 5a and b).
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Leave-one-out Mahalanobis discriminant analysis (MDA)—In the analysis above, 

DMah was calculated between clusters. The leave-one-out prediction uses another variant of 

DMah: dot-to-cluster distance. In each distance calculation, a ‘dot’ is the ensemble iFR 

vector of a single time-bin recorded during a common-segment action. When all the dots for 

each sequence block are plotted together, there are two clusters in the MSUA space. If the 

DMah from the dot to its home sequence-cluster is shorter than that to the alternative 

sequence-cluster, then a correct classification is counted. The final performance is shown in 

percentage of correct classifications out of all time-bins tested (Fig. 4d). In order to have a 

control for the classification performance, bootstrap surrogate blocks were created by 

randomly shuffling 1-s blocks of the iFR matrices. The distance between the 2 shuffled 

blocks therefore represents the separation between activities during random behavioral 

events. The process was repeated 100 times and the leave-one-out errors averaged. Two-way 

ANOVA was then used to test the performance of ensembles from both regions (Fig. 4d). 

Additionally, the residual matrices from the linear regression (see above) were used to 

calculate the leave-one-out errors and their results were compared the results to those 

calculated from the full iFR matrix (Fig. 5d and f).

F-statistic for sequence discrimination and for lever discrimination—The F-

statistic was calculated separately for sequence classification and lever discrimination. To 

characterize the cells’ temporal profile of sequence discrimination (Fig. 6a), for each neuron, 

the F-statistic was calculated between the iFRs during each pair of common segments (from 

2 different sequence-blocks) in each of the 6 time bins, covering the interval from 900ms 

prior to a given action to 300ms after the action. In other words, the F-statistic for sequence 

was the between-sequence variance divided by the within-sequence variance in a given time 

bin. We then plotted the frequency distribution of the time bin in which a cell achieved its 

maximum F-statistic for each region (Fig. 6a).

To characterize the level of lever discrimination throughout the lever-press epoch, F-

statistics were also calculated among each cell’s activities associated with responses on the 3 

levers within each sequence block. The F-statistic for lever presses was the between-lever 

variance divided by the within-lever variance in a given time bin, in a given sequence. The 

frequency distribution of the time bin in which a cell achieved its maximum F-statistic is 

plotted in Fig. 6b.

A supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Behavior was similar for common segment lever presses in different sequence blocks. a) 
Values of the behavioral variables for matched pairs of common-segments lever presses. 

Common-segments involved presses on the same two levers occurring as part of two 

different sequence blocks (black vs. gray). Each column represents a different physical lever 

while the 4 rows display the animal’s x-coordinate, y-coordinate, lever approach angle and 

lever approach velocity in the 6 bins surrounding each lever press (the lever press occurred 

at time 0 in each panel). The two lines in each panel correspond to the value of each of these 

variables in one of the two sequence blocks. During these intervals, the animals’ location 

and movement were highly similar across sequence blocks but were quite different across 

the three physical levers. Error bars indicate s.e.m. b) Distributions of the percentage of 

firing rate variance accounted for when the behavioral variables shown in (a) were used as 

factors in a multiple linear regression analysis, performed on all ACC neurons (left panel) or 
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all DS neurons (right panel). The residual matrices represent the iFR values that remained 

after the impact of these behavioral variables has been removed. These matrices will be used 

in the analyses shown in subsequent figures.
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Figure 2. 
No regional differences in the way individual neurons responded to presses in different 

sequence blocks or on different physical levers. a) The ACC and DS had a similar 

proportion of neurons showing significant responsiveness for sequences calculated using the 

original iFR matrices (left, ACC: black bar, DS: white bar) or the residual iFR matrices 

(right, ACC: black bar, DS: white bar). Error bars indicate s.e.m. b) Sequence-sensitive 

neurons from the ACC (black) and the DS (white) had similar absolute selectivity indices 

(SI), calculated either using the full iFR matrices (left, ACC: black bar, DS: white bar) or the 

residual iFR matrices (right, ACC: black bar, DS: white bar). Error bars indicate s.e.m. c) 
The distributions of absolute SIs based on either the full iFR matrices (left) or the residual 

iFR matrices (right) across the neuronal populations in the ACC (black) and DS (gray) 

overlap. d) Heat relief iFR plot of an example neuron from the ACC that responded to only 

one type of lever press in one sequence block. e) An example ACC neuron that responded to 
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the 3rd lever press (and reward) in a sequence-dependent manner. f) Heat relief iFR plot of 

an example neuron from the DS that responded to only one type of lever press in one 

sequence block. Note that presses on the middle lever in one sequence block (as the 1st 

action) consistently elicited responses from the neuron, whereas presses on the same lever in 

the other sequence block (as the 2nd action) did not.
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Figure 3. 
Comparison of the signal detection characteristics of single neurons versus ensembles. a) 
ACC single unit ROCs (gray curves) were constructed from hit and false-alarm rates during 

the ‘common-segment’ periods for each neuron. Hits and false-alarms were based on 

running correlations between a neural activity template derived from half of the trials in one 

sequence block and activities in the remaining half trials in the same sequence-block (‘hits’) 

or with activities in the alternate sequence-block (‘false alarms’). The ensemble ROC (solid 

black line) detected the correct sequence better than the majority of the single units or the 

time-bin shuffled ensemble controls (dashed black line). b) DS single unit ROCs (gray 

curves) were constructed from hit and false-alarm rates during the common-segments using 

the same methods as in (a). The ensemble ROC (solid black line) detected the correct 

sequence better than its shuffled control (dashed black line) but was eclipsed by many more 

single units than in the ACC. c) Ensemble decoding performance improved with increasing 

ensemble size in both the ACC and DS, but at a much higher rate in the ACC. Ensembles of 

different sizes were randomly drawn from ACC and DS neuronal populations, and the AUCs 

were calculated from the sequence signal-detection ROCs. This process was repeated 100 

times at each ensemble size for each region, and the mean and s.e.m. are plotted (ACC: 

black circles, DS: gray circles). The best fitting trend lines were power functions (ACC: top, 

