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Abstract

As next-generation sequence (NGS) production continues to increase, analysis is becoming a significant bottleneck.
However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or
align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of
interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined
assembler that interrogates very large NGS data sets for the presence of specific variants by only considering reads within
the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact
match to all possible short words within the target sequence, and these reads are then assembled stringently to generate a
consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target
sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome.
However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility
in finding or confirming genomic mutations, polymorphisms, fusions and integration events. Targeted assembly is a
powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible
and easy to use tool for targeted assembly.
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Introduction

The revolution in DNA sequencing technologies has enabled

faster and cheaper data generation, to the point where data

collection is becoming a less concerning bottleneck than data

storage and analysis [1]. This is especially true for laboratories

with limited informatics resources. TASR (Targeted Assembly of

Sequence Reads) builds upon our previous SSAKE assembler [2]

but, unlike its predecessor, it only considers reads for assembly that

have a perfect 15 nt word match to input target sequences. Thus,

TASR has particular utility for finding or confirming, through

local assembly, the presence of specific sequences or sequence

variants of interest. To our knowledge, de Bruijn graph assemblers

published to date do not have this functionality. Here we

demonstrate the utility of TASR for discriminating real from

artifactual variant calls in tumour genomes, which may facilitate

large-scale validation efforts. Further, we show that by targeted

assembly it is possible to identify tumour-associated fusion

transcripts and, finally, we demonstrate the utility of targeted

assembly for identifying genome variations in ancient human

DNA and large-scale human whole-genome sequencing projects.

Results

Algorithm
DNA sequence reads in a fastq or fasta format are fed into the

algorithm via a file of filenames, using the –f option. DNA

sequence targets, used to interrogate all raw reads in a sequence

data set, are supplied as a multi fasta file using the –s option.

Sequence targets are read first. From each target, every possible

15-character word from the plus and minus strand are extracted

and stored in a hash table. Next, reads from the NGS data set are

interrogated as described in [2], except that rather than using a

greedy algorithm, any read with an exact match of its first 15 bases

to any of the 15-mer words from the target sequence, is retained.

These reads are collected in an array for subsequent assembly,

thereby limiting the sequence space of the assembly to that of the

target region. Note that low-complexity and large DNA sequence

targets will draw in more reads, which will impact the performance

of TASR. The choice of 15-mer is one that balances speed and

specificity, and was used previously for targeted de novo assemblies

of highly variable T cell receptor sequences [3,4]. The identity and

coverage of every base, within and beyond the user-provided

target sequence, is stored in a hash table c. The sequence within

the bounds of the user-supplied target sequence will exactly match

the target itself, but recruited sequence reads will typically extend

beyond the boundaries of the target sequence, and this flanking

sequence may also be included in the assembly. In some instances

the identity of the sequence that flanks the target may be unknown

and may in fact be of greatest interest to the user. A consensus

sequence is derived, taking exactly matching bases at each position

within the target region, and extended outward, bi-directionally, to

include the most represented base at positions outside the target

sequence. In this regard, TASR is unchanged from the most

recent version of SSAKE (v3.7) where consensus bases, situated

outside the target region are derived using a majority-rule

approach analogous to that of VCAKE [5]. For extension, each

base has to be covered by user-defined -o (set to 2 by default) and

its abundance relative to the next most called base equal or above

the user-defined ratio –r (0.7). Extension is terminated when a
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position is encountered that does not meet these user-specified

criteria. This process is repeated for each target sequence supplied

in the –s file. TASR outputs target-derived contigs in fasta format,

read positions and base coverage in text files and per-position

information in a modified pileup format [6].

Implementation
TASR is implemented in PERL and will run on any platform

where PERL is installed. It is available (under GPL licence) from:

http://www.bcgsc.ca/bioinfo/software/tasr and supplemental

data files from: ftp://ftp.bcgsc.ca/supplementary/TASR.

Testing
TASR runs were executed on a shared computer running

CentOS 5.5, with 2 Intel Xeon X5680 CPUs at 3.33 Ghz (12

core, 24 threads) and 48 GB of RAM. At most, using our larger

data set (3.5B Saqqaq Paleo-Eskimo NGS reads), TASR required

,10 M RAM and ran for 12 hours.

