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A cantilever-structure triboelectric nanogenerator
for energy harvesting and defect detection
via long short-term memory network

Chuanfu Xin,1 Zifeng Xu,1 Ying Gong,1,3 Hengyu Guo,4 Zhongjie Li,1,3,* Jiheng Ding,1,* and Shaorong Xie2,5,*

SUMMARY

The electric signals of cantilever energy harvesting devices with/without a crack
weremainly obtained by external sensors, so detecting device damage on a large
scale is difficult. To tackle the issue, a cantilever-structure freestanding triboelec-
tric nanogenerator (CSF-TENG) device was proposed, which can scavenge
ambient energy and act as a self-powered sensor. Firstly, the relation between
the peak-to-peak voltage and amplitude of the CSF-TENG was established.
Next, the output performance of the CSF-TENG was measured. Then, depending
on electric signals output by the CSF-TENG, a cantilever defect identification
model was built by using the wavelet packet and long short-term memory
(LSTM) algorithms. The experimental results manifest that the accuracy of the
model is about 98.6%. Thus, the CSF-TENG with a crack can be detected timely
due to its self-monitoring ability, which is of great significance for the develop-
ment of self-powered sensor networks.

INTRODUCTION

With the rapid development of big data and Internet of Things, billions of low-power sensors powered by chem-

icalbatteries areused.Due to the short lifespan, high cost of regular replacement, andenvironmentalpollutionof

chemical batteries, how to power sensor networks has become an urgent problem. To solve the problem, re-

searchers haveproposed somemethods to scavenge ambient energy, such aswind,1–3 water,4–6 andmechanical

vibration.7–9 Now, the commonly used methods for harvesting ambient energy mainly include electromag-

netic,10–12 piezoelectric,13–15 triboelectric nanogenerator (TENG),16–18 electrostatic,19,20 and magnetostric-

tive.21,22 Due to the advantages of simple fabrication, lightweight, high power density, low cost, and diverse

materials, TENGs have been widely used for harvesting ambient energy since 2012.

Due to the advantages of high sensitivity and without applying an external power source, TENGs have also

attracted considerable attention for acting as self-powered sensors. Yu et al.23 developed a particles-laden

droplet-driven triboelectric nanogenerator to monitor sediment particle parameters. Based on deep

learning method, the identifying accuracy achieves 96%. Garcia et al.24 reported a self-powered impact

sensor using triboelectric nanogenerators for estimating small energy impacts. According to the experi-

mental results, the output voltages and currents increase under the higher energy impacts, and the impact

sensitivity of 14 V/J and 901 nA/J is achieved. Zhao et al.25 proposed a clock pointer-like triboelectric nano-

generator to form a self-powered wind speed sensor. Due to the higher accuracy of algorithm parameters,

the self-powered sensor displays a superior performance for detecting wind speed. Zhang et al.26 investi-

gated a self-powered sensor based on triboelectric nanogenerators to monitor the driver’s steering ac-

tions. The experimental results manifest that the detection accuracy is 92%, demonstrating the potential

of triboelectric nanogenerators as action detection sensors. Zhang et al.27 designed a liquid-solid tribo-

electric nanogenerator as a self-powered sensor to detect liquid leakage. The experimental results show

that the sensor is sensitive to small liquid leakage and the classification accuracy is over 90%. In addition,

many sensors based on triboelectric nanogenerators were proposed, such as self-powered acceleration

sensors,28–31 self-powered flowmeters,32,33 sound monitoring and identification sensors,34,35 vibration fre-

quency monitoring sensors,36,37 etc.

Furthermore, based on the advantages of self-powered sensors, many researchers have utilized them to

detect engineering structure damage. Han et al.38 investigated a bearing fault diagnosis technology by
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using triboelectric nanogenerators as a self-powered sensor. Compared to the results of five algorithms,

the classification accuracy of the CNN algorithm is the highest, exceeding 99%. Zhao et al.39 studied a

self-powered vibration accelerometer based on triboelectric nanogenerators to monitor railway states. Ac-

cording to the experimental results, the output voltages and currents of the triboelectric nanogenerator

are linearly related to the vibration acceleration, which demonstrates the potential of the accelerometer

for fault diagnosis. Park et al.40 proposed a sponge-typed triboelectric nanogenerator as a motor fault de-

tector. Bymeasuring the vibration of amotor, the faulty motor can be detected indirectly. Besides, Li et al.41

developed a ball-bearing structured triboelectric nanogenerator to detect defects, Guo et al.42 reported a

triboelectric nanogenerator as a self-powered sensor to identify mechanical faults, and Chen et al.43 pre-

sented a self-powered resonant sensor for recognizing damage.

