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Host–parasite interactions represent one of the strongest selection pressures in nature.
They are often governed by genotype-specific (GxG) interactions resulting in host genotypes
that differ in resistance and parasite genotypes that differ in virulence depending on
the antagonist’s genotype. Another type of GxG interactions, which is often neglected
but which certainly influences host–parasite interactions, are those between coinfecting
parasite genotypes. Mechanistically, within-host parasite interactions may range from
competition for limited host resources to cooperation for more efficient host exploitation.
The exact type of interaction, i.e., whether competitive or cooperative, is known to
affect life-history traits such as virulence. However, the latter has been shown for chosen
genotype combinations only, not considering whether the specific genotype combination
per se may influence the interaction (i.e., GxG interactions). Here, we want to test for the
presence of GxG interactions between coinfections of the bacterium Bacillus thuringiensis
infecting the nematode Caenorhabditis elegans by combining two non-pathogenic and five
pathogenic strains in all possible ways. Furthermore, we evaluate whether the type of
interaction, reflected by the direction of virulence change of multiple compared to single
infections, is genotype-specific. Generally, we found no indication for GxG interactions
between non-pathogenic and pathogenic bacterial strains, indicating that virulence of
pathogenic strains is equally affected by both non-pathogenic strains. Specific genotype
combinations, however, differ in the strength of virulence change, indicating that the
interaction type between coinfecting parasite strains and thus the virulence mechanism is
specific for different genotype combinations. Such interactions are expected to influence
host–parasite interactions and to have strong implications for coevolution.

Keywords: GxG, parasite, host, multiple infection, within-host interaction, Caenorhabditis elegans, Bacillus

thuringiensis, virulence

INTRODUCTION
Genotype by genotype (GxG) interactions are interactions
between species which depend on the species’ genotypes. Thus,
the exact phenotype of the interaction depends on the geno-
types that are involved (Hamilton, 1980; Thompson, 2005). Such
interactions can be mutualistic like cooperation (Hoeksema and
Thompson, 2007; Heath, 2010; Gorton et al., 2012) or antago-
nistic like parasitism (Webster and Woolhouse, 1998; Carius et al.,
2001; Schmid-Hempel and Ebert, 2003; Schulenburg and Ewbank,
2004; Grech et al., 2006; Lambrechts et al., 2006, 2009; Rauch
et al., 2006; Salvaudon et al., 2007; de Roode and Altizer, 2010;
Luijckx et al., 2011). They are one of the fundamental require-
ments for coevolution, as shown for the coevolution between
hosts and parasites (Hamilton et al., 1990; Agrawal and Lively,
2002).

Host–parasite GxG interactions are not static. They can
be influenced by abiotic factors like temperature or nutrition
(Thomas and Blanford, 2003; Lazzaro and Little, 2009; Wolin-
ska and King, 2009; Sadd, 2011; Tollenaere and Laine, 2012;
Gsell et al., 2013; Mboup et al., 2013), but also biotic factors,
namely a third species. Facultative symbiotic microbes have been
shown to influence or even mediate GxG interactions between

parasites and hosts (Oliver et al., 2005; Tetard-Jones et al., 2007;
Koch and Schmid-Hempel, 2012; Rouchet and Vorburger, 2012).
Recently, Seppälä et al. (2012) revealed GxG interactions between
coinfecting parasite species that are furthermore influenced by
the environmental factor dose. Coinfections are likely to also
influence GxG interactions between host and parasite, result-
ing in rather complex interactions (i.e., GxGxGxE). Next to
coinfections of different parasite species, coinfections of dif-
ferent genotypes of the same parasite species are frequently
observed in nature. GxG interactions for the latter remain to be
shown.

Although knowledge on the role of GxG interactions between
coinfecting parasites is scarce, the consequences of two parasites
simultaneously infecting the same host (i.e., coinfections) have
been studied in detail. Such coinfections may either be antag-
onistic, like resource competition (faster but not optimal host
exploitation is selected at the within-host level) or spiteful compe-
tition (competitors are directly fought even though it is costly for
the actor), or they may be mutualistic like public good cooperation
(produced goods can be used by all individuals causing a fitness
advantage for both the producer and the recipient; Buckling and
Brockhurst, 2008; Mideo, 2009). It has furthermore been described
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that the host immune response may interfere with the interaction
between competing parasites. It may do so by either preventing
infection of one species if another is present or by facilitating its
infection (Cox, 2001; Read and Taylor, 2001; Mideo, 2009). Such
scenarios are likely to reveal GxGxG interactions between the host
and the coinfecting parasites: depending on the host genotype,
infection by certain parasite genotypes may be selectively favored
over other parasite genotypes.

