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Abstract: The angiotensin-converting enzyme 2 (ACE2) receptor has been identified as the entry
receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is abundantly
expressed in many organs. With respect to the role of circulating ACE2 and its receptor expression
in the pathogenesis of the SARS-CoV-2 infection, it is still debated whether diseases such as hy-
pertension or pharmacotherapies, including ACE inhibitors and angiotensin receptor blockers that
affect ACE2 receptor expression, may modulate the severity and outcome of the coronavirus disease
2019 (COVID-19). We therefore tested the hypothesis that treatment with the ACE inhibitor Ramipril
affects organ-specific ACE2 receptor mRNA and protein expression as well as the serum metabolome
in BioBreeding (BB) rats. Twelve male BioBreeding rats were randomly divided into a Ramipril
(10 mg/kg body weight) treatment group or a control group (N = 12; n = 6 per group) over a
period of seven days. Ramipril treatment resulted in the reduction of acylcarnitines (C3–C6) out
of 64 metabolites. Among the different organs studied, only in the lungs did Ramipril treatment
significantly increase both Ace2 mRNA and ACE2 receptor membrane protein levels. Increased ACE2
receptor lung expression after Ramipril treatment was not associated with differences in ACE2 serum
concentrations between experimental groups. Our data provide experimental in vivo evidence that
the ACE inhibitor Ramipril selectively increases pulmonary ACE2 receptor mRNA and protein levels
and reduces acylcarnitines.

Keywords: ACE2; lungs; Ramipril; SARS-CoV-2; C3M; C4M; C5M

1. Introduction

Ramipril is an ACE-i (angiotensin-converting enzyme inhibitor) that is used for several
indications such as hypertension or the prevention of heart failure progression [1]. In addi-
tion to diseases such as hypertension, treatment with inhibitors of the renin-angiotensin-
aldosterone system (RAAS) causes an upregulation of ACE2 expression; this has led to the
hypothesis that ACE inhibitor therapy may predispose patients to more severe COVID-19
courses [2–6]. Furthermore, the effects of Ramipril on the serum metabolome have not been
systematically studied. The angiotensin-converting enzyme 2 (ACE2) receptor has been
identified as an entry receptor for the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [7,8]. The ACE2 receptor is expressed on the membrane surface of several
pulmonary and extra-pulmonary cell types, including cardiac, renal, intestinal, and en-
dothelial cells [9]. On the other hand, circulating ACE2 exhibits protective effects on lung
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function in acute respiratory distress syndrome, which could be associated with less severe
COVID-19 outcomes. In diabetes, circulating ACE2 seems to have a protective role in
the progression of cardiovascular and renal complications and has been suggested as a
potential therapeutic target for the management of diabetes and its complications [10,11].
Importantly, a recent meta-analysis including seven trials with 73,122 patients did not
find significant associations between the intake of RAAS inhibitors and the likelihood of
a positive COVID-19 test result, mortality, or severe illness from COVID-19 [12]. How-
ever, the effect of RAAS-inhibitor treatment on ACE2 receptors in the lungs in vivo is not
clear [2,4,6,13]. Despite recent advances in our understanding of COVID-19 pathomecha-
nisms, human experimental investigations can only give limited insights into the specific
regulation of ACE2 expression. Therefore, we tested the hypothesis that seven days of
treatment with the ACE inhibitor Ramipril alters serum metabolome parameters and the ex-
pression of Ace2 receptors in an organ-specific manner in 12-week old BioBreeding/Ottawa
Karlsburg Leipzig (BB/OKL) rats.

2. Results

Seven days of Ramipril treatment using a dosage that reflects the typical human dose
for anti-hypertensive therapy did not cause changes in body weight (Table 1). After short-
term Ramipril treatment, we find a significant, lung-specific increase in ACE2 receptors in
both Ace2 mRNA expression and ACE2 membrane protein levels compared to the control
rats (Figure 1A,B). The ACE2 membrane protein was only expressed/detectable in lung
and kidney tissue (30 µg per lane; Figure 1B). In contrast, ACE2 mRNA and protein levels
in the heart, kidneys, duodenum, and muscle were not altered by Ramipril administration
(Figure 1A,B). The elevated ACE2 protein expression in the lungs of rats treated with
Ramipril was not associated with a higher concentration of circulating ACE2 in serum
compared to controls (Figure 1C).

Table 1. Characteristics of experimental groups before (pre) and after (post) Ramipril treatment.

Controls (n = 6) Ramipril-Treated (n = 6)

Pre Post Pre Post

Body weight (g) 360 ± 18 368 ± 17 338 ± 18 341 ± 18 n.s.
HbA1c (%) 4.2 ± 0.1 4.2 ± 0.1 4.2 ± 0.2 4.4 ± 0.3 n.s.