DS: bottom), which explained more than 99% of the variance.
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Figure 4. 
Sequence information is represented as differences in ensemble activity state patterns in both 

the ACC and DS. a) (Left) An example multiple single-unit activity (MSUA) space 

constructed from the iFRs of all 34 ACC neurons recorded during a single session, 

visualized in 3 dimensions using multidimensional scaling. Each dot represented a 

population vector containing the activities of the entire ensemble during right-lever presses. 

Dots were colored black if the activities were associated with one sequence block, gray if 

associated with the alternate sequence block. (Right) The average or prototypical activity of 

ACC neurons recorded during right lever presses in the two sequence blocks. Each bar 

represents the average normalized iFR for each neuron across all right lever presses in 

sequence block A (top, black bars) or sequence block B (bottom, gray bars). Mean ± s.e.m. 

b) (Left) An example MSUA space constructed from the iFRs of all 20 DS neurons recorded 

simultaneously during the same session as in (a). (Right) The prototypical activity of DS 

neurons recorded during right lever presses in the two sequence blocks. c) When common-

segment lever press periods were examined, the average separation (DMah in MSUA space) 

between lever presses performed during different sequence blocks (black bars) were 

significantly larger than shuffled control blocks (white bars). d) A leave-one-out prediction 

procedure based on DMah was used to classify trials as belonging to one of two sequence 

blocks. Classification accuracy for the actual data (black bars) was significantly better than 
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for trial shuffled data (white bars) for both the ACC and DS, although ACC ensembles 

performed significantly better than DS ensembles. *p<0.05, ** p<0.001, *** p<0.00001.

Ma et al. Page 26

Nat Neurosci. Author manuscript; available in PMC 2016 August 09.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Figure 5. 
Consistency of sequence encoding in the ACC and DS within behavioral epochs. a) 
Ensemble variance calculated based on activities during the time bins within each pair of 

common-segment lever presses was higher in the DS than in the ACC. Ensemble variance 

calculated on the residual iFR matrices (right, white) was smaller than the variance 

calculated from full iFR matrices (right, black) in the DS, but the two were equivalent in the 

ACC (left bars). b) Ensemble covariance was also greater in the DS (right) than in the ACC 

(left). Ensemble covariance calculated on the residual iFR matrices (white) was smaller than 

the covariance calculated from full iFR matrices (black) in the DS, but the two were 

equivalent in the ACC. c) In ACC ensembles, between-sequence DMah calculated using the 

residuals from the initial behavioral regression was equivalent to that calculated using the 

full iFRs, and both were greater than shuffled controls. d) In ACC ensembles, between-

sequence leave-one-out MDA using the residual iFR matrices (right) was equivalent to that 

calculated using the full iFR matrices (left). e) In contrast to the ACC, in DS ensembles, 

DMah calculated using the residual iFR matrices from the initial behavioral regression (right) 

was greater than that calculated using the full iFR matrices (left), although both the full iFRs 
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and the residuals still contained robust sequence information. f) In DS ensembles, sequence 

classification using the residual iFR matrices (right) was more accurate than when calculated 

using the full iFR matrices (left). Error bars indicate s.e.m. *p<0.05, ** p<0.001, *** 

p<0.00001
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Figure 6. 
Comparison of the timing of maximal sequence and lever differentiation in ACC and DS 

ensembles. a) The strength of sequence discrimination (based on rolling F-statistic) 

fluctuated across bins in the DS population (right bars), where the largest proportion of 

neurons exhibited maximal sequence specific firing differentiation around 0.6s prior to lever 

press while the smallest proportion exhibited sequence specific firing differentiation at 

around the actual lever press response itself. Such was not the case in the ACC (left bars), 

where an equal percentage of neurons exhibited maximal sequence-specific firing 

differentiation in each of the 6 bins. b) The strength of lever discrimination (based on rolling 

F-statistic) fluctuated across bins in the DS (right bars), where the largest proportion of 

neurons exhibited maximal lever differentiation 0.6s prior to lever press. Such was not the 

case in the ACC (left bars), where an equal percentage of neurons exhibited maximal lever-

specific firing differentiation in each of the 6 bins. c) Average level of activity across time 

bins leading up to all lever presses in all sequence blocks and sessions, in all ACC neurons 

(left) and all DS neurons (right) respectively. d) An example of a DS neuron displaying 

maximal differentiation between sequences at approximately 0.6s prior to presses on the 

same lever. e) An example of a DS neuron reaching maximal differentiation between levers 
at approximately 0.6s prior to lever presses within the same sequence block. Shading in c–e 

indicates s.e.m. *p<0.01, **p<0.001, *** p<0.0001.
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