Verifying candidate SNVs in a lobular breast cancer
genome

Shah and co-workers [7] reported 32 confirmed somatic coding

single nucleotide variants (SNVs) in a metastatic lobular breast

cancer specimen. These confirmed variants resulted from testing, by

capillary re-sequencing, of a larger number of putative variants that

were originally suggested by whole tumour genome shotgun

sequencing (WGSS) using the Illumina platform and running

Maq [8] and SNVmix [9]. We interrogated 31 of these verified

SNVs using 51 nt sequence targets containing either the mutant or

the HG18 reference base. We also selected, at random, 31 SNVs

that had been tested by capillary re-sequencing, but not verified

(Shah et al., unpublished data). The sequence data, providing up to

36-fold coverage of the human genome, was analyzed incrementally

(Figure 1) using TASR (default options). Maximum sensitivity was

reached at moderate coverage (ca. 36-fold) where 29/31 (93.5%) of

previously verified SNV were positive for the variant in question.

Interestingly 30/31 (96.8%) also showed the reference base,

reflecting the cellular heterogeneity of the tumour. At this same

coverage only 9/31 of variants that failed previous verification by

capillary sequencing showed the SNV, and of these, 7 showed the

reference base. Thus, TASR does not re-identify the majority

(.70%) of this subset of false-positive SNVs originally detected by

Shah and colleague in NGS data, which highlights its utility as a tool

to validate variants computationally, post sequence alignment,

before undertaking orthogonal methods of variant verification such

as resequencing. This improved level of discrimination for putative

SNVs may significantly streamline on-going efforts to verify putative

tumour mutations.

Detecting an HPV fusion in HeLa cells
As part of the original development of NGS RNA-seq

methodology, Morin and colleagues [10] evaluated HPV18

transcription in HeLa cell lines, which are known to carry this

viral integration. We set out to determine the human-HPV fusion

site by targeted assembly of these RNA-seq reads. Using four 38 nt

sequence targets each comprising the same 37 HPV-specific bases

preceding one of four possible DNA base as the 38th base,

respectively, we used TASR (default options) to interrogate

37.4 M RNA-seq reads. A single sequence target was extended

into a contig that also comprised human cDNA sequences.

Overall, 288 NGS reads co-assembled and 51 chimaeric reads,

each having 1 or more HPV18- and human-only base(s) covered

the fusion site.

Detecting fusion transcripts in prostate adenocarcinoma
For each of the RNA-seq data sets corresponding to three

adenocarcinoma and 3 non-tumour adjacent prostate tissue

samples [11], we looked for the presence of a fusion gene,

TMPRSS2:ERG, which is known to be common in prostate

adenocarcinoma, and is a strong prognostic indicator [12]. Using

two 50 nt target sequences, one containing the last 36 bp of exon 1

and the first 14 bp of exon 2 and the other the last 36 bp of

TMPRSS2 exon1 and first 14 bp of ERG exon 4, we ran TASR on

each set (-m 15 –c 1 other options defaulted). In another expe-

riment, we used two 38 nt sequence targets that differed only by

their last 39 base, simulating a scenario where very little

information is available about a given event (Figure 2). We

designed both experiments with the aim of detecting portion of the

TMPRSS2 and TMPRSS2:ERG transcripts and ran TASR under

the same conditions. In both experiments, we found the fusion in

2/3 adenocarcinoma samples (SRX027124, SRX027125) and 1/3

adjacent normal sample (SRX027128) with reads spanning the

fusion coordinate and containing both unique ERG and TMPRSS2

bases. This finding, although unknown to us at the time of

experimentation, is consistent with that of Nacu and colleagues

who made this NGS data set public ahead of publication [11]. The

TMPRSS2-only target also yields a contig for a non-fusion

transcript. The number of fusion reads is generally lower than

that of the TMPRSS2 transcript (adenocarcinoma NGS data

SRX027125, Figure 2) and may be an indicator of lower

expression of the fusion, and/or cellular mosaicism. Although

we used the entire available SRA data for each corresponding

sample, we noticed that a single sequence run (e.g. SRR066437

,4.7 M spots) was sufficient for detection of the fusion in positive

samples.

