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Abstract: Oilseed rape (Brassica napus) is a Cadmium (Cd) hyperaccumulator. However, high-level
Cd at the early seedling stage seriously arrests the growth of rape, which limits its applications.
Brassica juncea had higher Cd accumulation capacity, but its biomass was lower, also limiting its
applications. Previous studies have confirmed that Selenium (Se) can alleviate Cd toxicity. However,
the regulatory mechanism of Se in different valence states of Cd accumulation was unclear. In
this study, we investigated the ameliorating effects of three Se valence states, Na2SeO4 [Se(VI)],
Na2SeO3 [Se(IV)] and Se-Met [Se(II)], to Cd toxicity by physiological and biochemical approaches
in hydroponically-cultured Brassica juncea and Brassica napus seedlings. Although Se treatments
slightly inhibited seedling Cd concentration, it tripled or quadrupled the Cd accumulation level
per plant, because dry weight increased about four times more with Se and Cd application than with
Cd treatment alone. Among the different valence states of Se, Se(II) had the most marked effect on
reducing Cd toxicity as evidenced by decreased growth inhibition and Cd content. The application of
Se(II) was effective in reducing Cd-induced reactive oxygen species accumulation, and promoted the
antioxidant enzyme activity and photosynthesis of both Brassica species. In addition, Se(II) treatment
increased the concentrations of Cd in the cell wall and soluble fractions, but the Cd concentration in
the organelle part was reduced.
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1. Introduction

Cadmium (Cd) is a trace heavy metal naturally present in soil. With the development of industries
such as mining and smelting, Cd pollution has become increasingly serious [1]. Cd, a non-essential
element of plants, has become a common pollutant in farmland soil environment. Cd ions in the soil
are absorbed by the plant roots and transported to the leaves via symplast and apoplast transport [2].
Taken up in non-tolerable amounts, Cd causes growth inhibition and even death by deteriorating
physiological processes, including biomass production, nutrient acquisition, antioxidant enzyme
activities, and photosynthesis [3,4]. Appropriate fertilization, vacuolar sequestration, and adding
exogenous ions might be effective in reducing Cd uptake and its accumulation in crops [5,6].
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Recent studies show that the addition of Selenium (Se) as an exogenous ion can reduce Cd toxicity
in plants.

Selenium (Se) is one of the essential micronutrients for humans and animals, but is not a necessary
nutrient for plant growth. The right amount of Se in plants can inhibit peroxidation, restore the
integrity of cell membrane structure and function, change the presence and location of heavy metals,
and promote growth development [7–9]. Previous reports have shown that Se and Cd in plants
are antagonistic, Se can reduce the uptake of Cd in plants [10,11]. Se exists mainly in the form of
selenate [Se(VI)], selenite [Se(IV)], and selenide [Se(II)] [12]. However, there have only been a few
studies on different valences of Se mitigating the mechanism of Cd toxicity [7–12].

Oilseed rape (Brassica napus L.) is a Cd hyperaccumulator [13]. Black mustard seed
(Brassica juncea L.) has a strong absorption and accumulation ability for Cd, but its geographical
distribution range is limited [14]. Oilseed rape has a wide planting area, high yield, and high
economic value, but low absorption capacity for Cd [15]. Thus, we selected Brassica napus (BN) and
Brassica juncea (BJ) as experimental materials. The purpose of this study is to analyze and evaluate
different valencies of Se on Cd accumulation in the two Brassica species. Cadmium stress at the early
seedling stage seriously arrested the growth of rape. Although Se treatments have slight inhibitions on
the concentration of cadmium per dry weight, selenium significantly increased the biomass of rape,
and, hence, it can triple or quadruple the cadmium accumulation level per plant.