Because of the advantages of easy fabrication and installation, effective scavenging low-frequency vibra-

tion energy, and so on, the devices based on cantilever structure are commonly used to harvest ambient

energy.44–46 However, during the operation of cantilever-structure energy harvesting devices, cracks are

usually inevitable in the overstress area of cantilevers. Aiming at defect detection of cantilevers, Zhao

et al.47 used a feedback voltage output of piezoelectric sensors to change the stiffness at local section

of the beam and amplify the natural frequency change of the beam caused by cracks, so defects can be

easily identified. Deng et al.48 developed a vision-based cantilever defect identification technology, which

can effectively diagnose different sizes and positions of cracks according to the experimental results. Sa-

mourgkanidis et al.49 utilized magnetoelastic vibration sensors to obtain the bending modes of cantilevers

and established the relation between bending modes and cracks. Then, the optimum corresponding crack

can be found by the pattern-matching method, and the identification error is approximately 11.4%. Suzuki

et al.50 applied the wireless surface acoustic wave sensor to detect the vibration of cantilevers, and took

advantage of machine learning methods to evaluate cantilever damage. According to the experimental re-

sults, the accuracy of the machine learning method is about 90%. Gupta et al.51 adopted the Bruel & Kjaer

instrument to extract the frequency response of cantilevers, and used an artificial neural network algorithm

to identify the damage severity and locations of cantilevers. Zhao et al.52 presented a method based on

laser Doppler to obtain the vibration time-domain signal of cantilevers, and adopted fast Fourier, contin-

uous wavelet transform, and convolutional neural networkmethods to identify defects. Based on the exper-

imental results, the average accuracy is 90.6%.

According to the above references, most of the electric signals of cantilevers were obtained by using

external sensors, which require chemical batteries or other energy storage devices to power them, leading

to the difficulty in detecting energy harvesting device defects on a large scale, high replacement costs,

environmental pollution problems, etc. In addition, due to piezoelectric materials with the characteristics

of brittleness, easy broken under impact loads, and complex installation, it is difficult to apply to curved

structures with great change in amplitude. Herein, a cantilever-structure triboelectric nanogenerator was

proposed, which has two working modes, i.e., harvesting ambient energy and acting as a self-powered

sensor. Themain contributions are as follows: (1) designing a cantilever-structure freestanding triboelectric

nanogenerator (CSF-TENG); (2) establishing the relation between the peak-to-peak voltage and amplitude

of the CSF-TENG, which was demonstrated by open-circuit voltage, and short-circuit current experiments;

(3) utilizing the wavelet packet algorithm to preprocess electric signal data and improve the accuracy of the

defect identification model; and (4) building a defect identification model based on the long short-term

memory algorithm.

RESULTS AND DISCUSSION

Fabrication of TENG

To avoid the influence of the contact force between two triboelectric layers on the vibration behavior of the

beam itself, a freestanding triboelectric nanogenerator was designed. All experimental materials, such as

polyimide (PI), sponge, polytetrafluoroethylene (PTFE), graphite paper (Gp), and nickel cloth were pur-

chased from a local market (as shown in key resources table) and usedwithout further treatment. The device

attached to the positive triboelectric layer is made of aluminum material, so a 0.15 mm thick PI layer was

used as a substrate to prevent the output performance of TENGs from being affected. According to pre-

vious studies,2 a soft substrate can increase the contact area between triboelectric layers and improve the

output performance of TENGs. Thus, to increase the contact area between triboelectric layers, a 2mm thick

sponge was used as a buffer layer. Then, PTFE, Gp, and nickel cloth act as negative triboelectric layers, pos-

itive triboelectric layers, and electrodes, respectively, and their thicknesses are 0.05, 0.05, and 0.1 mm. The
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negative triboelectric layer was attached to an acrylic plate with a diameter of 40 mm, which was connected

to cantilevers by screws. Compared to the negative triboelectric layer, the size of the positive triboelectric

layer is larger, namely, 80 3 100 mm, and this is because the amplitude of the cantilever increases signif-

icantly under strong excitation. Besides, to avoid the influence of wires on the contact area of triboelectric

layers, the size of electrodes of the negative triboelectric layer was set to 85 3 49.8 mm.