Detecting SNPs in ancient human DNA
Rasmussen and colleagues [13] used a 4,000 year old sample of

perma-frost-preserved hair to obtain the genome sequence of an

early Paleo-Eskimo settler of Greenland, and reported single

nucleotide polymorphisms (SNPs) including those known to confer

phenotypes such as black hair color, dry ear wax, higher % fat

mass, cold adaptation, not European light skin, and thick hair/

shovel shaped upper front teeth. We interrogated the sequence

data (3.5 billion 70 nt reads obtained from the SRA) to determine

whether targeted assembly could recover these specific, but no

other, SNPs. We ran TASR (default options) using sequence

targets that were each 70 nt in length and contained the variant or

reference alleles. By providing a comprehensive target sequence

file that accounts for all known polymorphisms within the alleles

tested, we hypothesized that only reads having the legitimate base

will be recruited and co-assemble with the appropriate target

sequence. We found read support for all six variants and no

evidence of other alleles at these positions. Read coverage over

each SNP is variable with the cold adaptation, high % fat mass,

not European light skin, black hair, dry earwax and thick hair-

associated polymorphisms covered by 3, 7, 7, 17, 22, 34 reads,

respectively. None of the negative controls (sequence targets

comprised of any possible alternate alleles from dbSNP) co-

assembled sequence reads over the base under scrutiny.

Detecting variations in a deeply sequenced trio from the
1000 Genomes pilot project

The 1000 Genomes Project Consortium has set out to map

human genome variation by deep sequencing in order to gain

insight into the relationship between genotypes and phenotypes

[14]. In their pilot phase, the consortium analyzed low coverage
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whole-genome sequencing data from 179 individuals from 4

populations, plus deeply sequenced genomes from two trios

(mother-father-daughter families) from Nigeria (YRI) and Utah

(CEU), and reported variation. Here, from the YRI trio, we have

randomly selected ten loss-of-function (LOF) SNPs, ten LOF

indels, and ten structural variants (SVs) from chromosomes 1 and

2 that were non-LOF deletions (. = 50 nt) and re-assessed these

using TASR. For SNPs and indels, we used the dbSNP accession

numbers provided by the consortium to retrieve ,52 nt-long

target sequences. For the re-identification of SVs, target

sequences varied in length from 58–90 nt and their design was

informed by the vcf file summarizing base deletions . = 50 nt

identified from the YRI family data (trio.2010_10.deletions.

sites.vcf). A subset of the raw sequence reads were obtained which

provided approximately 27-fold average genome coverage for

each subject (,13.66 diploid coverage). TASR was run on each

set (options defaulted) and the results are summarized in Table 1.

Out of 30 total genome variations inspected, 29 (97%) were re-

identified by TASR in at least one member of the trio. The

mother had the lowest re-identification rate at 90%. Complete

variant re-identification was not expected since we used only a

subset of the raw data. Further, TASR’s stringency is very high

and sequences containing error or adjacent variants not

contained within the target sequence will impair read recruitment

and assembly. Yet, interesting observations can be made. For

instance, when comparing TASR variant re-identification to the

portion of the 1000 genomes data with available genotype

information for all three individuals (SNP and indels), we obtain a

93.3% concordance. Further 9/10 SNPs, 7/10 indels and 8/10

SVs are re-identified in all family members in a manner

consistent with the family member genotypes (when applicable)

and there are no instances of variants that are inconsistent with

inheritance. For example, 20/20 SNP and indel detected by

TASR were present in the child and one of the two parents, and

transmission can be inferred for these variants.