2. Results

2.1. Effect of Different Valence States of Se on Plant Growth

As shown in Figure 1, the biomass of BN is significantly higher than that of BJ in different
treatments. Under Cd treatment, BN seedlings showed obvious symptoms of Cd toxicity, such as leaf
chlorosis and growth inhibition. However, Cd-induced growth inhibition was dramatically reduced
after the application of Se, and the dry weight (DW) increased about one to four times, compared with
Cd-alone treatment. Relative to treatment with Se(IV) and Se(VI), the Se(II) treatment showed a more
significant increase in DW in the two Brassica species. However, there was no significant difference in
the effects of Se on Cd-mediated growth inhibition between the BJ and BN.
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+ 50 µmol/L Cd, (5) 3 µmol/L Selenium (Se)-Met + 50 µmol/L Cd. All values were means ± SD (n = 3).
Different small letters indicate significant difference at p < 0.05.

2.2. Effect of Different Valence States of Se on Se and Cd Content

The accumulation of Cd in BJ was always higher than that in BN, and it can be inferred that
absorption of Cd by BJ was stronger than that of BN. The maximum content of Cd was observed
in the root and shoot of the plant under Cd-alone treatment. In contrast to Cd-alone treatment,
the addition of Se(VI), Se(IV), and Se(II) significantly (P < 0.05) decreased Cd levels by 31%, 29%,
and 32%, respectively, in the shoot of BJ, but only by 15%, 20%, and 25%, respectively, in the shoot
of BN. Therefore, the addition of exogenous Se distinctly reduced the content of Cd, especially Se(II),
which could lead to less accumulation of Cd in both BN and BJ seedlings. The Se content in tissues
was also below the detection limit when exposed to 50 µM Cd (Figure 2). The Se content in the plant
markedly increased after the addition of exogenous Se. BJ accumulation of Se is significantly higher
than that BN, the order of Se content was Se(II) > Se(IV) > Se(VI). Although Se treatments slightly
inhibited seedling Cd concentration, it tripled or quadrupled the cadmium accumulation level per
plant (Figure 2), because the DW increased about four times on Se application compared with that of
Cd-alone treatment.
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2.3. Effect of Different Valence States of Se on H2O2, O2
−, and Lipid Peroxidation

Staining with nitro blue tetrazolium (NBT) and 3,3-diaminobenzidine (DAB) dye revealed
differences in accumulation of H2O2 and O2

− in shoot and quantified throughout the plant (Figure 3).
The BN seedlings accumulated more H2O2 and O2

− than the BJ. Figure 3 exhibited significant (p < 0.05)
increase of H2O2 and O2

− in Brassica seedlings exposed to 50µM Cd. However, Se addition significantly
reduced (p < 0.05) H2O2 and O2

−
·content. Among them, Se(II) alleviated the Cd-induced H2O2 and

O2
− accumulation most effectively. Malondialdehyde (MDA) content also showed the same pattern

with H2O2 and O2
−
·content under Cd stress. However, there was no obvious difference of MDA

contents in the roots and shoots of Brassica seedlings treated with three Se valence states.
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2.4. Effect of Different Valence States of Se on Antioxidant Enzymes Activities

Antioxidant enzyme activity exhibited differential responses to Cd stress in shoot and root under
different treatments (Figure 4). Cd-alone treatment caused dramatic increases in superoxide dismutase
(SOD) and peroxidase (POD) activity either in shoot or root. This increase was significantly reduced
by Se supplementation. In terms of catalase (CAT) activity, Se addition was effective in alleviating
Cd-inhibited shoot CAT activity. Interestingly, CAT activity was promoted in the BJ, but inhibited
in the BN under exposure to Cd alone. However, the change of CAT activity in root caused by Cd
was counteracted by the addition of Se. The three valence states of Se, especially Se(II), significantly
alleviated the changes in antioxidant enzymes induced by Cd-alone treatment.
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Figure 4. Effects of Cd and exogenous Se application on the superoxide dismutase (SOD), peroxidase
(POD) and catalase (CAT) in the shoot and root of two Brassica species. All values were means ± SD
(n = 3). Different small letters indicate significant difference at p < 0.05.