Adiposity Index (AI) 1.7 ±0.4 2.0 ± 0.3 n.s.
n.s.: not significant within the experimental groups before and after treatment or between controls and Ramipril-
treated animals.

Androgen-regulated transmembrane protease serine 2 (Tmprss2) and Ace1 mRNA were
increased in the lungs, kidneys, and duodenums of rats treated with Ramipril compared
to the controls (Figure 1D–E). As expected, Ace1 mRNA was significantly reduced after
Ramipril treatment in the heart and in muscle (Figure 1E).

Metabolome analysis revealed a significant reduction of propionylcarnitine, butyryl-
carnitine, and isovalerylcarnitine (C3M, C4M, C5M) in the Ramipril-treated rats compared
to the controls (Figure 2A–D). All other metabolites were not affected by Ramipril treatment
(Figure 3).
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Figure 1. Ace2, Tmprss2, and Ace1 tissue distributions. (A) Ace2 mRNA receptor (n = 6 per experi-

mental group); (B) membrane protein Ace2 receptor expression as well as below representative 

Western blot images in different organs of control (Con, n = 5) and Ramipril-treated (10 mg/kg 

BW/day; n = 5) BioBreeding/OKL rats. Expression of Ace2 receptor membrane protein was only 

detectable in kidneys and lungs. Therefore, only results for Ace2 receptors in kidneys and lungs are 

displayed; (C) Serum circulating Ace2 concentrations; (D) Tmprss2 and (E) Ace1 mRNA expression 

in different tissues of control (n = 6) and Ramipril-treated rats. Results are expressed as means ± 

SEM. The different degrees of significance were indicated as follows:* p < 0.05, ** p < 0.01, *** p < 

0.001. Differences among the groups (data are normally distributed) were performed using one-

way-ANOVA and the Newman–Keuls test (A,B,D,E) or t-test (C) with GraphPad Prism 9 Software 

(Jandel Scientific, San Rafael, CA, USA). Abbreviations: Con, -Control; Duo, -duodenum; Kidn, kid-

ney; Musc, muscle; AU-arbitrary units. 

  

Figure 1. Ace2, Tmprss2, and Ace1 tissue distributions. (A) Ace2 mRNA receptor (n = 6 per experimen-
tal group); (B) membrane protein ACE2 receptor expression as well as below representative Western
blot images in different organs of control (Con, n = 5) and Ramipril-treated (10 mg/kg BW/day;
n = 5) BioBreeding/OKL rats. Expression of ACE2 receptor membrane protein was only detectable in
kidneys and lungs. Therefore, only results for ACE2 receptors in kidneys and lungs are displayed;
(C) Serum circulating ACE2 concentrations; (D) Tmprss2 and (E) Ace1 mRNA expression in different
tissues of control (n = 6) and Ramipril-treated rats. Results are expressed as means ± SEM. The
different degrees of significance were indicated as follows:* p < 0.05, ** p < 0.01, *** p < 0.001. Differ-
ences among the groups (data are normally distributed) were performed using one-way-ANOVA and
the Newman–Keuls test (A,B,D,E) or t-test (C) with GraphPad Prism 9 Software (Jandel Scientific,
San Rafael, CA, USA). Abbreviations: Con, -Control; Duo, -duodenum; Kidn, kidney; Musc, muscle;
AU-arbitrary units.
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Figure 2. Serum metabolomics. Levels of circulating acylcarnitines: (A) propionylcarnitine-C3M, (B) 

Butyrylcarnitine C4M, (C) isovalerylcarnitine C5M, and (D) hexanoylcarnitine C6M (n = 6 per ex-

perimental group) in controls and Ramipril-treated rats. Results are expressed as means ± SD of an 
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units. 

Figure 2. Serum metabolomics. Levels of circulating acylcarnitines: (A) propionylcarnitine-C3M,
(B) Butyrylcarnitine C4M, (C) isovalerylcarnitine C5M, and (D) hexanoylcarnitine C6M (n = 6 per
experimental group) in controls and Ramipril-treated rats. Results are expressed as means ± SD of
an age of 12 weeks per experimental group. The different degrees of significance were indicated
as follows: * p < 0.05. Differences among the groups were performed using the Mann–Whitney
test with Graph Pad Prism; data are not normally distributed. Abbreviations: M, metabolite; AU-
arbitrary units.
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3. Discussion