Discussion

TASR is a targeted de novo assembler that uses supplied

sequences to target initial read recruitment and assembly. The

targets can be any sequence, actual read, existing reference or

synthetic sequence. For example, when testing for fusion

transcripts, or any other unknown sequence flanking a target,

NGS data sets could be interrogated using four distinct target

sequences, each with one of the four possible nucleotides as their

last 39 base. This is a key advantage of targeted assembly, since

alignment of NGS sequence to a complete reference would not be

expected to return sequence reads that contained a significant

number of non-reference bases. Likewise, reads representing a rare

fusion or insertion event may be excluded from whole genome de

novo assemblies if they have low representation in the NGS raw

data. Further, most large-scale de novo assemblies are precluded by

the shear data size, such as those processed in our study (e.g. 3.5B

Saqqaq Paleo-Eskimo NGS reads from 238 Illumina sequence

lanes). Although the development of de novo assemblers such as

ABySS [15] and SOAPdenovo [16], now makes whole-genome

and whole-transcriptome human NGS read assembly a reality,

researchers would still have to sift through thousands, if not

millions, of contigs for sequences of interest. We provide a solution

that allows relatively quick (,3.5B reads from 238 sequencing

lanes providing 816average coverage of a 3 GB human genome,

processed in 12 hrs) and flexible hypothesis testing that is targeted

to a genomic region of interest, whether it comprises a fusion,

translocation, SNV or SNP.

In TASR, the assembly results are influenced strongly by the

design of the target sequences used as input. Targets that are as

long as the shortest read being considered and shorter than two

read sizes (e.g. a 70 bp target could be extended by 2 * (70 – m

option) will produce the best results. This length will ensure that all

overlapping 15-mer from a given target recruit the maximum

number of candidate reads for assembly. Also, the use of longer

NGS reads (.70) will increase the chance of generating longer

Figure 1. Detection of true positive versus false positive SNVs in lobular breast cancer. TASR was run incrementally on up to 2 billion, 51
and 76 nt lobular breast cancer NGS whole-genome shotgun reads, providing 5 to 36-fold coverage of the 3 Gbp human genome. We used as targets
51 nt sequences containing one of 31 SNVs detected by NGS read alignment and confirmed by Sanger sequencing (true positive), 31 matching
sequences containing the reference base instead (reference) and 31 detected by NGS read alignment but not confirmed by Sanger sequencing (false
positive). Although close to twice as much WGSS data had been generated from the LBC sample, we see that a fraction of that (,19-fold) is sufficient
for confirming most (68%) true positive SNVs.
doi:10.1371/journal.pone.0019816.g001
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contigs with more novel or previously unknown bases, which is

instrumental in the characterization of previously unknown events,

such as the detection of a viral integration site. For example, using

33 nt NGS reads and setting the minimum overlap to 15 could

extend the target on each side by at most 18 bp (33-15) whereas

the use of 150 nt reads with 150 nt targets could yield 420 bp

contigs having up to 270 previously uncharacterized bases.

Frequently, it may be of interest to mine a NGS data set for the

presence of one or more single nucleotide variants of interest; for

example, variants that have known associations to specific traits or

genetic disorders. For SNV or SNP detection, it is prudent to have

the base under scrutiny in the middle of the target, to increase the

chances of recruiting candidate reads that have the particular base

at any possible position. It may seem peculiar to use a de novo

assembler to help validate single-base changes in genomes,

especially now that fast and large-scale read alignment methods,

such as bwa [17], exist. TASR has the advantage of 1) conducting

targeted assembly to a specific region and thus, alleviate the need

of sifting through large alignment or assembly files. Also, 2) it is

very stringent in that it will only recruit and co-assemble NGS

reads whose bases overlapping the target sequence are in perfect

agreement. This has the advantage of rapidly testing a simple

hypothesis such as whether a locus has the reference base, a

variant or both, by looking at a read pileup over the base under

scrutiny. Lastly, 3) it performs de novo assemblies, such that

overlapping bases that fall outside the target region have the

potential to characterize a novel sequence.