Studies on multiple infections usually assume that one of
the potential interaction mechanisms is at work. We argue that
depending on the exact parasite genotypes coinfecting a host, the
mechanism might be different. Most theoretical and empirical
studies on multiple infections focused on parasite virulence (e.g.,
Alizon et al., 2013), and virulence is expected to increase (e.g.,
resource competition) or decrease (e.g., spiteful competition) in
multiple compared to single infections depending on the exact
type of interaction. Therefore, we consider the presence of multi-
ple infections with lower and with higher virulence compared to
the mean of the corresponding single infections, according to the
exact parasite genotype combination tested, as an indication for
such mechanisms.

Here, we used the bacterial microparasite Bacillus thuringien-
sis (Bt) and its nematode host Caenorhabditis elegans. This model
system has been well described (Wei et al., 2003; Schulenburg and
Müller, 2004; Schulte et al., 2010). Bt causes persistent gut infec-
tions in C. elegans that potentially lead to host death (Borgonie
et al., 1995, 1996; Schulenburg and Müller, 2004). The infec-
tion is caused by oral uptake of bacterial spores during feeding.
The spores are associated with crystal toxins (Cry-toxins), which
destroy intestinal cells. Cry-toxins are thought to be the prime
determinant for the infection (Griffitts and Aroian, 2005), but
also other virulence factors like phospholipase C, proteinases and
hemolysins have been described (George and Crickmore, 2012).
Once host resources are made available, the spores germinate and
proliferate vegetatively until cells sporulate. Both antagonists show
potential for specific interactions: Bt strains show high specificity
against nematodes, including C. elegans (Wei et al., 2003; Schulen-
burg and Ewbank, 2004; Schulenburg and Müller, 2004; Schulte
et al., 2010), and C. elegans expresses specific immune reactions
toward different pathogens (Alper et al., 2007; Wong et al., 2007;
Schulenburg et al., 2008).

Bacillus thuringiensis has the potential for within-host interac-
tion since different strains differ in their growth rates and produce
different public Cry-toxins to exploit the host (Payne, 1992; Payne
et al., 1993). Bt is furthermore capable of bacteriocin production,
substances harming other Bt-strains (Abriouel et al., 2011), which
therefore can be classified as spiteful behavior. Thus, different
strains may interact differently.

Since we were especially interested in the within-host inter-
actions, we used the same outbred host population and all
possible combinations of single and double infections of two non-
pathogenic and five pathogenic Bt strains. As phenotypic proxies
for virulence we measured host survival and host reproduction. If
parasite genotypes do not interact, multiple infections should take
an intermediate value of the two corresponding single infections.
Interaction however may result in reduced or decreased virulence,
depending on the exact type of interaction.

Our aims for this study were (i) to test for GxG inter-
actions between coinfecting parasite strains, i.e., whether the
virulence in a coinfection is influenced by the infecting geno-
types, (ii) to elucidate whether there is a general difference
between single and double infections which would indicate that
most interactions between coinfecting parasites are of the same
type, (iii) to test whether the exact change in virulence between
single and mixed infections depends on the coinfecting geno-
types, indicating that the exact interaction mechanism between
coinfecting genotypes is genotype specific, and (iv) to find indi-
cation for the exact interaction mechanism for specific genotype
combinations.

MATERIALS AND METHODS
BACTERIAL STRAINS AND NEMATODES
In total, we used seven different Bt strains. The nematocidal strains
B-18243, B-18245, B-18246, B-18247, and B-18679 were provided
by the Agricultural Research Service Patent Culture Collection
(United States Department of Agriculture). Different Bt-strains
differ in their genotype and Cry-toxin production (Payne, 1992;
Payne et al., 1993; Schnepf et al., 2001), as do the strains we
used here (Schulte et al., 2010, H. Schulenburg, personal com-
munication). The other two strains were non-nematocidal, thus
non-pathogenic toward nematodes, namely DSM-350 (German
Collection of Microorganisms and Cell Cultures) and 407 Cry-
(kindly provided by Christina Nielsen-LeRoux; Lereclus et al.,
1989). Prior to the experiments, all Bt strains were cultured in
large quantities and stored in aliquots at −20◦C (Borgonie et al.,
1995).

