
Inflammation and depression

n overwhelming amount of evidence indicates
that depressed patients exhibit increased markers of
innate immune system activation and inflammation.1 For
example, in a meta-analysis of over 50 studies, Howren
et al2 found that the majority of studies show that
depressed patients have elevations in the proinflamma-
tory cytokines, interleukin (IL)-6, and IL-1β as well as
the acute phase protein, C-reactive protein (CRP). A
recent meta-analysis has revealed that the proinflamma-
tory cytokine, tumor necrosis factor (TNF)-α, is also
increased in patients with major depression. 
In addition to the simple association between depression
and inflammatory markers, the administration of inflam-
matory cytokines such as the innate immune cytokine,
interferon (IFN)-α, can induce depression in a high pro-
portion of treated patients.3 In many ways this is paral-
lel to what is referred to as sickness behavior in animals,
which represents an adaptive response to acute infection
and other sources of inflammation such as wounding.4-6

The sickness response can be induced in laboratory ani-
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Mounting evidence indicates that inflammation may
play a significant role in the development of depression.
Patients with depression exhibit increased inflammatory
markers, and administration of cytokines and other
inflammatory stimuli can induce depressive symptoms.
Mechanisms by which cytokines access the brain and
influence neurotransmitter systems relevant to depres-
sion have also been described, as have preliminary find-
ings indicating that antagonizing inflammatory path-
ways may improve depressive symptoms. One primary
source of inflammation in depression appears to be adi-
posity. Adipose tissue is a rich source of inflammatory
factors including adipokines, chemokines, and cytokines,
and a bidirectional relationship between adiposity and
depression has been revealed. Adiposity is associated
with the development of depression, and depression is
associated with adiposity, reflecting a potentional vicious
cycle between these two conditions which appears to
center around inflammation. Treatments targeting this
vicious cycle may be especially relevant for the treatment
and prevention of depression as well as its multiple
comorbid disorders such as cardiovascular disease, dia-
betes, and cancer, all of which have also been associated
with both depression and inflammation.  
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mals by the acute administration of proinflammatory
cytokines such as IL-1β or TNF-α7-11 or indirectly via the
induction of peripheral immune activation by stimuli
such as bacterial endotoxin.12,13 Acute administration of
endotoxin as well as other immune stimuli including
typhoid vaccination causes a similar sickness syndrome
in humans that includes depressed mood, decreased
social interaction, sleep disturbance, and anhedonia.14,15

This constellation of symptoms, which parallels that
found in major depression, has also been consistently
observed during chronic administration of cytokines
such as IFN-α and β for illnesses including hepatitis C,
multiple sclerosis, and several types of cancers, including
malignant melanoma.3 To explore the degree to which
cytokine-induced depression parallels depression in
ostensibly medically healthy individuals, Capuron et al8

compared 20 patients who were being treated with INFα
for malignant melanoma with 28 medically healthy sub-
jects with major depression using the Hamilton Rating
Scale for Depression (HAM-D).16 Forty-five percent of
the IFN-α-treated patients developed major depression
during the 12-week follow-up period. There were mini-
mal differences in the severity of individual depressive
symptoms between patients who became depressed dur-
ing IFN−α treatment versus medically healthy depressed
individuals, although IFN-α-treated depressed patients
did exhibit more psychomotor retardation and weight
loss, and the medically healthy depressed group experi-
enced greater feelings of guilt and thoughts of suicide.8

These results suggest that the depression induced by
cytokines is remarkably similar to depression seen in
medically healthy depressed patients.
Of note, the link between inflammation and depression
may explain the frequent association between medical
illnesses and depression.17 As shown in Table I, while
there are many medical conditions associated with
increased rates of depression, the majority of these ill-
nesses are also associated with increased inflammation,
including not only infectious diseases and cancer but also
cardiovascular disease and diabetes, both of which are

now recognized to have an inflammatory component.18

Of note, when depression occurs in the context of med-
ical illness, it has been associated with increased con-
centrations of inflammatory cytokines. For example, sev-
eral studies have shown that depressed patients with
cancer19-22 or cardiovascular disease23 have higher periph-
eral blood concentrations of IL6 and CRP. Moreover,
depression scores have been shown to be strongly cor-
related with blood cytokine concentrations in these
patients.24

How do cytokines cause depression?