For targeted sequence assemblies, the 1000 Genomes Project

Consortium [14] employed TIGRA (L. Chen, unpublished:

http://genome.wustl.edu/software/tigra_sv) to reassemble NGS

reads that had been initially aligned to a reference. TASR is

fundamentally different in that it does not require a priori whole-

genome short read alignment for targeted assembly and, as such,

will interrogate all raw reads supplied as input for the presence of

the variant. The difference between ab initio variant discovery by

alignment-guided targeted assemblers and variant re-identification

with TASR is one that highlights the utility of the latter for

genotyping directly from raw NGS data, without the need for

whole-genome alignments. This method has the advantage of

considering all reads for assembly with overlap potential to target

sequences, including those that may otherwise not align to a

specific site and excluding those that may have been misaligned to

Figure 2. De novo assembly of prostate carcinoma RNA-seq data. Using a TMPRSS2:ERG target sequence that differs from a TMPRSS2 target
by a single base (underlined), TASR generated a contig, which captures 18 ERG-specific bases fused to exon 1 of TMPRSS2 in a prostate
adenocarcinoma sample (SRA accession SRX027125). These bases were not specified in the target sequence and thus, unknown from the original
hypothesis. A total of 121 reads span the TMPRSS2:ERG fusion coordinate (underlined base). Higher base coverage is expected in the middle of the
contig where 15-mer read recruitment reaches a maximum for both strand and is unaffected by the limiting effects of the minimum overlap (-m)
option on the edge of the sequence target. This highlights the importance of using a sequence target that is sufficiently long and at least the same
length as the input reads. From this result, it is very likely that the prostate adenocarcinoma sample contains an admixture of TMPRSS2 transcripts,
including the TMPRSS2{NM_005656.2}:r.1_71_ERG{NM_004449.3}:r.226_3097 fusion and that those have varied abundance, as reflected by high
depth of coverage.
doi:10.1371/journal.pone.0019816.g002
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a reference when using alignment-guided assembly approaches. A

recent analysis [18] has shown that considerable novel human

genome sequences remain to be discovered. While the haploid

human genome size is ,3.156 Gbp (GRCh37.p3; http://www.

ncbi.nlm.nih.gov/genome/assembly/grc/human/data/index.shtml),

the human pan-genome may have an estimated 19 to 40 Mb (up to

1.3%) of novel sequences, not found in the reference human genome

[18]. It should be noted that TASR is not suited for the ab initio

characterization of novel, kilobase size, sequence segments for which

no information is available beforehand. This is accomplished best by

whole-genome de novo assembly methods [16,18] and alignment-

guided targeted assemblies. However, while TASR was not designed

for the purpose of comprehensive pan-genome analysis, it may have

utility in searching population data sets for sequences that are unique,

putatively, to an individual.

The utility of TASR is to interrogate specific target sequences

by local assembly. The targets can be any sequence, an actual

read, a reference or synthetic sequence. Here we demonstrate,

using TASR, the mining of NGS data sets for fusion transcripts

and two types of single nucleotide variants (SNV), somatic

mutations in tumour genomes and polymorphisms in ancient

DNA and whole-genome sequence projects. TASR uses a

stringent targeted assembly scheme, where the more complex

and unique a target sequence is, the less likely non-specific reads

are to co-assemble, facilitating variant detection. TASR may be

used in a manner that is complementary to NGS read alignment

Table 1. Re-identification of human genome variations from the 1000 Genomes pilot project.

Genome variations
Read count(s) over SNP or junction1 and genotype2 for YRI
trio member