As nematode host we used a genetically diverse and outcrossed
population of C. elegans to simulate natural conditions. Thus,
our results are likely to be valid for C. elegans as a species and
not only for a specific genotype. The population was originally
prepared by Henrique Teotónio by consecutive crosses among
16 natural isolates (Teotónio et al., 2012). At least 13 of these
isolates are genetically diverse and the outcrossed population is
more diverse than natural populations (Rockman and Kruglyak,
2009; Teotónio et al., 2012). This population was adapted over 10
generations in 40 replicates to our laboratory conditions. After-
ward the replicates were mixed, aliquoted and cryopreserved at
−80◦C (Stiernagle, 2006) for later usage. Otherwise, worms were
maintained following standard procedures (Stiernagle, 2006).

EXPERIMENTAL DESIGN AND PROTOCOL
To compare single and double infections, we tested all Bt strains in
all possible combinations (Figure 1). Thus, we had five different
treatments: non-pathogenic single Bt, non-pathogenic mixed Bt,
non-pathogenic-pathogenic mixed Bt, pathogenic single Bt and
pathogenic mixed Bt. In mixed infection treatments, both strains
were mixed in equal proportions. Importantly, the total Bt concen-
tration was identical in all treatments. The whole experiment was
replicated four times. One replicate of the combination between
407 Cry- and B-18247 for survival was lost during experimental
procedure.

The experiment was performed at 18◦C and at 70% humid-
ity. 20 age synchronized hermaphroditic worms of the last larval
stage (L4) were transferred into a “worm-ball” (Sicard et al., 2007)
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FIGURE 1 | Schematic overview of the experimental design showing different treatments and different strain combinations within each treatment.

Every strain combination was replicated four times, except for survival of the combination of 407 Cry- and B-18247 (three times).

containing peptone-free nematode-growth medium. Each worm-
ball was inoculated with 3.5 × 107 Bt particles and ad libitum
Escherichia coli OP50 as a food source to prevent any effects caused
by starvation. Beforehand, Bt was grown for 6 days on nematode
growth medium. After 3 days, nematode survival and population
size were estimated as proxies for virulence. Survival rate was mea-
sured as the number of surviving worms divided by the sum of
surviving and dead worms. Population size was estimated as the
number of worms per ball by washing them off with sterile water,
counting twice a subsample of 20 μl and extrapolating the total
number of worms. For statistical analysis of population size, we
used the logarithm to the base 10.

STATISTICAL ANALYSIS
All statistical analyses were performed using IBM SPSS Statistics
Version 20.

To test for GxG interactions between coinfecting non-
pathogenic and pathogenic Bt strains, we used a generalized linear
model with “non-pathogenic strain,” “pathogenic strain” and the
interaction term as fixed factors and survival rate and population
size as dependent variables. GxG interactions are revealed by a
significant interaction term. Since such a model based analysis is
based on a full-factorial design, this analysis is not possible for the
mixed pathogenic treatment (the five pathogenic strains cannot be
grouped unequivocally into two factors which needed to be tested
in all combinations; Figure 1).

To elucidate whether there is a general difference between sin-
gle and double infections, we analyzed a general linear mixed
model with “treatment” (non-pathogenic-pathogenic mixed Bt,

pathogenic single Bt and pathogenic mixed Bt) as fixed fac-
tor, “combination (treatment)” as random factor and survival
rate and population size as dependent variables. The exact
difference between the three treatment categories was tested
using LSD (Fisher’s Least Significance Difference) as post hoc
test.

Our main question is, however, whether the change in vir-
ulence between single and multiple infections and thus the
type of interaction between coinfecting strains depends on their
exact genotypes. This should become visible by plotting sin-
gle and multiple infections of the mixed treatments. For each
mixed infection, we calculated the mean from the correspond-
ing single infections. For this, we created random pairs of the
four replicates (e.g., the mean of single infection A and B of
replicate 1 was calculated). We estimated the influence of the
factors multitude of infection (mean of single versus mixed
infections) and strain combination (10 combinations for the
non-pathogenic-pathogenic mixed and the pathogenic mixed
treatment, each) and the interaction between both as fixed fac-
tors in a generalized linear model. A significant interaction term
reveals in how far the difference between the mixed infection
and mean single infections depended on the genotype com-
bination tested. This analysis was performed for the mixed
non-pathogenic-pathogenic and the mixed pathogenic treatments
separately.