Access to the brain

Peripheral immune activation, such as that seen with
local infection, wounding and/or psychological stress,
induces release of IL-1α, IL-1β, IL-6, and TNF-α.5,25-27

However, these cytokines are too large to freely pass
through the blood-brain barrier, which raises the ques-
tion of how a centrally mediated behavioral effect is
achieved. Several pathways by which cytokine signals
can access the brain have been identified. Local release
of cytokines can stimulate peripheral afferent nerve
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Selected abbreviations and acronyms
5HTT serotonin transporter
CRP C-reactive protein
IFN interferon
IL interleukin
KYN kynurenine
TNF tumor necrosis factor

Noninflammatory diseases Inflammatory diseases

• Hypothyroidism • Neurological diseases

• Cushing’s disease - Cerebrovascular disease

• Porphyria - Multiple sclerosis

- Lewy body disease, etc

• Specific neoplasms

- Pancreas

- Oropharynx*

- Breast

- Melanoma

- Lymphoma, etc

• Cardiovascular disease

• Connective tissue diseases

- Lupus, psoriasis, etc

- Psoriasis

- Rheumatoid arthritis, etc

• Diabetes mellitus

• Inflammatory bowel diseases

- Crohn’s, ulcerative colitis

• Infectious disease (HIV), etc

Table I. Inflammatory and noninflammatory diseases associated with ele-
vated rates of depression. *Particularly in the context of combined
chemoradiation
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fibers such as the vagus that innervate peripheral tissues,
ultimately leading to activation of microglia, which can
produce cytokines in the brain. In addition, “leaky”
regions in the blood brain barrier such as the circum-
ventricular organs6,28 allow access of peripheral inflam-
matory mediators to the brain. Cytokines in the periph-
eral circulation can also cross the blood-brain barrier via
saturable active transport molecules expressed on brain
endothelial cells.29 Finally, in the context of chronic
immune stimulation, microglia activated by peripheral
TNF-α can produce the chemokine, monocyte chemoat-
tractant protein (MCP)-1, which in turn, can attract
monocytes into the brain parenchyma.30

Impact on neurotransmitter metabolism

Once cytokine signals reach the brain, there is a rich lit-
erature indicating that they can interact with virtually
every pathophysiologic domain relevant to depression,
including marked effects on brain monoamines, which are
the target of conventional antidepressant medications.
Indeed, cytokines have been shown to influence central
monoamine synthesis, release, and synaptic reuptake. 

Serotonin

Serotonin is synthesized from tryptophan by tryptophan
hydroxylase (TH) and aromatic amino acid decarboxy-
lase (AAAD), and the amount of serotonin in brain is
highly dependent on tryptophan availability.31

Specifically, depletion of tryptophan rapidly leads to
reduced brain serotonin levels, which in turn can pre-
cipitate depressive symptoms in vulnerable individuals.31

Activation of the enzyme idoleamine 2,3-dioxygenase—
IDO (and the related liver enzyme tryptophan 2,3-
dioxygenase) is an alternative pathway for tryptophan
metabolism yielding kynurenine (KYN) and leading to
tryptophan depletion and ultimately decreased sero-
tonin in brain.32,33 Several cytokines and their signaling
pathways have been shown to activate IDO34,35 (for a
review see Shelton and Miller14). Interestingly, periph-
eral administration of the cytokine-inducer, lipopolysac-
charide (LPS) to mice activates IDO and is associated
with depressive-like behavior.36 These LPS-induced
behavioral changes can be reversed by IDO inhibition
using the IDO antagonist 1-methyltryptophan. 
IDO activation also has other effects that may be rele-
vant to depression. For example, KYN is metabolized to

kynurenic acid (KYNA), which antagonizes α7 nicotinic
acetylcholine receptors32 and can reduce striatal
dopamine release (see below)37,38 KYN is also metabo-
lized to quinolinic acid (QUIN); QUIN leads to the gen-
eration of toxic lipid peroxides and activates N-methyl-
D-aspartic acid (NMDA) receptors and the release of
glutamate, all of which can contribute to neurotoxicity.39