In humans, the ACE2 receptor is abundantly expressed in lung epithelia, the small
intestine, and in arterial and venous endothelial cells [9,14]. Specifically, in diabetes, ACE2
seems to play a protective role in the progression of cardiovascular and renal complications
and has therefore been suggested as a therapeutic target for the management of diabetes
complications [10]. Studies in diabetic mice show the role of circulating ACE2 in improved
parameters of glycemia through direct effects on the pancreas [14], improving insulin
sensitivity and glucose-mediated insulin release [15], and a reduced risk of developing
diabetes [16]. It has therefore been hypothesized that conditions associated with ACE2
receptor overexpression, including cardio-metabolic diseases and treatment with RAAS
inhibitors, may contribute to a higher COVID-19 susceptibility [17]. In addition, ACE2
receptor tissue distribution and increased expression may represent the mechanistic link
underlying the reported clinical associations between the severity and outcomes of COVID-19
and hypertension, obesity, diabetes, and cardio-pulmonary diseases [18,19].
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We show here that Ramipril treatment for seven days leads to increased ACE2 receptor
expression in the lungs of BB/OKL rats, a model for the spontaneous development of
diabetes [20,21]. It is noteworthy that a higher ACE2 receptor lung expression was not
associated with higher circulating ACE2 serum concentrations after Ramipril treatment
as compared to the controls (Figure 1C), suggesting that ACE2 expression in the lungs is
not a major source of circulating ACE2. Together with ACE2, SARS-CoV-2 employs the
androgen-regulated transmembrane protease serine 2 (TMPRSS2) as the key molecular
complex to infect host cells. In this context, we find that Tmprss2 and Ace1 mRNA were
increased in the lungs, kidneys, and duodenums of the rats treated with Ramipril as
compared to the controls (Figure 1D–E). We find that Ace1 mRNA in the heart and skeletal
muscle is significantly reduced after Ramipril treatment (Figure 1E). To the best of our
knowledge, such ACE inhibitor effects have not been reported previously. In contrast,
we find that upon Ramipril treatment, Ace1 mRNA expression was higher in the lungs,
kidneys, and duodenum. Our observation indicates an effect of ACE inhibitor treatment
on the transcription of Ace1 that is tissue-specific. We hypothesize that upregulated Ace1
expression in the lungs, kidneys, and duodenum may represent the effects of a positive
feedback loop in response to Ace inhibition.

The focus on Ramipril treatment is a limitation of our study. Additional treatment
groups for other ACEi’s and angiotensin receptor blockers (ARBs) would have been valu-
able to see whether our findings are specific for Ramipril or reflect the effects of other
ACEi´s and ARBs. However, we obtained approval from the local Animal Welfare and
Ethics Board only for the Ramipril treatment group. Yet, among the various Ace inhibitors,
Ramipril is the most widely used anti-hypertensive medication in Germany [22].

We also find that intermediate metabolites of branched-chain amino acid metabolism
are significantly downregulated by Ramipril treatment. In mitochondria, acyl-CoA de-
hydrogenases catalyze the initial step in each cycle of fatty acid β-oxidation, and their
reduced activity leads to the accumulation of acyl-CoAs in the mitochondria [23]. These
acyl-CoAs may then be scavenged into acylcarnitines that subsequently leave the mito-
chondrion and reach the peripheral circulation [23]. Specifically, propionylcarnitine (C3),
C4-dicarboxylcarnitine (C4), and isovalerylcarnitine (C5) are produced during increased
metabolism of leucine, isoleucine, and valine [24,25] and there are correlations of acylcar-
nitines to surrogate markers of insulin resistance [26–28]. Acylcarnitines also directly reflect
the oxidation rate of fatty acids and amino acids. Human studies show that branched-chain
amino acid-derived C3- and C5-carnitine, together with FA-derived C6- and C8-carnitine,
were higher in obese and DM2 subjects compared with lean controls [29,30].

As a limitation of our experimental approach, we acknowledge that we were not able to
separate isomers with our flow injection analysis; this is a compromise inherent in our high-
throughput profiling method. We did not apply a chromatographic separation of amino
acids to check for matrix effects on branched-chain intermediates as has been proposed
in previous studies using targeted UPLC-ESI-MS/MS metabonomic analysis [31,32]. Our
results may serve as pilot observations that need to be validated and further explored with
more sophisticated and targeted methods in future studies.

Therefore, we conclude that the previously reported beneficial health effects of Ramipril
are at least partially mediated by decreased circulating C3M, C4M, and C5M biomarkers.
Importantly, Ramipril-associated changes in the serum metabolome of BB/OKL rats are
specific to these acylcarnitines, and more than 60 other tested metabolites were not altered
by treatment with this ACE inhibitor.