Finally, we were interested in the exact type of interaction
between coinfecting strains. Depending on the interaction type,
mixed infections should be more or less virulent than the mean of
the corresponding single infections. Thus, we tested whether the
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slopes between the two infection types of each strain combination
differed from zero using a 1-sample t-test.

RESULTS
We did not find any indications for GxG interactions in coinfec-
tions of non-pathogenic and pathogenic strains as indicated by
non-significant interaction terms (Table 1; Figure 2). However,
non-pathogenic strains differed in their effect on host survival
and pathogenic strains tend to differ.

Generally, infection treatments differed from each other
(Table 2; Figure 3). The mixed non-pathogenic-pathogenic treat-
ment differed from the pathogenic treatments for both variables,
while the two pathogenic treatments marginally differed for
population size, but not for survival rate.

Furthermore, we found indications that the interaction mech-
anism depends on the coinfecting parasite genotypes (Table 3).
In how far the mixed treatments differ from the mean of the
single values for survival depends on the exact genotype com-
bination tested, as indicated by a trend for the interaction term
for the non-pathogenic-pathogenic mixed treatment (Figure 4A)
and a significant interaction term for the pathogenic mixed treat-
ment (Figure 4B). This was not the case for population size
(Figures 4C,D).

The significant interaction terms are not only caused by devi-
ations in one direction. We found that for survival, the slopes of
the strain combinations deviate in both directions from zero. For
the non-pathogenic-pathogenic mixed treatment, we found one
case in which the mix is more virulent than the mean of the sin-
gle infections (407 Cry- and B-18246: 1-sample t-test, t = 8.653,
df = 3, p = 0.003; Figure 4A) and one combination in which
it is less virulent than the mean of the two single infections
(407 Cry- and B-18243: 1-sample t-test, t = −15.236, df = 3,
p = 0.001; Figure 4A). For the pathogenic mixed treatment, the
mix is more virulent in one combination (B-18243 and B-18247:
1-sample t-test, t = 5.644, df = 3, p = 0.011; Figure 4B) and
less in two combinations (B-18246 and B-18247: 1-sample t-test,
t = −9.2724, df = 3, p = 0.003; B-18246 and B-18679: 1-sample
t-test, t = −3.342, df = 3, p = 0.044; Figure 4B). For host pop-
ulation size, one combination of the non-pathogenic-pathogenic

FIGURE 2 | Line graphs of (A) survival rate and (B) logarithmic

population size of the non-pathogenic-pathogenic mixed treatment.

Vertical lines represent the one-fold standard error.

Table 1 | Statistical results of the generalized linear model testing for GxG interactions in the non-pathogenic-pathogenic mixed treatment

using non-pathogenic Bt strain, pathogenic Bt strain and the interaction between both as fixed factors.

Survival Population size

Treatment Waldχ2 df p Waldχ2 df P

Non-pathogenic-pathogenic mix

Constant 549.780 1 <0.001 3095.070 1 <0.001

Non-pathogenic Bt 5.868 1 0.015 0.289 1 0.591

Pathogenic Bt 8.428 4 0.077 2.874 4 0.579

Non-pathogenic Bt∗ pathogenic Bt 7.289 4 0.121 3.923 4 0.416

Significant p-values are displayed in bold, trends in italics.
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Table 2 | Statistical results of the comparison of the three pathogenic treatments (mixed non-pathogenic-pathogenic Bt, pure pathogenic Bt,

mixed pathogenic Bt) using a general linear mixed model with treatment as fixed factor and strain combination(treatment) as random factor

and a post hoc test (LSD).

Survival Population size

dfn,d* F p dfn,d* F p

Constant 1, 21.334 243.502 <0.001 1, 97.000 2252.137 <0.001

Treatment 2, 21.364 14.119 <0.001 2, 97.000 10.649 <0.001

Post hoc

Non-pathogenic-pathogenic mix – pathogenic single 0.005 <0.001

Non-pathogenic-pathogenic mix – pathogenic mix <0.001 0.003

Pathogenic single – pathogenic mix 0.285 0.063

n, numerator; d, denominator.
Significant results are displayed in bold, trends in italics.