The impact of QUIN on neuronal integrity has been
implicated in the pathophysiology of several degenera-
tive neurological conditions including Alzheimer’s,
Huntington’s, and Parkinson’s diseases, amyotrophic lat-
eral sclerosis, and human immunodeficiency virus-
related dementia.40-47 Of note, IFN-α therapy has also
been shown to increase KYN/tryptophan ratios in
humans, and KYN has been found to access the brain in
IFN-α-treated patients where it is associated with
increased cerebrospinal fluid (CSF) concentrations of
both QUIN and KYNA.48,49 CSF KYN and QUIN were
in turn correlated with depression in during IFN-α treat-
ment. 
Aside from its impact on tryptophan and serotonin syn-
thesis, immune activation can also affect serotonin avail-
ability by acting on synaptic reuptake via the high-affin-
ity serotonin transporter (5HTT).50 Activation of p38
mitogen activated protein kinase (MAPK) by both IL-
1β and TNF-α leads to phosphorylation of 5HTT and
increased neuronal uptake of serotonin.51 Expression52

and trafficking of 5HTT to the cell surface53 is also
increased by the activation of p38 MAPK. These effects
of cytokines on 5HTT expression and function have
been observed both in vitro and in vivo. Of note, poly-
morphisms in the 5HTT gene have also been associated
with the development of depression during cytokine
(IFN-α) administration.54,55

The relevance of immune-serotonin interactions is fur-
ther supported by the observation that serotonin reup-
take inhibitors can block the development of depressive
symptoms in the context of immune activation. For
example, one study56 randomly assigned 40 patients
undergoing IFN-α therapy for malignant melanoma to
treatment with the selective serotonin reuptake inhibitor
(SSRI) paroxetine or placebo for 12 weeks. Eleven per-
cent of the patients treated with paroxetine developed
depression as compared to 45% of the placebo group.
Almost all studies of SSRIs57-67 in the context of immune
activation have demonstrated benefit in reversing or
preventing immunotherapy-induced depressive symp-
toms.
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Dopamine

In addition to serotonin, cytokine effects on dopamine
metabolism may also be important in the pathophysiology
of inflammation-induced depression. Reduced prefrontal
and striatal dopamine activity is thought to be associated
with symptoms of depression such as decreased motiva-
tion, psychomotor slowing, fatigue, and lack of response to
rewarding stimuli.68,69 Positron emission tomography imag-
ing studies in humans undergoing IFN-α therapy show
increased striatal resting state glucose metabolism,70,71

which is believed to represent increased ocillatory burst
activity in neurons normally under tonic inhibition by
dopamine. Increased striatal resting state glucose metab-
olism is also found in other dopamine depletion states
including Parkinson’s disease.72,73 Animal studies show that
immune stimulation by TNF-α and IFN-α reduce brain
and CSF dopamine and its metabolites.74,75 In addition,
prodopaminergic agents such as levodopa or psychostim-
ulants improve fatigue and depression symptoms in
patients undergoing IFN-α therapy as well as a variety of
other conditions associated with inflammation including
cancer and systemic HIV infection.76-78

There are several mechanisms by which dopamine may be
depleted in the CNS during immune activation, aside from
decreased dopamine release secondary to the α7 nicotinic
acetylcholine receptor mechanism described above.32 For
example, IFN-α79 administration to rodents has been asso-
ciated with depletion of tetrahydrobiopterin (BH4), a
cofactor for tyrosine hydroxylase, the rate-limiting enzyme
in dopamine synthesis. Also, in a mechanism similar to the
effects of immune activation on 5HTT, phosphorylation of
the dopamine transporter (DAT) by MAPK kinase
(MEK) has been shown to increase cell surface expression
of DAT and uptake of dopamine.80 Therefore, relative
depletion of synaptic dopamine (via reduced synthesis and
release and increased reuptake) may underlie some of the
neurovegetative symptoms of sickness behavior and
depression, such as low energy, reduced motivation, and
reduced response to rewarding stimuli.69,81