Working principle

In this paper, the device is a symmetrical structure, and the left half of the device is shown in Figure 1A. As

shown in Figure 1A(I), the device consists of slide rail-1, slide rail-2, slide rail-3, electrode plate, dielectric

plate, mass block, cover-plate, beam, base, and frame, which were connected by screws. Especially, slide

rail-1, slide rail-2, and slide rail-3 can be moved, so the relative position and initial distance between the

electrode plate and the dielectric plate can be adjusted. As shown in Figure 1A(II), the two electrodes

were attached to the electrode plate, which is divided into upper and lower parts, and then the positive

triboelectric layer was attached to the two electrodes. The negative triboelectric layer was attached to

the dielectric plate with a diameter of 40 mm, as shown in Figure 1A(III). In addition, the mechanical object

model of the device is depicted in Figure S1. The overall dimensions of the device and boards are shown in

Figure S2, and the specification of the cantilever beam is 64 3 12 3 1 mm.

Figure 1B displays the working principle of the CSF-TENG. When the cantilever is not excited, the initial

position of the negative triboelectric layer is illustrated in Figure 1B(I). Due to the different abilities in at-

tracting electrons for PTFE and Gp materials, a large number of negative charges are accumulated on

the surface of PTFE, so the surface of Gp remains an equal amount of positive charges. When the cantilever

is excited, the negative triboelectric layer moves upward, as shown in Figure 1B(II). According to the effect

of triboelectrification and electrostatic induction, the upper and lower electrodes induce positive and

negative charges, respectively, and the current flows from the lower electrode to the upper electrode.

Figure 1. The configuration and working principle of the CSF-TENG

(A) The configuration of the CSF-TENG.

(B) The working principle of the CSF-TENG.
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Next, when the negative triboelectric layer moves to the maximum position above, the upper and lower

electrodes are in an electrostatic equilibrium state, and no current is generated in external circuits.

Then, the negative triboelectric layer moves downward until the maximum position below, and the current

flows from the upper electrode to the lower electrode, as described in Figure 1B(III) and (IV). Finally, the

negative triboelectric layer returns to the original position. Under the triboelectric layers of graphite paper

and PTFE, we performed simulations in COMSOL Multiphysics 5.6. First, the sizes of graphite paper, PTFE,

and electrodes were set to 100 3 80 mm, a diameter of 40 mm, and 49.8 3 80 mm, and the distance be-

tween two electrodes is 0.4 mm. Then, the equally positive and negative charges were added to the

graphite paper and PTFE, which remain constant in all simulations. Based on different positions of the

PTFE triboelectric layer, the simulation results are depicted in Figure S3.

As shown in Figure S4A, the experimental platform consists of the PC, controller (Econ VT-9002), power

amplifier (Econ E5874A), accelerometer (Econ EA-YD-181), and shaker (Econ E-JZK- 50). The device was

fixedly connected to the shaker, and the accelerometer was fixed on slide rail-1 with tape. Firstly, the

controller receives the instructions from the PC and generates control signals, which are transmitted to

the power amplifier to drive the shaker. Then, the accelerometer transmits feedback signals to the

controller, so the CSF-TENG can operate under constant excitation. The open-circuit voltages and

short-circuit currents of the CSF-TENG were measured by an oscilloscope (Tektronix MDO3024) and an

electrometer (Keithley 6514), respectively, and the testing circuits are displayed in Figure S4B.

The output performance of the CSF-TENG

According to the working principle of freestanding TENGs, the relation between the peak-to-peak

voltage and amplitude of the CSF-TENG was established. As shown in Figure S5, we assume that dk is

a small region in the bottom dielectric surface, which contains tribo-charges with a density of s. There-

fore, the total charges on metal 1 and metal 2 can be described as swdk. In addition, the thickness of

the positive triboelectric layer and electrode gap are h and g, respectively. Thus, the total charges of

metal 1 and metal 2 (dQ1 and dQ2) can be calculated by using the following equations under the

short-circuit conditions,

dQ1 =
swdk

1+ C2ðkÞ
C1ðkÞ

(Equation 1)

dQ2 =
swdk

1+ C1ðkÞ
C2ðkÞ

(Equation 2)

where, Ci(k) is the capacitance between this small region dk and metal i (i is 1, and 2.), and w is the width of

triboelectric layers.