2.5. Effect of Different Valence States of Se on Photosynthetic Parameters

The Cd-alone treatment showed a significant decline in photosynthesis when compared with
untreated plants, and the decline was always higher in BJ than BN (Table 1). Both Cd and Se treatment
increased the value of net photosynthetic rate (Pn), intercellular carbon dioxide concentration (Ci), and
transpiration rate (Tr), but there were no significant differences in Se(II) and Se(VI). Color images visually
depicted the changes in maximum photochemical quantum yield of photosystem II (PSII) (Fv/Fm),
actual photochemical efficiency (ΦPSII), and non-photochemical quenching (NPQ) (Figure 5). The color
of the Fv/Fm image changed from blue to blue with sporadic green in Cd-alone treatment. The leaf
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color changed from blue to blue-green with sporadic blue in the ΦPSII under Cd stress. The color of
the NPQ image changed from red to red (yellow), with sporadic green when exposed to 50 µM Cd.
However, the color was recovered markedly after applying the three Se valence states, especially Se(II).
The quantified value chart more intuitively reflected the law of Fv/Fm, ΦPSII, and NPQ color change in
the leaf (Figure 5). The rate of change in BJ was lower than in BN under Cd-alone treatment, indicating
that the tolerance of Cd in the two Brassica species was different.
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Figure 5. ChlorophyII fluorescence parameters maximum photochemical quantum yield of photosystem
II (PSII) (Fv/Fm), actual photochemical efficiency (ΦPSII), and non-photochemical quenching (NPQ) of
Brassica juncea (BJ) and Brassica napus (BN) under different treatments. Representative fluorescence
images of different treatments are shown on the left panel. Quantitative values are shown on the
right panel. Fv/Fm, the maximum efficiency of PSII photochemistry in the dark-adapted state; ΦPSII,
the quantum yield of PSII electron transport; NPQ, the non-photochemical quenching coefficient.
All values were means ± SD (n = 3). Different small letters indicate significant difference at p < 0.05.
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Table 1. Photosynthesis of two Brassica species under the different treatments. Values are mean ± SD
(n = 3). Different small letters indicate significant difference at p < 0.05.

Materials Treatments Pn
(µmol m−2 s−1)

Gs
(mmol m−2 s−1)

Ci
(mmol m−2 s−1)

Tr
(µmol m−2 s−1)

BJ

CK 14.36 ± 0.03b 1.08 ± 0.08a 399.68 ± 1.51e 1.45 ± 0.03d
Cd 6.59 ± 0.01i 0.16 ± 0.00f 374.63 ± 0.50f 0.77 ± 0.00g
Cd + Se(VI) 9.37 ± 0.06g 0.68 ± 0.01d 434.11 ± 0.06c 2.54 ± 0.02a
Cd + Se(IV) 12.95 ± 0.06d 0.77 ± 0.05c 349.80 ± 1.50h 2.18 ± 0.04d
Cd + Se(II) 13.32 ± 0.00c 0.49 ± 0.01e 373.08 ± 0.42fg 1.99 ± 0.00c

BN

CK 16.85 ± 0.02a 0.04 ± 0.00e 442.03 ± 0.12b 2.20 ± 0.00b
Cd 5.77 ± 0.01j 0.12 ± 0.01f 400.25 ± 2.42e 0.24 ± 0.02h
Cd + Se(VI) 8.89 ± 0.06h 0.96 ± 0.01b 423.74 ± 0.37d 1.32 ± 0.00e
Cd + Se(IV) 11.49 ± 0.09f 0.14 ± 0.00f 371.07 ± 2.41g 1.22 ± 0.02f
Cd + Se(II) 12.00 ± 0.04e 0.73 ± 0.00c 492.57 ± 0.14a 1.97 ± 0.00c

Pn, net photosynthetic rate; Gs, stomatal conductance; Ci, intercellular carbon dioxide concentration;
Tr, transpiration rate.