The anti-inflammatory effects of antidepressant 
treatments and the antidepressant effects of 
anti-inflammatories

There have been a number of in vitro and in vivo stud-
ies of antidepressant medications82-98 and other antide-
pressant treatments such as electroconvulsive therapy99

indicating that antidepressant treatments can reduce
proinflammatory factors including IL2, IL-6, TNF-α, and
IFN-γ.1 In fact, the available evidence indicates that
many antidepressant therapies induce a shift from a Th1
(proinflammatory) to a TH2/TH3 (anti-inflammatory)
pattern.82,87,88,100,101 The IFN-γ to IL10 or IL4 ratio is a mea-
sure of relative TH1 to TH2-3 activity, and a number of
studies indicate that antidepressants decrease this
ratio.82,87,88 Because these effects have been observed both
in vitro and in vivo, they do not appear to be dependent
on the actions of these drugs on monoamines such as
norepinephrine or serotonin, suggesting a direct impact
of antidepressant medications on cytokines.95 Therefore,
the mechanism of antidepressant action in the context
of inflammation-induced depression may be a direct
effect on inflammatory factors themselves.
There is also a small but significant literature indicating
that anti-inflammatory drugs may produce antidepres-
sant effects. Cyclooxygenase 2 (COX-2) activity is
increased by proinflammatory cytokines, particularly 
IL-6, and it, in turn, activates the release of IL-1β and
TNF-α100 as well as prostaglandin E2 (PGE2), a central
mediator of sickness behavior.6 COX-2 inhibitors have
been shown to reverse depression-like behaviors in ani-
mal models.102-104 In addition, the COX-2 rofecoxib has
been shown to reduce depressive symptoms in patients
with osteoarthritis.105 Adjunctive treatment, the nonse-
lective COX-1 and -2 antagonist acetylsalicylic acid
(aspirin), increased remission rates in one open-label
study of depressed patients previously nonresponsive to
fluoxetine alone.106 A prospective, double-blind, placebo-
controlled trial of the COX-2 antagonist celecoxib (400
mg. per day) added to the norepinephrine reuptake
inhibitor antidepressant reboxetine (4-10 mg per day)
for 6 weeks showed greater effects of the combination
treatment than reboxetine alone.107

TNF receptor antagonists such as infliximab, adali-
mumab, golimumab, and certolizumab pegol, and the
TNF receptor fusion protein etanercept have been
developed in recent years to treat inflammatory and
autoimmune diseases such as psoriasis, rheumatoid
arthritis, and Crohn’s disease. Direct actions in depressed
patients have not yet been reported. However, one study
of etanercept treatment of psoriasis did examine anti-
depressant effects.108 Six hundred and eighteen patients
with moderate to severe psoriasis received double-blind
treatment with placebo or 50 mg twice weekly infusion
treatment with etanercept for 12 weeks. Patients on

T r a n s l a t i o n a l  r e s e a r c h

44

PAGES_11_AG_1040_BA.qxd:DCNS#48  5/03/11  11:36  Page 44



etanercept had greater improvements on measures of
depression (as measured by Beck Depression Inventory)
than those on placebo. Notably, these improvements
were not associated with reduction in psoriatic plaques
or joint pain, which indicates a primary effect of TNF
antagonism on depression, not simply a cosmetic or
analgesic effect.108 These effects were confirmed in sub-
sequent longer term studies in psoriasis patients109,110 and
in patients with rheumatoid arthritis.111 A similar effect
has been shown with the TNF-α monoclonal antibody
infliximab.112,113

Adiposity as a possible causal 
pathway to depression

In considering possible sources of inflammation leading
to depression, there has been increasing interest in the
role of obesity. Rates of overweight and obesity have
increased tremendously in recent years in both adults
and children.114-119 Along with this has been an epidemic
of related metabolic conditions like type 2 diabetes, dys-
lipidemias, cardiovascular and fatty liver disease, and
certain forms of cancer.120-122 The bulk of evidence links
obesity and its attendant complications to inflamma-
tion.123-125 The possible relationship between depression
and obesity appears to be bidirectional, as evidence indi-
cates that being depressed also increases the risk for the
subsequent development of obesity, probably mediated,
in part, by inactivity.126