According to the principle of superposition of electrostatic fields, the total charges on metal 1 and metal 2

can be shown as:

Q1 = sw

Z l

0

dk

1+ C2ðkÞ
C1ðkÞ

(Equation 3)

Q2 = sw

Z l

0

dk

1+ C1ðkÞ
C2ðkÞ

(Equation 4)

where, l is the length of the dielectric layer.

Therefore, the short-circuit charges (DQ) between metal 1 and metal 2 can be shown as:

DQ = sw

0
BB@

Z l

0

dk

1+
�
C2ðkÞ
C1ðkÞ

�
L = x

�
Z l

0

dk

1+
�
C1ðkÞ
C2ðkÞ

�
L = 0

1
CCA (Equation 5)

When the cantilever is excited, the dielectric plate swings in the vertical direction, so the ambient energy is

converted into electrical energy. According to the working principle of freestanding TENGs, the relation
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between peak-to-peak voltage (V) and the amplitude (H) of the dielectric plate can be explained with the

following formula:

V =
DQ

C
=
sDS

C
(Equation 6)

where, C is the equivalent capacitance between the two electrodes, and DS is calculated by the following

formula:

DS =
pqr2

180� +Hr cosðqÞ (Equation 7)

In addition, q can be obtained with the following equation:

sinðqÞ =
H

r
(Equation 8)

As shown in Figure 2A, r and H are the radius and amplitude of the dielectric plate.

The final expressions of the peak-to-peak voltage (V) and amplitude (H) are expressed in Equation 9.

V =
s

C

�
pr2 arcsinðH=rÞ

180
+ Hr cosðarcsinðH = rÞÞ

�
(Equation 9)

According to the equations above, the output voltages of the CSF-TENG increase as the amplitude of the

dielectric plate rises. To compare the output performance change of the CSF-TENG with/without a crack,

we first performed simulations by using SolidWorks 2018. The simulation conditions were set as follows: the

excitation frequency range was set to 0–20 Hz, the force applied on the end mass surface is 15 N (uniformly

distributed), and the modal damping was set to 0.1. As shown in Figure 2B, when the cantilever has no a

crack, under the harmonic excitation, the amplitude of the cantilever first increases and then decreases

with the increment of the excitation frequency. When the excitation frequency is 7.2 Hz, the amplitude

of the cantilever reaches a maximum, i.e., 78.2 mm. When the crack depth of the cantilever is 0.2 mm,

Figure 2. The motion relation and simulation results of the cantilever

(A) The motion relation of the cantilever.

(B–D) the simulation results under the cantilever (B) without a crack, (C) with a crack depth of 0.2 mm, and (D) with a crack

depth of 0.4 mm.
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the amplitude change of the cantilever is similar to that of the cantilever without a crack. When the excita-

tion frequency is 7.1 Hz, the amplitude of the cantilever with a crack depth of 0.2 mm is 78.5 mm, as de-

picted in Figure 2C. Furthermore, the simulation of the cantilever with a crack depth of 0.4 mm was per-

formed, as illustrated in Figure 2D. When the excitation frequency is 6.4 Hz, the amplitude of the

cantilever with a crack depth of 0.4 mm is 80.2 mm. Compared to case 1, case 2, and case 3, the amplitude

of the cantilever with a crack depth of 0.4 mm is the largest. In addition, the amplitude of the CSF-TENG

gradually increases as the excitation frequency rises and approaches the resonant frequency, so different

amplitudes can be obtained at diverse excitation frequencies (such as 5, 6, and 7 Hz). According to the

above simulation results, as the crack depth increases, the natural frequency of cantilevers decreases,

and the amplitude rises under the resonant frequency, which is because the stiffness of cantilevers declines.

In addition, the object pictures of cantilevers with/without a crack are displayed in Figure S6.

Then, we carried out experiments of open-circuit voltages, short-circuit currents, and charging capacitors,

as shown in Figure 3. The experimental conditions were set as follows: the excitation acceleration is 0.4 g,

and the excitation frequencies are 5, 6, and 7 Hz.

Firstly, the open-circuit voltages of the CSF-TENG with/without a crack were measured. As shown in Fig-

ure 3A, when the CSF-TENG is defect-free, the peak-to-peak voltage of the CSF-TENG is 7.2 V under

the excitation frequency of 5 Hz. As the excitation frequency increases, the peak-to-peak voltage of the

CSF-TENG rises, which verifies Equation 9. When the excitation frequency is 6 and 7 Hz, the peak-to-

peak voltage of the CSF-TENG is 20.9 and 31.3 V, respectively. When the CSF-TENG has a crack depth

Figure 3. The output performance of the CSF-TENG with/without a crack

(A–C) the output voltages of the CSF-TENG (A) without a crack, (B) with a crack depth of 0.2 mm, and (C) with a crack depth

of 0.4 mm.