Type
Identifier
(dbSNP or 1000 Genomes ID) SNP Mother Father Daughter

SNP rs1736565 C/T 0/7T/T 11/9C/T 0/15T/T

rs6443930 C/G 7/5C/G 12/0C/C 14/0C/C

rs2645341 C/T 0/5T/T 0/17T/T 0/9T/T

rs13191323 C/T 0/89T/T 0/11T/T 0/15T/T

rs1965370 C/G 0/11G/G 0/14G/G 0/9G/G

rs10862125 C/T 0/12T/T 0/11T/T 0/14T/T

rs6511602 C/T 0/0T/T 0/4T/T 0/7T/T

rs2245425 G/A 2/2G/A 9/2G/A 12/7G/A

rs4509745 C/T 5/6C/T 8/10C/T 0/21T/T

rs7004273 G/A 0/10A/A 0/13A/A 0/15A/A

Indels rs58432514 2/G 0/1G/G 0/6G/G 0/15G/G

rs11450450 2/C 0/2C/C 0/10C/C 0/19C/C

rs35933224 2/TTTG 6/02/TTTG 17/462/TTTG 10/02/2

rs140511 2/C 0/1C/C 0/4C/C 0/8C/C

rs11382443 2/A 9/02/2 6/82/A 5/32/A

rs57304020 2/G 0/3G/G 0/2G/G 0/5G/G

rs3078330 2/TA 0/2TA/TA 0/11TA/TA 0/10TA/TA

rs11303415 2/C 1/02/2 3/02/C 2/32/C

rs59393160 2/GT 0/72/GT 0/14GT/GT 0/15GT/GT

rs35117663 2/AG 5/22/AG 23/02/2 11/02/2

SV P2_M_061510_1_103 2/D175G 4/03 4/8 12/1

P2_M_061510_1_308 2/D58A 0/3 8/0 0/10

P2_M_061510_1_533 2/D67G 11/0 7/11 10/0

P2_M_061510_1_198 2/D66T 0/3 5/5 11/6

P2_M_061510_2_234 2/D103x4 0/0 7/3 11/6

P2_M_061510_2_875 2/D60C 0/0 0/0 0/0

P2_M_061510_2_606 2/D76C 0/12 15/4 10/14

P2_M_061510_2_578 2/D63C 5/0 9/0 18/0

P2_M_061510_2_858 2/D63ATCATA 0/4 1/0 9/8

P2_M_061510_2_210 2/D61CTCAT 7/10 7/0 14/0

SNP: Single Nucleotide Variant SV: Structural Variation.
1Re-identified by TASR. Only reads spanning variation within 5 bases of read start/end were counted.
2In superscript, genotypes were determined by the 1000 genomes project. This information is not available for SVs.
3A/B : A = coverage of reads over the non-deleted portion B = coverage over the deletion breakpoint.
4x = ACTAGTGCATTTCAATAATCATG.
Underlined are discrepancies between TASR and the genotype calls, all of which are due to insufficient read coverage.
doi:10.1371/journal.pone.0019816.t001
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tools, in order to help confirm false-positive events that may result

from NGS sequencing or mapping errors. As it performs a de novo

assembly of reads outside the target region, it may be used for the

targeted assembly of chimaeric reads whose bases may help

characterize novel fusion, translocation or integration events.

Since TASR does not require indexed databases or multi-staged

runs it is easy to use. It runs on commodity hardware with a low

computer resource footprint.

Methods

Lobular breast cancer (LBC) whole-genome sequence data were

previously described [7]. We processed ,2B paired-end reads (76

and 51 bp) which provided ,36-fold coverage of the human

genome. The HeLa RNA-seq data (37.4 M single-end 31 bp

reads) was obtained from Morin and colleagues [10]. RNA-seq

data from 3 human prostate adenocarcinoma and 3 matched

adjacent normal samples was obtained from the SRA

(SRP003611) [11]. An average of 32 M reads (33 bp) was

downloaded for each of 5 samples, and from the 6th sample,

SRX027125, we obtained 65.5 M reads. All of the 3.5B whole-

genome shotgun sequences (70 bp reads in 238 fastq files totalling

878 Gbytes) from the extinct Saqqaq Paleo-Eskimo [13] was

obtained from the SRA (SRP001453), for the purpose of targeted

assembly of SNPs (dbSNP: rs5746059, rs17822931, rs16891982,

rs1426654, rs3827760, rs1042522). From the 1000 Genomes FTP

site [14] (ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/pilot_data/

data/), an average of 2.16109 whole-genome NGS fastq reads for

each of the mother (NA19238), father (NA19239) and daughter

(NA19240) YRI trio sample were downloaded. A total of sixty

sequence targets containing the ancestral or variant allele were

designed from ten randomly selected SNPs (dbSNP: rs1736565,

rs6443930, rs2645341, rs13191323, rs1965370, rs10862125, rs

6511602, rs2043336, rs1128966, rs7004273), indels (dbSNP:

rs58432514, rs11450450, rs35933224, rs140511, rs1138244,

rs57304020, rs5794199, rs3078330, rs10591060, rs11340767) and

ten SVs that were deletions (. = 50 nt) located on chromosomes 1

and 2 (P2_M_061510: 1_103, 1_308, 1_533, 1_198, 2_234, 2_875,

2_606, 2_578, 2_858, 2_210).
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