Obesity as an inflammatory state

Adipose tissue is now understood as being a very com-
plex organ system.127 White adipose tissue (WAT) is the
main location for long-term fat storage in the body. WAT,
particularly in the abdomen, is the main contributor to
metabolic diseases.122,128,129 Adipocytes in WAT secrete a
variety of hormones, inflammatory factors including
cytokines (referred to as adipocytokines or
adipokines).130,131 These factors include hormones tradi-
tionally associated with adipose tissue such as leptin,
adiponectin, resistin, and visfatin; however, adipocytes
can also secrete IL-6 and TNF-α.130,130 Nevertheless, one
of the primary mechanisms for the induction of inflam-
mation in adipose tissue is the secretion of chemokines,
particularly MCP-1. MCP-1 attracts leukocytes such as
macrophages, T lymphocytes, and dendritic cells to adi-
pose tissue, which in turn secrete cytokines including IL1,

IL6, and TNF-α.132,133 Thus, chemokines and cytokines pro-
duced by WAT may contribute to widespread immune
activation, potentially causing or exacerbating diseases
associated with inflammation such as type 2 diabetes, car-
diovascular disease, cancer, and depression.130

Leptin is another important peptide produced by
adipocytes that regulates dietary intake. It regulates
appetite by acting on leptin receptors in brain, particu-
larly the hypothalamus.134 In the case of obesity, a state
of leptin resistance develops in which circulating levels
are actually increased but responsiveness is reduced.
Excess calories in the diet lead to leptin resistance; how-
ever, high-fructose feeding is a major contributor.135,136

Leptin is a member of the type I cytokine superfam-
ily;137,138 it is involved in the modulation of white blood
cell response, including T-cell activation and a shift to
Th1 cytokine production.137,138 Resistin is another pro-
inflammatory adipocytokine produced by both WAT
and monocytes.130 It sets up a positive inflammatory
feedback system in which the secretion of resistin is
increased by proinflammatory cytokines such as IL-1,
IL-6, and TNF-α, but it also increases the production of
these same cytokines by macrophages. 130,139 By contrast,
adiponectin increases fatty acid oxidation and reduces
the synthesis of glucose in the liver.137,138 Adiponectin,
whose levels are reduced in obese persons,137 has a pre-
dominantly inhibitory role in Th1 immune responses,
including the inhibition of IL-6 and TNF-α production
and an increase in the anti-inflammatory cytokine IL-
10.130 Therefore, dietary excess, leading to expansion of
WAT, produces a shift in the pro- and anti-inflammatory
mediators such as leptin, resistin, adiponectin, and other
adipocytokines, leading to a general proinflammatory
state.14 This, then, contributes to metabolic derangements
and disease such as dyslipidemias, cardiovascular disease,
and type 2 diabetes.123,130,140,141

The activation of inflammatory factors related to obe-
sity also appears to induce the IDO–KYN pathway.
Plasma tryptophan concentrations are reduced142 and the
KYN/tryptophan ratio is increased in obese relative to
lean individuals, indicating IDO activation142,143 Weight
reduction by diet142 or bariatric surgery143 restores a nor-
mal KYN/tryptophan balance. This is likely to be the
result of a reduction in the proinflammatory state after
weight loss.143 It, then, appears that, like other inflam-
matory diseases, the immune activation found in obesity
may shift metabolism from tryptophan to KYN, which
may contribute to depression.
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Adiposity and depression

Both depression and obesity, then, are associated with Th1
activation. However, is there evidence of a causal link in
either direction—ie, from depression to obesity of vice-
versa? Some larger-scale epidemiological studies have
failed to find a strong association between obesity and
depression.144,145 Nevertheless, while cross-sectional stud-
ies do not show strong correlations between depression
and obesity, longitudinal studies tell a very different
story.146-149 A recent meta-analysis of 15 longitudinal stud-
ies showed a bidirectional association between depression
and obesity (especially abdominal adiposity) in which
prior obesity increases the risk for depression and depres-
sion increases the likelihood of subsequent obesity.150