(D–F) the output currents of the CSF-TENG (D) without a crack, (E) with a crack depth of 0.2 mm, and (F) with a crack depth

of 0.4 mm.

(G–I) the charging performance of the CSF-TENG (G) without a crack, (H) with a crack depth of 0.2 mm, and (I) with a crack

depth of 0.4 mm.
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of 0.2 mm, the peak-to-peak voltage change of the CSF-TENG is similar to that of the CSF-TENG without a

crack. Under the excitation frequencies of 5, 6, and 7 Hz, the output voltages of the CSF-TENG with a crack

depth of 0.2 mm are 6.9, 20.8, and 23.7 V, respectively, as illustrated in Figure 3B. Furthermore, the peak-to-

peak voltage of the CSF-TENG with a crack depth of 0.4 mm was measured. As depicted in Figure 3C, the

output voltages of the CSF-TENGwith a crack depth of 0.4 mm are 7.3, 27.2, and 17.3 V under the excitation

frequencies of 5, 6, and 7 Hz, respectively. According to the experimental results above, the frequency that

the output performance of the CSF-TENG with crack depths of 0, 0.2, and 0.4 mm achieves the best de-

creases gradually, which are consistent with the simulation results that the natural frequency of cantilevers

decreases as the crack depth increases.

Next, the short-circuit currents of the CSF-TENG with/without a crack were measured, as shown in

Figures 3D–3F. According to the experimental results, the output current change of the CSF-TENG

with/without a crack is similar to the output voltage. When the cantilever is defect-free, the output currents

of the CSF-TENG are 1, 2.7, and 4.5 mA under the excitation frequencies of 5, 6, and 7 Hz. Similarly, when the

cantilever has a crack depth of 0.2 mm, the output currents of the CSF-TENG are 1, 2.7, and 3.4 mA under the

excitation frequencies of 5, 6, and 7 Hz. Furthermore, when the cantilever has a crack depth of 0.4 mm, the

output currents of the CSF-TENG are 1, 3.8, and 2.8 mA under the excitation frequencies of 5, 6, and 7 Hz.

Finally, we utilized the CSF-TENG to perform charging capacitor experiments, and selected capacitors of

0.22, 1, 2.2, and 4.7 mF. Under the excitation frequency of 7 Hz, we implemented charging capacitor exper-

iments by using the CSF-TENG without a crack, as shown in Figure 3G. Within 4 s, the 0.22 mF capacitor was

charged to 7.1 V. As the capacitance increases, the voltage of a capacitor decreases. At the same time, the

1, 2.2, and 4.7 mF capacitors were charged to 2.9, 1.4, and 0.9 V, respectively. Similarly, the charging exper-

iments using the CSF-TENGwith a crack depth of 0.2 mmwere carried out, and the experimental results are

displayed in Figure 3H. Within 4 s, the 0.22, 1, 2.2, and 4.7 mF capacitors were charged to 6.2, 2.5, 1.3, and

0.8 V, respectively. Besides, the charging experiments using the CSF-TENG with a crack depth of 0.4 mm

were completed, as depicted in Figure 3I. Within 4 s, the 0.22, 1, 2.2, and 4.7 mF capacitors were charged to

5.4, 2.2, 1.2, and 0.7 V, respectively. According to the experimental results above, the aspect that the nat-

ural frequency of cantilevers decreases as the crack depth increases was demonstrated again. In addition,

we presented a durability test to display the CSF-TENG output over different repetition cycles, as shown in

Figure S7.

According to the experimental results of open-circuit voltage, short-circuit current, and charging capac-

itor, the CSF-TENG can effectively capture ambient energy at low frequencies. Consequently, the CSF-

TENG can be used as an auxiliary power to supply electric energy for low-power electronic devices,

reducing the number of replacements of power supply units, such as batteries. Therefore, the develop-

ment of self-powered intelligent sensor networks is possible. To ensure the continuous operation of the

CSF-TENG, defect detection of the device is essential. The electrical signal of the CSF-TENG was

collected and transmitted to the PC through a management circuit, and then was processed by the

defect identification methods to obtain the health state of the device. Based on two aspects, (i) the man-

agement circuit is composed of low-power electronic components, and (ii) the state signal of the CSF-

TENG was transmitted within a period to reduce power consumption, the CSF-TENG can realize self-

monitoring.