2.6. Effect of Different Valence States of Se on Subcellular Cd Distribution

We studied the subcellular distribution of Cd to investigate how Se affected the uptake and
transport of Cd (Figure 6). A similar pattern was observed in two Brassica species under the same
treatment. Cd stress significantly increased Cd concentrations in the soluble fraction (Fs) and organelle
part fraction (Fco) but reduced that in the cell wall fraction (Fcw). Cd levels in Fcw and Fs were higher
than those in Fco in the shoot and root after adding Se in its three valence states (Figure 6). The Cd
content of Fco was lowest at Se(II) treatment.
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3. Discussion

Cadmium ion, Cd2+, is highly soluble and migratory and is easily absorbed by plants [1,2].
The biomass production is an important indicator for assessing plant tolerance to Cd toxicity. A study
indicated that, although there were no significant differences in the shoot biomass of the Se-supplied
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plants as compared to the Cd-exposed cucumber plants, the fresh weight of their roots increased
significantly after supplementation of a 50 µM Cd-polluted nutrient solution with 10 µM Se [16].
While for the pepper plants at the reproductive stage, Se supplementation improved the flower number,
fruit number, and fruit diameter in plants exposed to 0.5 mM Cd [17]. In our study, the exogenous
application of Se greatly improved plant growth when exposed to Cd stress (Figure 1). The reason was
that an increase in Se can promote carbohydrate metabolism and improve soluble sugar and starch
content [18,19]. In addition, Se can combine with other heavy metals to form insoluble complexes,
inhibit the absorption of heavy metals by plants, and reduce the accumulation of heavy metals in
plants [20]. The addition of Exogenous Se treatment can reduce the risk of Cd-induced oxidative
damages in rice and cabbage [11,21]. Similar results were observed in this study; notably, there was a
difference in the amount of Cd accumulated under the three valence states of Se treatment (Figure 2).

The lowest Cd content appeared in the Se(II) treatment, which may be related to the absorption
of Se. On the one hand, organic Se [Se(II)] was better for plant absorption than inorganic Se [Se(VI),
Se(IV)] [22]. After Se(VI) and Se(IV) are absorbed by plants, they are transported via sulfate transporters,
and often transformed into selenide (Se(II)) and incorporated into protein [23–26]. The levels of Se and
Cd were higher and lower, respectively, under Se(II) treatment relative to Se(VI) and Se(IV) treatment,
which suggests the protective role of Se against Cd toxicity might be dependent on the competition
between Se and the heavy metals. On the other hand, plants have evolved mechanisms, such as cell
wall compartmentalization, to alleviate heavy metal stress [27,28]. The cell wall is the first barrier to
confine the spread of heavy metals into the cell and contains proteins, polysaccharides, and organic
acids that effectively bind heavy metal ions, reducing their entry into the protoplast [29,30]. Se(II) can
improve Cd binding to the cell wall by increasing its contents of pectin and hemicellulose 2 [31].
Furthermore, Se(II) treatment increased Cd content in the soluble fraction, which may be related to
chelation of excess metals with cytosolic ligands (Figure 6). Most Cd in plants is combined with sulfur
in sulfur-containing organisms. Se and sulfur are both oxygen-group elements, and have similar
chemical properties [32]. Therefore, Se may combine with Cd by replacing sulfur to form a less mobile
complex that is accessible to occlusion in the vacuole, thereby inhibiting Cd’s mobility [33]. This might
suggest that Se(II) can alleviate Cd toxicity by altering the subcellular distribution of Cd. However,
there is no significant difference in the mitigation effect of Se on Cd between the two Brassica species.

Under Cd stress, the redox balance in plant cells is destroyed and large amounts of ROS
accumulate, which produces oxidative stress [14]. The exogenous addition of Se significantly inhibited
Cd-induced oxidative stress by the increase in the concentrations of H2O2, O2

−, and MDA (Figure 3).
Similar evidence that Se played a favorable role in inhibiting plant oxidative stress under Cd stress
has been observed previously [34,35]. Se(II) treatment significantly counteracted the increase in H2O2

and O2
− levels induced by Cd, compared to treatments of Se(VI) and Se(IV) (Figure 3). This may

be related to the different amounts of Cd accumulation in Brassica seedlings. In addition, plants
develop enzymatic systems to scavenge ROS in cells and oxidative damage, maintaining the redox
balance under Cd stress [36]. Se(II) treatment can catalyze O2

−
·disproportionation to produce H2O2,

which can be further degraded to completely non-toxic H2O and O2 to defend against cell membrane
lipid peroxidation [37]. Figure 4 provides strong evidence that different Se treatments (especially Se(II)
treatment) could effectively counteract the changes of Cd-induced antioxidant enzymes [38,39].