To further investigate this bidirectional relationship
especially as it pertains to inflammation, Miller et al151

conducted a mediational analysis152 evaluating the rela-
tionship between serum inflammatory markers (includ-
ing IL-1β, IL-6, TNF-α, CRP, and MCP-1) in 50 physi-
cally healthy young adults with depression and 50
matched controls. IL-6, CRP, and BMI were elevated in
the depressed sample compared with controls. When the
relationship between depression and both IL-6 and
CRP (but not IL-1β) were adjusted for BMI, the results
became nonsignificant, indicating a mediational role for
adiposity in the relationship between depression and
IL-6 and CRP elevation.151 A separate analysis of the
same dataset153 using structural equation modeling
(SEM) estimated the relationship among depression,
adiposity, leptin, and inflammation (IL-6 and CRP). The
best fit model indicated that the primary causal path-
way was from depression to adiposity to inflammation.
This was interpreted as indicating that depression leads
to increased adiposity (possibly through inactivity)
which, in turn, leads to an increase in inflammatory
markers. 

Diet and depression

Diets in much of the world have shifted to high carbo-
hydrates and a reduction in omega-3 (n-3) (unsaturated)
compared with omega-6 (n-6) (saturated) fatty acids.154

The intake of fish and other sources of n-3 fatty acids
appear to be somewhat protective from certain meta-
bolic conditions,155-163 and epidemiological studies have
associated an increased relative intake of fish with a
reduced risk for depression.164 However, it does not seem

to be primarily intake of fish per se, but so-called fatty
fish with high n-3 concentration (eg, anchovy, sea bass,
carp, dogfish, eel, halibut, herring, mackerel, mullet, fish,
roe, salmon, sardine, trout, and tuna) that lend protec-
tion against both metabolic diseases and depres-
sion.162,163,165,166

The benefits of the Mediterranean diet pattern

Recent studies have found particular health benefits,
including reduction in risk of depression, associated with
the so-called Mediterranean Diet Pattern (MDP).167 As
noted in the seminal work by Willett et al,167 this pattern
of eating has been associated historically with good gen-
eral health and longer life expectancy. This method “is
based on food patterns typical of Crete, much of the rest
of Greece, and southern Italy in the early 1960s” and
“included regular physical activity… abundant plant
foods (fruit, vegetables, breads, other forms of cereals,
potatoes, beans, nuts, and seeds), fresh fruit as the typi-
cal daily dessert, olive oil as the principal source of fat,
dairy products (principally cheese and yogurt), and fish
and poultry consumed in low to moderate amounts, zero
to four eggs consumed weekly, red meat consumed in
low amounts, and wine consumed in low to moderate
amounts, normally with meals.” This pattern of eating is
characterized by lower saturated and total fat content.
This manner of eating was shown recently to be associ-
ated with reduced risk for depression in a prospective
study of the relationship between the MDP and
health.168,169 A sample of 10 094 healthy persons in Spain
were assessed using a validated 136-item item food fre-
quency questionnaire to determine the relative adher-
ence to the MDP, and followed for 4.4 years. Using the
lowest adherence to the MDP as the reference condi-
tion, adjusted hazard ratios for depression for the higher
categories of adherence ranged from 0.74 for modest
adherence to 0.49. These results indicate a strong
prospective protective effect for the MDP. Of relevance,
earlier research found a strong inverse relationship
between adherence to the MDP and serum IL-6 with a
trend for CRP.170

These data indicate that diet is an important contributor
to inflammatory load and risk for depression. In addi-
tion to the n-3 to n-6 fatty acid ratio in the diet is the rel-
ative intake of carbohydrates, particular simple sugars.
Carbohydrates in Western diets have also increased sub-
stantially in recent years. While the intake of certain
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refined sugars such as cane sugar has declined over the
last 40 years, the total caloric load from sweeteners has
increased; this has primarily been in the form of fructose,
particularly in the form of high-fructose corn syrup (also
known as “corn sugar”).171 A high level of fructose intake
is associated with obesity and metabolic diseases.172-177

Although the specific role of fructose intake, as opposed
to increased total calories, has been questioned,178 it is
increasingly clear that high intake of fructose contributes
uniquely to problems of obesity179 and metabolic diseases
such as cardiovascular disease, dyslipidemia, and type 2
diabetes.180-182 Fructose has a very high extraction ratio by
the liver,183 and does not contribute significantly to
increases in insulin184 or satiety signaling.185 High levels
of fructose loading in the liver leads to the synthesis of
triglycerides, which contribute to liver and abdominal
fat.181,184,186 The shift in intake from proteins and “healthy”
fats to saturated fats and carbohydrates, particularly
fructose, has contributed to the worldwide epidemic of
obesity.