FIGURE 3 | Boxplots of (A) mean host survival rate and (B) mean

logarithmic population size per strain combination of different

treatments. The horizontal line indicates the median, the box the 25%
quartile above and below the median, and the whiskers the data range.
Circles represent outliers and stars represent extreme values.

mixed treatment performed worse in mixed infections (407 Cry-
and B-18247: 1-sample t-test, t = −3.669, df = 3, p = 0.035;
Figure 4C). One combination of the pathogenic mixed treatment
did show higher virulence in the mixed compared to the single
treatments (B-18245 and B-18247: 1-sample t-test, t = 4.948,
df = 3, p = 0.016; Figure 4D), two showed a trend (B-18243
and B-18245: 1-sample t-test, t = 2.950, df = 3, p = 0.060; B-
18245 and B-18246: 1-sample t-test, t = 2.759, df = 3, p = 0.070;
Figure 4D).

DISCUSSION
Theoretical models on multiple infections usually assume only one
mechanism of parasite interaction to be present, although differ-
ent interaction types like resource competition or public good
cooperation have been described (Buckling and Brockhurst, 2008;
Mideo, 2009). Furthermore, GxG interactions between coinfect-
ing parasites occur (Seppälä et al., 2012), which may influence the
parasite interaction. Here, our aim was to test whether the interac-
tion mechanism can be determined by GxG interactions between
coinfecting parasites.

We could not show that the virulence of coinfections depends
on GxG interactions between both infecting strains. Yet, we
cannot exclude their presence since we were only able to test
for such interactions in the non-pathogenic-pathogenic mixed
treatment, and not in the pathogenic mixed treatment. The lat-
ter might have been more suitable for such an analysis since
both and not only one strain are pathogenic and reduce fit-
ness. We also only tested a rather small set of non-pathogenic
strains in a low sample size, which might have obscured GxG
interactions.

However, we provide evidence that within-host interactions of
Bt genotypes follow a general pattern: Over all tested genotype
combinations, we found that mixed non-pathogenic-pathogenic
combinations are less virulent than pathogenic combinations
(Figure 3). This may be explained by the infection character-
istics of this model system (Schnepf et al., 1998): Bt spores,
which are taken up by the host are already associated with
Cry-toxins. These proteins are of prime importance for the
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Table 3 | Statistical results of the generalized linear model testing for a genotype-specific difference between single and multiple infections using

multitude of infection (mean of single infections versus mixed infection), strain combination and the interaction between both as fixed factors.

Survival Population size

Treatment Waldχ2 df p Waldχ2 df p

Non-pathogenic-pathogenic mix

Constant 1721.335 1 <0.001 6712.417 1 <0.001

Multitude of infection 0.107 1 0.743 0.001 1 0.973

Strain combination 17.740 9 0.038 11.552 9 0.240

Multitude × strain combination 15.647 9 0.075 7.749 9 0.560

Pathogenic mix

Constant 340.076 1 <0.001 2132.295 1 <0.001

Multitude of infection 4.512 1 0.034 6.443 1 0.011

Strain combination 17.475 9 0.042 9.110 9 0.427

Multitude × strain combination 18.557 9 0.029 5.139 9 0.822

Significant results are displayed in bold, trends in italics.

infection, since they cause pore formation in the gut epithe-
lium. They are released and activated in the gut, thus rep-
resenting a public good (Raymond et al., 2007). In mixed
non-pathogenic-pathogenic combinations, only one strain pro-
duces toxins and therefore virulence is reduced. What is known
about Cry-toxin genes is therefore in line with the theory on
public good cooperation and non-cooperating cheaters (Brown
et al., 2002; Buckling and Brockhurst, 2008; Alizon and Lion,
2011).

Although we were not able to show that coinfections are char-
acterized by GxG interactions, the virulence difference between
multiple and the corresponding single infections depends on the
exact genotype combination that coinfects a host (Figure 4).
For some genotype combinations, virulence is higher, for oth-
ers it is lower in double infections compared to the mean
single infections. This indicates that different interaction mech-
anisms may be involved in the Bt-C. elegans model system.
For example, next to the production of public Cry-toxins, Bt
may compete by producing bacteriocins (Abriouel et al., 2011).
The exact interaction mechanisms, which are involved in this
model system remain to be shown. Importantly, we show that
the virulence difference between double and the correspond-
ing single infections is characterized by GxG interactions within
the host. These interactions were not revealed by the inter-
action term between the genotypes of coinfecting strains (see
Table 1).