The application of the CSF-TENG in defect detection

Through the defect identification technologies, the working state of the CSF-TENG device can be found

timely to ensure that they can operate continuously, which is of great significance for the large-scale

deployment of self-powered sensor networks. According to the above simulation results, when the canti-

lever has a crack, the natural frequency and amplitude change slightly. Therefore, the output voltages or

currents of the CSF-TENG vary imperceptibly, so it is difficult to identify the cantilever with a crack. How-

ever, the voltage waveform of the CSF-TENG with different crack depths changes visibly, as shown in Fig-

ure S8. Here, a better strategy that identifies cracks based on the voltage waveform of the CSF-TENG and

intelligent algorithms was proposed, such as deep learning models,53 adaptive wavelet mutation

methods,54 and transfer learning methods.55

Figure 4A shows the flow chart of cantilever defect identification based on intelligent algorithms. When the

CSF-TENG was excited by the ambient vibration, electric signals were generated, which were collected by

an oscilloscope or electrometer as the initial signal data. Then, the health state of the CSF-TENG
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device was identified based on the signal analysis model. Due to the advantages of small samples, strong

anti-noise ability, and simple network structure, the long short-termmemory network has been widely used

in the field of defect detection.56–58 To improve the accuracy of the cantilever defect identification model,

the electric signals of the CSF-TENG were first decomposed by using the wavelet packet algorithm. As de-

picted in Figure 4B, the decomposed signals were used as training sets and test sets to establish a defect

classification model based on the long short-term memory algorithm.

In this paper, an oscilloscope was used to acquire electrical signals of the CSF-TENG as sample datasets.

To ensure that the characteristic point data of the cantilever with a crack can be collected, the oscilloscope

was set as follows: the sampling time is 40 s, and the sampling rate is 25 kS/s, so the dimension of a single

sample data is 25,000. Due to the large data dimension, the computational complexity for constructing the

defect identification model of the CSF-TENG based on original datasets is enormous. Thus, data prepro-

cessing is very necessary.

In previous studies, many researchers applied the wavelet packet algorithm to the defect identification of

mechanical systems and achieved good results.59,60 Hence, to improve the accuracy of the defect classifi-

cation model, and reduce the dimension of sample data, the wavelet packet algorithm was used to extract

cantilever defect features. Based on high-pass and low-pass filters, the original signal was filtered by the

wavelet packet algorithm, and then was converted into 2j (j is the number of decomposition layers) fre-

quency bands through a two-scale equation, which is as follows:

8>><
>>:

j2i
j;nðtÞ =

X
k

hkj
i
j� 1;2n� kðtÞ

j2i + 1
j;n ðtÞ =

X
k

gkj
i
j� 1;2n� kðtÞ

(Equation 10)

where, J(t) is the mother wavelet, j is the number of decomposition layers, hk and gk are a pair of comple-

mentary orthogonal mirror filters, n is themiddle node number, i is the node number, and k is the frequency

band. Then, the wavelet packet coefficient can be calculated by Equation 10.

Figure 4. The application of the CSF-TENG in defect detection

(A) Operation flow diagram of the defect detection system based on the CSF-TENG.

(B) The flow diagram of building a defect identification model based on the long short-term memory and wavelet

packet algorithms.
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The decomposed signal only changes in form, while the total energy entropy of the signal remains un-

changed, which is a measure of the unknown degree of the signal, and represents the number of possible

states in the signal and the occurrence probability of these states.61 The wavelet packet energy entropy is

to use the wavelet packet normalized energy feature as the probability distribution of vibration signals to

extract the vibration signal features. Therefore, the wavelet packet algorithm can not only effectively

reduce the number of feature vectors but also make the defect identification model faster calculation

and higher accuracy. Firstly, we calculated the energy entropy of cantilevers by using the wavelet

packet algorithm under different crack depths. Figure 5A shows the energy entropy of the cantilever

without a crack, which is approximately 28. As the crack depth increases, the energy entropy rises. As shown

in Figures 5B and 5C, when the crack depths are 0.2 and 0.4 mm, the energy entropy is about 31 and 41,

respectively. According to the experimental results, the energy entropy of cantilevers with different crack

depths is diverse, which demonstrates the feasibility of extracting defect features of cantilevers based on

wavelet packet decomposition.