Chlorophyll fluorescence and gas exchange are considered to be important indicators of plant
response to heavy metal stress [40–42]. Under Cd-alone treatment, photoinhibition of Brassica
plants occurs, causing the reaction center of PSII to be inactivated or destroyed, thereby inhibiting
photosynthesis. Se can alleviate Cd-mediated inhibition on photosynthesis of two Brassica species,
especially Se(II) (Table 1). This may be related to Se(II), as Se(II) can increase antioxidant capacity of
some enzymes to enhance the plant’s resistance to Cd stress [43]. In addition, toxic metals damage the
antenna molecules and diminish the chlorophyll fluorescence [42,44]. PSII’s overall photosynthetic
capacity was diminished under Cd-alone treatment in this study, but supplementation of Se reduced
the Cd-induced disruption in photosynthetic apparatus. After Se supplementation, Brassica seedlings
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enable non-optical energy consumption for self-protection and alleviate Cd-induced damage to
photosynthesis. Consistent with this, Se supplementation could improve Cd-induced chlorophyll
fluorescence in mustard and tomato [45,46].

4. Materials and Methods

4.1. Plant Materials and Experimental Design

Seeds of Brassica napus (cultivar Zhongshuang 11) and Brassica juncea (cultivar Yongbao 2) were
sterilized, and vernalized with 2 mg/L of gibberellin at 4 ◦C for 3 days. The seeds germinated on
moist filter paper in the dark at 25 ◦C for 3–4 days, and were sown in culture medium (1/2 Hoagland
nutrient solution with 0.25% agar powder) in an artificial controlled chamber with a 16 h day/8 h night
at 25 ◦C/18 ◦C cycle, relative humidity 70%, and light intensity of 100 µmol m−2 s−1. When the true
leaf was fully expanded, similar size seedlings were transplanted to a plastic container and cultured in
1/2 Hoagland-Arnon nutrient solution.

On two weeks after transplanting, we applied CdCl2, Na2SeO4 [Se(VI)], Na2SeO3 [Se(IV)]
and Se-Met [Se(II)] to the corresponding containers: (1) Control (CK: without Cd or Se);
(2) Cd, 50µmol/L CdCl2; (3) Cd + Se(VI), 3µmol/L Na2SeO4 + 50µmol/L CdCl2; (4) Cd + Se(IV), 3µmol/L
Na2SeO3 + 50 µmol/L CdCl2; (5) Cd + Se(II), 3 µmol/L Se-Met + 50 µmol/L CdCl2. Plant samples
were collected after two weeks of treatment and were used for various biochemical assays (each with
four replicates).

4.2. Plant Growth, Biomass, and Element Determination

The shoot and root were separated and washed thoroughly with deionized water, and then
the samples were oven-dried at 75 ◦C for 2 days until constant weight was achieved, to determine
the DWs of the shoot and the root. The shoot and root of Brassica seedlings that have been baked
to constant weights were ground into a powder. Approximately 0.3 g samples were digested by
a microwave system (MWD-500, Metash instrument Co., Ltd., Shanghai, China) in a mixed acid
containing HNO3/HClO4 (v/v:4/1), and then sequentially diluted to 50 mL. Concentrations of Cd and
Se were determined using inductively coupled plasma-mass spectrometry (ICP-MS) (7900, Agilent,
Santa Clara, CA, USA).

4.3. Histochemical Staining and Determination of H2O2, O2
−, and Lipid Peroxidation

Nitro blue tetrazolium (NBT) and 3,3-diaminobenzidine (DAB) were used to examine visible
superoxide (O2

−) and hydrogen peroxide (H2O2) in plant leaves [47]. After sampling, leaves were
stained with NBT (0.5 mg/mL) and DAB (2 mg/mL) for 2 h and 8 h, respectively. Leaves were
bleached in boiling 95% ethanol. Superoxide content was quantitated, as described by Chen et al. [39].
H2O2 content was quantitated by the hydroxylamine method [41]. Malondialdehyde (MDA) content
was determined using thiobarbituric acid-reactive substances (TBARS) [48].