Surprisingly, we did not find similar trends for population size
as we revealed for host survival. For example, population size is
not affected by the strain combination tested but survival rate
is (Table 3). Since we took our measurements on a certain day,
we cannot draw any conclusions about lifetime fitness of hosts
and about potential costs. However, C. elegans is known to pro-
duce the majority of offspring during the first days of adulthood
(Huang et al., 2004). One explanation for our results might be that
reproduction is not affected by the genotypes of Bt strains, and
that hosts produce their offspring before they die. However, since

they die earlier when they are infected by certain Bt genotype
combinations but population size remains the same, reproduc-
tion could also be shifted toward early reproduction. Alternatively,
this could be caused by host genotype effects. Since we used a
genetically diverse worm population, it is possible that the host
genotype influences the interaction between different bacterial
genotypes.

Thus, host–parasite interactions can be influenced by genotype
specific within-host interactions. Since host–parasite GxG inter-
actions have been revealed for many model systems including the
one we used here (Schulte et al., 2010), it is likely that genotype
specific within-host interactions are influenced by the host geno-
type and vice versa, resulting in GxGxG interactions. A potential
mechanism for GxGxG interactions could be immune mediated
interaction between parasites: depending on the host genotype,
the immune-system could be more effective against some parasite
genotypes and thus facilitate infections by others (Cox, 2001; Read
and Taylor, 2001; Mideo, 2009). The general idea that a third party
can influence GxG interactions is not new. For example, host–
parasite GxG interactions are known to be influenced or even
mediated by the genotypes of host endosymbionts (Oliver et al.,
2005; Tetard-Jones et al., 2007; Koch and Schmid-Hempel, 2012;
Rouchet and Vorburger, 2012). The situation can even be compli-
cated if the interactions are influences by environmental factors
(Seppälä et al., 2012).

That host and parasite genotypes do interact is one of the key
assumptions for mathematical models on host–parasite coevo-
lution (Hamilton et al., 1990; Agrawal and Lively, 2002). Thus,
changes of allele frequencies and changes of genotypes over
time require GxG interactions to occur. Here, we reveal addi-
tionally genotype specific within-host interactions of different
parasite genotypes. The resulting GxGxG interactions should
result in even higher evolutionary rates. If the outcome of host–
parasite GxG interactions depends on within-host parasite GxG
interactions, the frequency of multiple infections should influ-
ence host–parasite coevolution. It has indeed been shown that the
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FIGURE 4 | Line graphs of mixed treatments and the mean of the

corresponding two single infections. (A) Survival rate of the
non-pathogenic-pathogenic mixed treatment. (B) Survival rate of the
pathogenic mixed treatment. (C) Logarithmic population size of the
non-pathogenic-pathogenic mixed treatment. (D) Logarithmic population

size of the pathogenic mixed treatment. Dashed lines represent
combinations, for which the slope differs significantly from zero,
dashed-dotted lines represent combinations, for which the slope shows
a tendency to differ from zero. Vertical lines represent the onefold
standard error.

frequency of multiple infections has strong implications for host–
parasite interactions (e.g., Turner and Chao, 1998, 1999), but also
the initial frequency of each strain is of importance (Taylor et al.,
1997; Harrison et al., 2006; Rumbaugh et al., 2009; Zwart et al.,
2009). Thus, many factors influence host–parasite coevolution
under natural condition, making the outcome and epidemiology
even more difficult to predict (e.g., de Roode et al., 2005; Alizon
and Lion, 2011). This may explain why examples for predicted
evolutionary dynamics are rarely found in nature (but see Burdon
and Thrall, 2000; Jokela et al., 2003; Ebert, 2008; Dupas et al., 2009;
Laine, 2009). Within-host GxG interaction is another factor that
should be considered in the study of host–parasite interactions.

Our study provides an intriguing experimental evidence for
the potential importance of GxG interactions among distinct
pathogen genotypes within their host. We reveal that GxG
within-host interactions can occur between genotypes of the
same species. Since genotypes may be more or less virulent
in combination than the corresponding single infections, GxG

within-host interactions are furthermore likely include differ-
ent interaction mechanisms and to influence the interaction
between host and parasites, which is also genotype specific in
this model system. What remains to be shown in future experi-
ments is whether the exact outcome of the interaction between
different parasite genotypes also depends on the host genotype.
Taken together, GxG interactions between coinfecting parasites
may have strong implications for epidemiology and virulence
evolution.
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