Then, the electric signals of cantilevers were decomposed into two parts, i.e., high-frequency and low-fre-

quency information, by using the wavelet packet algorithm.When the decomposition result is not ideal, the

wavelet packet algorithm will decompose the high-frequency and low-frequency information again until it

Figure 5. The energy entropy calculation and decomposition of electric signals

(A–C) the energy entropy of electric signals under the CSF-TENG (A) without a crack, (B) with a crack depth of 0.2 mm, and

(C) with a crack depth of 0.4 mm.

(D) The decomposition of electric signals.
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meets the requirements, as shown in Figure 5D. Finally, the decomposed signals were arranged into

feature vectors to form training sets and test sets, so a defect classificationmodel can be established based

on the long short-term memory (LSTM) algorithm.

The LSTM network is developed based on the recurrent neural network (RNN).When themodel parameters

remain unchanged, the LSTM, which is suitable for dealing with long complex sequences, can avoid the

problem of ‘‘gradient disappearance’’ existing in the RNN network. Compared with traditional recurrent

networks, the unit structure of LSTM adds three gated structures: input gate, forget gate, and output

gate, so that the model can not only respond to changes in short-term information but also consider the

influence of long-term information.

(i) Input gate

The input gate is used to control the current time input information xt to be saved in the current time long-

term memory Ct. The formula is as follows:

it = dðWi $ ½ht� 1; xt � + biÞ (Equation 12)

where, d is the sigmoid function, it is the value that allows the current input information Ct to pass,Wi is the

coefficient matrix of the fully connected layer of the current input gate, ht-1 is the previous time output data,

xt is the current time input data, and bi is the bias coefficient of the fully connected layer of the current input

gate.

(ii) Forget gate

The forget gate is used to control the previous time long-term memory Ct-1 to be saved in the current time

memory Ct. The formula is as follows:

ft = dðWf $ ½ht� 1; xt � + bf Þ (Equation 13)

where, d is the sigmoid function, ft is the value that allows the previous time long-termmemory Ct-1 to pass,

Wf is the coefficient matrix of the fully connected layer of the current forget gate, ht-1 is the previous time

output data, xt is the current time input data, and bf is the bias coefficient of the fully connected layer of the

current forget gate.

(iii) Output gate

The output gate is used to control the output information of the current time memory Ct.

ot = dðWo $ ½ht� 1; xt � + boÞ (Equation 14)

where, ot is the value that allows the current time memory Ct output,Wo is the coefficient matrix of the fully

connected layer of the current output gate, ht-1 is the previous time output data, xt is the current time input

data, and bo is the bias coefficient of the fully connected layer of the current output gate.

As shown in Figure 6A, the LSTM network contains an LSTM unit layer, a flatten layer, a fully connected

layer, and an activation layer. The 10243 1 feature vector was successively transferred to the 32 LSTM units

and the fully connected layer with 64 neurons, and finally, the classification result was obtained by using the

sigmoid function activation. Through open-circuit voltage experiments, we obtained 912 sets of electric

signals under cantilevers with crack depths of 0, 0.2, and 0.4 mm, which were divided into training sets

and test sets according to the ratio of 7:3. The batch size, epoch, and learning rate were set to 8, 250,

and 0.01, respectively. As shown in Figure 6B, when the epoch is small, the training accuracy is low.

When the epoch reaches 150, the classification accuracy of the model begins to stabilize. Due to the highly

sensitive of TENGs as a self-powered sensor and the effectiveness of the wavelet packet algorithm and long

short-term memory network, the accuracy of the model achieved 98.6%. As shown in Figure 6C, the loss

value of themodel decreases sharply in the initial stage. As the epoch increases, the loss trend of themodel

is convergence, and finally the loss value of the model is stable at 0.02. To display the performance of the

classification model more intuitively, the confusion matrices and classification results of the model are

shown in Figures 6D and S9, respectively.
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It is worth mentioning that when the wavelet packet algorithm was utilized to decompose the electric sig-

nals of cantilevers with/without a crack, the decomposition layers are different, and the performance of the

classification model is diverse. When the decomposition layers are 6, 7, 8, and 9, the performance of the

model is shown in Figures S10–S13. Compared to the performance of the model with different decompo-

sition layers, when the decomposition layer is 10, the performance of the model is the best. When the

decomposition layer increases, the dimension of the feature vector becomes too large, whichmakes it diffi-

cult to establish a classification model. Therefore, the performance of a classification model with more

decomposition layers is not further explored.