4.4. Determination of Antioxidant Enzyme Activity

The fresh samples were homogenized with 5 mL of extractant [50 mM Tris-HCl (pH 7.0) with
20% glycerin, 1 mM of ascorbic acid (AsA), 1 mM of dithiothreitol (DTT), and 1 mM of glutathione
(GSH)] using pre-chilled mortar and pestle. The homogenate was centrifuged at 20,000× g for 20 min
at 4 ◦C, and the supernatant was collected for testing. Superoxide dismutase (SOD) activity was
determined by nitroblue tetrazolium [49]; catalase (CAT) activity was determined by UV spectrometry
method [50]; and peroxidase (POD) activity was determined by guaiacol method [51].

4.5. Determination of Photosystem Parameters and Chlorophyll Fluorescence

Photosynthetic indicators were determined using a portable photosynthetic apparatus
(LI-6400; LICOR, Lincoln, NE, USA), and the measurement times were selected from 9:00 am to
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11:00 am. The measurement parameters included net photosynthetic rate (Pn), intercellular carbon
dioxide concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr).

The treated Brassica seedlings were placed in the dark for 30 min. The fluorescence parameters of
Brassica leaves were determined by IMAGING-PAM (Heinz-Walz Instruments, Effeltrich, Germany)
at room temperature. The parameters determined in this study included maximum photochemical
quantum yield of PSII (Fv/Fm), actual photochemical efficiency (ΦPSII), and non-photochemical
quenching (NPQ).

4.6. Subcellular Distribution of Cd

Gradient centrifugation technique was used for subcellular separation of Cd [52]. The fresh
sample tissues were ground in a 50 mM Tris-HCL buffer (pH 7.5) containing 0.25 M of sucrose and
1.0 mM dithioerythritol. The supernatant was centrifuged at 3000× g for 15 min, and the retained pellet
was the cell wall fraction (Fcw). The supernatant solution was further centrifuged (12,000× g, 30 min),
and the resultant deposition was the organelle-containing fraction (Fco). The remaining supernatant
was the soluble fraction (Fs). The metal concentrations were determined as described above.

4.7. Data Analysis

The data were statistically analyzed by Duncan test with SPSS 20.0 (IBM Research, New York,
NY, USA), and all diagrams were drawn using OriginPro 8 (OriginLab, Northampton, MA, USA). The
data were the average of the three replicates.

5. Conclusions

Although Se treatments slightly reduced Cd concentrations in Brassica seedling, they tripled
or quadrupled the Cd accumulation level per plant, because the dry weight increased about four
times more under Se + Cd co-treatment than under Cd treatment alone. Among the different
valence states of Se, Se(II) had the most marked effect on alleviating Cd toxicity, as evidenced by
promoting growth and inhibiting Cd accumulation. The application of Se(II) was effective in reducing
Cd-induced reactive oxygen species accumulation, and promoted the antioxidant enzyme activities
and photosynthetic activities. At the subcellular level, Se(II) treatment increased the concentrations of
Cd in the cell wall and soluble fractions, but decreased Cd level in the organelle fraction.
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BN Brassica napus
CAT catalase
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Ci intercellular carbon dioxide concentration
DAB 3,3-diaminobenzidine
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DTT dithiothreitol
DW dry weight
Fco organelle part fraction
Fcw cell wall fraction
Fs soluble fraction
Fv/Fm maximum photochemical quantum yield of PSII
Gs stomatal conductance
GSH glutathione
ICP-MS inductively coupled plasma-mass spectrometry
MDA malondialdehyde
NBT nitro blue tetrazolium
NPQ non-photochemical quenching
Pn net photosynthetic rate
POD peroxidase
PSII photosystem II
Se Selenium
SOD superoxide dismutase
TBARS thiobarbituric acid-reactive substances
Tr transpiration rate
ΦPSII actual photochemical efficency
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