Does n-3 fatty acid supplementation reduce depression?

A recent study indicates that not all n-3 fatty acids reduce
inflammation; this study actually showed that docosa-
hexanoic acid, one constituent of fish oil, may actually
increased the ratio of interferon gamma to IL-10, indi-
cating a proinflammatory effect. However, eicospen-
taenoic acid (EPA) did not show this effect; EPA has
shown to reduce depressive symptoms in a few, smaller-
scale studies. One study187 randomized 70 persons with
major depression not responsive to antidepressants to
ethyl-eicosapentaenoic acid (e-EPA) (a specific n-3 fatty
acid) 1, 2, or 4 g per day or placebo as add-on therapy.187

Curiously, the 1 mg per day, but not 2 or 4 mg./day doses
was significantly better than placebo. Subsequent studies
have supported these results.188-190 Of note, a polymor-
phism in the gene for phospholipase A2, a key enzyme in
the metabolism of polyunsaturated fatty acids, was asso-
ciated with a 3-fold increase in the likelihood of devel-
oping major depression during IFN-α treatment as well
as lower blood concentrations of EPA.191

Diet, adiposity, and risk for depression in children

The increase in obesity in adults has been paralleled in
children and adolescents,119 along with an increase in
inflammation192,193 and inflammatory diseases previously

thought to occur mostly in adults: type 2 diabetes, fatty
liver disease, cardiovascular disease, and dyslipi-
demia.121,194-200 As described earlier for adults, the current
evidence suggests a bidirectional relationship between
obesity and depression in children.201 Prior depression in
childhood is a relatively strong predictor of the subse-
quent development of obesity, metabolic syndrome, and
related diseases in adult life.202-204 Depression may
increase risk by changes in diet, eating behavior, and
inactivity.126 Alternatively, baseline obesity may increase
risk for depression via increases in inflammation as well
as cultural aspects of beauty.205 Obesity negatively
impacts self-esteem based on cultural aspects of beauty
and desirability.205 Obesity also may contribute to risk for
depression via effects on physical activity, sleep, and eat-
ing behavior.205

Summary and conclusions

It seems clear at this point that inflammatory mediators,
whether they are generated by specific diseases or
administered exogenously (as with IFN therapy) can
lead to depression. It also appears that a significant sub-
set of depressed patients without known inflammatory
disease have inherent upregulation of inflammatory fac-
tors, particularly IL-6, TNF-α, and CRP, without other
known inflammatory disease.1,3,14 As posited in this paper,
one causal pathway for this increased inflammation may
be overweight and obesity. Therefore, depression (and
the inactivity and diet changes associated with it), obe-
sity, and inflammation may represent a “vicious cycle”
(Figure 1). A person may enter this cycle at any point–
obesity may lead to inflammation which leads to depres-
sion; depression may lead to inactivity and dietary
changes, which lead to obesity leading to inflammation;
inflammatory diseases may lead to both depression and
inactivity, resulting in obesity. Western high-fat, high-car-

Adiposity and depression - Shelton and Miller Dialogues in Clinical Neuroscience - Vol 13 . No. 1 . 2011