4. Material and Methods
4.1. Animals and Experimental Design

All animal studies were approved by the local authorities of the state of Saxony,
Germany, as recommended by the responsible local animal ethics review board (Approval
No: TVV15/20, Landesdirektion Leipzig, Germany). The Institute´s animal model platform
staff looked after the animals continuously and the animals were monitored daily during
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regular visits from the veterinarian. Male BioBreeding/OKL rats were randomly divided
into a Ramipril (10 mg/kg body weight, oral, Delix Protect, Sanofi) treatment group or a
control group (N = 12, n = 6 per experimental group, oral water) over a period of 7 days.
Ramipril or saline treatment was orally intragastric, administered by buttoned cannula
once daily between 7 to 9 am. Phenotypes of the two experimental groups are shown in
Table 1. Adiposity index (AI) and HbA1c levels were measured at the end of study. Lung,
heart, skeletal muscle (quadriceps), kidney, and duodenum tissue samples were collected
immediately after euthanasia by an overdose of isoflurane followed by cervical dislocation.

4.2. Molecular and Protein Analysis

RNA isolation and quantitative real-time PCR (qPCR) were performed using the stan-
dard curve method as previously described [33,34]. The probes, Ace1 (Rn00561094_m1),
Ace2 (Rn01416289_m1), Tmprss2 (transmembrane protease serine 2, Rn00590459_m1) and
18sRNA (Hs99999901_s1, endogen reference) were purchased from Life technologies
(Darmstadt, Germany) and span exon-exon boundaries. Membrane proteins of the duo-
denum, kidneys, heart and lungs (n = 5/per group) were isolated using MembraneMax™
Protein Expression Kits (ThermoFisher Scientific, Germany). Proteins were detected by
incubating with HRP-conjugated secondary antibodies at a 1:3000 dilution (Dianova,
Hamburg, Germany) at room temperature for 2 h and a chemiluminescence kit (Amersham
Pharmacia Biotech, Freiburg, Germany). Equal protein loading was verified using mouse
anti-ß-actin (2 µg/mL; #3700; Cell Signaling Technology). ACE2 serum concentrations
were measured by ELISA using rat standards according to the manufacturer’s protocol
(Angiotensin I Converting Enzyme 2 ELISA; Cloud-Clone Corp., #SEB886Ra, Houston,
TX, USA). Circulating HbA1c percent levels were measured using the Hitado Super ID
(Möhnesee, Germany). For analysis SigmaStat (Jandel Scientific, San Rafael, CA, USA)
was used.

4.3. Metabolome Analysis

Mass spectrometric analysis of amino acids (AS) and acylcarnitines (AC) was per-
formed using a SCIEX Triple Quad 4500 System (AB SCIEX, Darmstadt, Germany) with
Turbo Ion Spray Source (TIS) in combination with a HTC Pal autosampler and a Shimadzu
UFLC system for flow injection analysis (FIA) according to a validated protocol [35]. Briefly,
10 µL serum was diluted 1:10 with methanol. After centrifugation, 10 µL of the supernatant
was diluted with 100 µL of methanol-containing isotope-labeled standards (Chromsystems
Germany). Samples were evaporated at 70 ◦C for 40 min and derivatized using 60 µL of 3 n
butanolic-HCL (Chromsystems, Germany) at 65 ◦C. After evaporation the samples were
reconstituted with 150 µL of the mobile phase (1/1 v/v methanol/water) analysed with a
SCIEX 4500 quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM).
Concentrations of 26 AAs, 34 ACs, and free carnitine were quantified using ChemoView™
1.4.2 software (AB SCIEX, Darmstadt, Germany).

4.4. Statistical Analyses

The statistical data analyses were performed using GraphPad Prism 9 Software (Jandel
Scientific, San Rafael, CA, USA). Differences among the groups (n = 6) were performed using
one-way-ANOVA, the Newman–Keuls test, and the Student’s t-test (normally distributed
data) or the Mann–Whitney test (not normally distributed data). Results are presented as
means ± SEM (Figure 1) and means ± SD (Figure 2). Statistical significance was accepted
at p < 0.05. The different degrees of significance were indicated as follows: * p < 0.05,
** p < 0.01, *** p < 0.001.

5. Conclusions

Taken together, we provide in vivo evidence from a rat model that short-term ACE
inhibitor treatment selectively increases Ace2 receptor mRNA and membrane protein
expression in the lungs and, in parallel, down-regulates the branched-chain intermediate
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metabolism. Whether increased ACE2 expression in the lungs occurs in humans upon long-
term ACE inhibitor therapy, and whether and how that might affect COVID-19 severity,
remain the major open questions that our study aimed to stimulate.
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