Conclusions

In this paper, a cantilever-structure energy harvesting device based on triboelectric nanogenerators was

proposed, which can scavenge ambient energy and act as a self-powered sensor to detect defects. The

main conclusions are as follows:

(1) According to the relative motion of cantilevers, the relation between the peak-to-peak voltage and

amplitude of the CSF-TENG was established, which was demonstrated by TENG’s output perfor-

mance experiments under the different amplitudes that were obtained at diverse excitation

frequencies.

(2) Under the same harmonic excitation, as the crack depth of the CSF-TENG increases, the natural fre-

quency decreases according to simulation results, which are consistent with experimental results.

(3) Based on the wavelet packet algorithm, the energy entropy of the CSF-TENG with different crack

depths is obtained. The experimental results manifest that the energy entropy of the CSF-TENG

with crack depths of 0, 0.2, and 0.4 mm are 28, 31, and 41, respectively, which demonstrates the

feasibility of the wavelet packet algorithm to extract cantilever defect features.

(4) A cantilever defect identification model was established based on the long short-term memory al-

gorithm. According to the experimental results, when the epoch is 20, the accuracy of the model has

Figure 6. The LSTM network model and defect identification results

(A) The LSTM network model.

(B–D) the (B) accuracy curve, (C) loss curve, and (D) confusion matrices of the defect identification model.
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reached about 95%, which shows that the model has a strong learning ability. Eventually, the accu-

racy of the model stabilized at 98.6%.

In addition, to harvest more energy in one vibration cycle, developing devices with multiple TENG units is

necessary. In future work, based on the above work and standard Figure of Merits, an integrated and high-

performance TENG device with self-monitoring ability will be designed, which is of great significance for

the development of self-powered sensor networks.

Limitations of the study

Although the crack defect detection of cantilevers is realized based on the wavelet packet and long short-

termmemory network, reaching an accuracy of 98.6%, the dataset for verifying the accuracy of the model is

offline data, which was collected by an oscilloscope, so it cannot be applied in practice. In future work, the

development of low-power TENG signal acquisition and transmission circuits is necessary to achieve on-

line condition monitoring of energy harvesters.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Shaorong Xie (srxie@shu.edu.cn).

Materials availability

This study did not generate new materials. Materials used in the study are commercially available.

Data and code availability

All data reported in this paper will be shared by the lead contact upon reasonable request.

No new code was generated during the course of this study.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study does not use experimental methods typical in the life sciences.

METHOD DETAILS

Fabrication of CSF-TENG

All experimental materials such as polyimide (PI), sponge, polytetrafluoroethylene (PTFE), graphite paper

(Gp), and nickel cloth were purchased from a local market (as shown in key resources table) and used

without further treatment. The device attached to the positive triboelectric layer is made of aluminum ma-

terial, so a 0.15 mm thick PI layer was used as a substrate to prevent the output performance of TENGs from

being affected. Then, PTFE, Gp, and nickel cloth act as negative triboelectric layers, positive triboelectric

layers, and electrodes, respectively, and their thicknesses are 0.05 mm, 0.05 mm, and 0.1 mm. The negative

triboelectric layer was attached to an acrylic plate with a diameter of 40 mm, which was connected to can-

tilevers by screws. Compared to the negative triboelectric layer, the size of the positive triboelectric layer is

larger, namely, 80 3 100 mm. Besides, to avoid the influence of wires on the contact area of triboelectric

layers, the size of electrodes of negative triboelectric layers was set to 85 3 49.8 mm.

Electrical output signal measurement

The open-circuit voltages and short-circuit currents were measured by an oscilloscope (Tektronix

MDO3024) and an electrometer (Keithley 6514), respectively.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

PI Guangzhou (China) Beilong Electronics Co.,

Ltd

N/A

Sponge Pinrao environmental protection material store

(Taobao, China)

N/A

PTFE 3j flagship store (Taobao, China) N/A

Graphite paper Guangsheng Jiajin Metal New Material Store

(Taobao, China)

N/A
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QUANTIFICATION AND STATISTICAL ANALYSIS

The data were measured by an oscilloscope (Tektronix MDO3024) and an electrometer (Keithley 6514).

Figures were produced by Origin from the raw data.

ADDITIONAL RESOURCES

This study has not generated or contributed to a new website/forum.
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