47

Figure 1. The obesity–inflammation–depression cycle. 
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bohydrate diets and inactivity may lead to obesity,
inflammation, and depression. This cycle may also
explain the common association between inflammatory
diseases such as lupus or fibromyalgia and both depres-
sion and obesity.206-218 Therefore, multiple, interacting fac-
tors may lead to a general decline in mental and physi-
cal health.
However, this cycle also provides multiple nodal points
for both treatment and prevention. For example, chil-
dren and adolescents at risk for depression (ie, with pos-
itive family history or those who have been trauma-
tized219) may represent a group for whom targeted diet
and exercise programs would be beneficial to help to
prevent or reduce risk for depression. In addition, recent
data indicate that overweight and obese patients have
reduced response to antidepressant treatments.220-222 For
example, a recent combined analysis of outcomes in
three clinical trials of marketed antidepressants divided

participants into normal weight (BMI<25), overweight
(BMI 25-<30), and obese (BMI > 30).221 The results indi-
cated progressive resistance to antidepressant therapies
from normal weight to obesity. Future interventions
could target overweight and obesity as a possible reme-
diable cause of treatment resistance. 
Depression is a complex condition with many potential
causal pathways; two, possibly interrelated mechanisms,
diet-associated overweight and obesity and inflamma-
tion have been reviewed. Although these mechanisms
represent only two among many causal paths, they
potentially explain many features, such as the common
association between inflammatory diseases and depres-
sion risk. Nevertheless, there is cause for optimism for
possible intervention strategies given the evidence for
success of lifestyle modifications such as exercise, diet,
and other weight loss approaches to inflammatory dis-
eases and obesity.116,167,207,216,223-225 ❏
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La inflamación en la depresión: 
¿es la adiposidad una causa?

Existe una evidencia creciente que señala que la
inflamación puede jugar un papel significativo en
el desarrollo de la depresión. Los pacientes con
depresión muestran aumentados marcadores infla-
matorios, y la administración de citoquinas y otros
estímulos inflamatorios pueden inducir síntomas
depresivos. También se han descrito mecanismos a
través de los cuales las citoquinas tienen acceso al
cerebro y afectan los sistemas de neurotransmisión
importantes en la depresión, y se cuenta con hallaz-
gos preliminares que indican que el antagonizar las
vías inflamatorias puede mejorar los síntomas
depresivos. Una fuente primaria de inflamación en
la depresión parece ser la adiposidad. El tejido adi-
poso es una rica fuente de factores inflamatorios
que incluyen las adipoquinas, las quemoquinas y las
citoquinas, y también se ha revelado una relación
bidireccional entre adiposidad y depresión. La adi-
posidad está asociada con el desarrollo de la depre-
sión y la depresión está asociada con la adiposidad,
lo que refleja un potencial círculo vicioso entre estas
dos condiciones que parece estar centrado en la
inflamación. Los tratamientos que se enfocan en
este círculo vicioso pueden ser especialmente rele-
vantes para el tratamiento y prevención de la
depresión como de sus múltiples trastornos comór-
bidos como la enfermedad cardiovascular, la dia-
betes y el cáncer, todos los cuales también se han
asociado con la depresión y la inflamación.   

L’inflammation dans la dépression : l’adipo-
sité en est-elle une cause ?

Un faisceau d'arguments sont en faveur d'un rôle
significatif de l'inflammation dans le développe-
ment de la dépression. En effet, les patients dépri-
més présentent une augmentation des marqueurs
inflammatoires, et l’administration de cytokines et
d’autres stimuli inflammatoires peut induire des
symptômes dépressifs. Des mécanismes par lesquels
les cytokines ont accès au cerveau et influent sur les
systèmes neurotransmetteurs liés à la dépression
ont aussi été décrits, des résultats préliminaires
ayant indiqué que le fait d’antagoniser des voies
inflammatoires pouvait améliorer les symptômes
dépressifs. L’adiposité semble une des premières
sources d’inflammation dans la dépression. Le tissu
adipeux est une source importante de facteurs
inflammatoires comme les adipokines, les chémo-
kines et les cytokines et il existe une relation bidi-
rectionnelle entre adiposité et dépression. En effet,
l’adiposité est associée au développement de la
dépression et la dépression est associée à l’adipo-
sité, traduisant un cercle vicieux potentiel entre ces
pathologies centrées autour de l’inflammation. Des
traitements visant ce cercle vicieux peuvent être
particulièrement pertinents dans le traitement et la
prévention de la dépression et de ses multiples
comorbidités comme la maladie cardiovasculaire, le
diabète et le cancer, qui sont aussi associés à la
dépression et à l’inflammation. 
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