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Pattern recognition receptors (PRRs) coordinate the innate immune response and

have a significant role in the development of multiple sclerosis (MS). Accumulating

evidence has identified both pathogenic and protective functions of PRR signaling in MS

and its animal model, experimental autoimmune encephalomyelitis (EAE). Additionally,

evidence for PRR signaling in non-immune cells and PRR responses to host-derived

endogenous ligands has also revealed new pathways controlling the development

of CNS autoimmunity. Many PRRs remain uncharacterized in MS and EAE, and

understanding the distinct triggers and functions of PRR signaling in CNS autoimmunity

requires further investigation. In this brief review, we discuss the diverse pathogenic

and protective functions of PRRs in MS and EAE, and highlight major avenues for

future research.

Keywords: pattern recognition receptors (PRRs), multiple sclerosis (MS), experimental autoimmune

encephalomyelitis (EAE), Toll-like receptors (TLRs), NOD-like receptors (NLRs), C-type lectin receptors

(CLRs), RIG-I like receptors (RLRs)

INTRODUCTION

Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS)
characterized by neuroinflammation, demyelination, and axon damage. Disease development in
MS is likely due to a complex interaction of genetic and environmental factors leading to CNS-
targeted autoimmunity, involving activation of both the innate and adaptive immune response (1).
In particular, the innate immune response is a critical component of disease development in MS
and its animal model, experimental autoimmune encephalomyelitis (EAE) but is less well-studied
in MS compared to the adaptive immune system (2). The diverse functions of the innate immune
response are orchestrated by pattern recognition receptors (PRRs), which sense both microbial-
associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs).
PRRs are mainly expressed on innate immune cells including macrophages, dendritic cells (DCs),
neutrophils, and microglia, but can also be expressed on non-immune CNS-resident cells. Many
PRRs show elevated gene expression in MS (3, 4), and genome-wide associate studies (GWAS)
have identified variants in multiple PRRs linked to increased MS risk (5–7).
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Themajor families of PRRs include Toll-like receptors (TLRs),
Nod-like receptors (NLRs), C-type lectin receptors (CLRs), and
RIG-I like receptors (RLRs). TLRs and CLRs are transmembrane
proteins which recognize diverse MAMPs and DAMPs. NLRs
and RLRs, on the other hand, are located in the cytoplasm where
they function as sensors tomodulate the immune response. These
PRR families can have both protective and pathogenic functions
in EAE, depending on context (Table 1). Here, we summarize the
diverse roles of PRR signaling in EAE and MS (Figure 1), and
highlight outstanding questions in the field.

TOLL-LIKE RECEPTORS (TLRs)

The TLR family includes both surface and endosomal
transmembrane receptors, and is comprised of 10 TLRs in
human (TLR1–10) and 12 in mouse (TLR1–9, 11–13). TLRs
are studied mainly in peripheral myeloid cells, but can also be
expressed by non-immune cell types. In the CNS, microglia
express a large array of TLRs, while non-immune cells, such
as astrocytes and oligodendrocytes have a more limited
repertoire (8).

TLR2, in particular, has been implicated by multiple studies
in MS pathology. TLR2 is highly upregulated in peripheral
blood mononuclear cells (PBMCs), cerebrospinal fluid (CSF)
cells, and demyelinating lesions in MS patients (8). Consistent
with a pathogenic function, TLR2 stimulation of regulatory
T cells (Treg) from MS patients reduced Treg suppressive
functions and promoted a shift toward an inflammatory
TH17 response (9). Among non-immune cells, TLR2 is
expressed by oligodendrocytes in MS lesions, and TLR2 ligation
with hyaluronan inhibits the maturation of oligodendrocyte
progenitor cells (OPCs) in vitro (10). In addition, relapsing-
remitting MS (RRMS) patients show elevated levels of soluble
TLR2 (sTLR2) (11), although sTLR2 would not necessarily be
pathogenic because it could absorb TLR2 ligands. Paradoxically,
significantly lower levels of microbiome-derived TLR2 ligands
were found in the blood of MS patients (12, 13). As discussed
below, later EAE studies suggest that TLR2 can in fact
be protective (14–16) through a mechanism known as TLR
tolerance. Beyond TLR2, other receptors including TLR3 and
TLR4 are also expressed in active MS lesions (8), and TLR2,
TLR4, TLR9 all showed elevated expression on CD4+ and CD8+

T cells from MS patients (9, 17). Expression of TLRs by TH17
cells in particular was shown to correlate with the extent of brain
lesions and neurological disabilities in MS (17).

TLR signaling is mediated either by MyD88 or TRIF. Multiple
EAE studies have identified distinct functions for TLR signaling
through these two different pathways. Specifically, MyD88 is
highly pathogenic in EAE, as Myd88−/− mice do not develop
any disease symptoms (18, 19). Thus, it was expected that TLRs,
which signal through MyD88 (TLR1, 2, 4, and 6), would also
be pathogenic. However, the role of TLRs in EAE is not so
straightforward. Despite similar EAE severity between Tlr2−/−

and wild-type mice in some reports (19, 20), and other results
suggesting the pathogenicity of TLR2 (18, 21, 22), more recent
studies indicate TLR2 stimulation may also be protective. In

TABLE 1 | Functions of pattern recognition receptors (PRRs) in the EAE model of

multiple sclerosis.

PRRs Function Approach References

TLRs TLR1 N.D. Tlr1−/− mice (18)

TLR2 N.D. Tlr2−/− mice (19)

Pathogenic Tlr2−/− mice (recipient, passive

EAE)

(22)

N.D. Tlr2−/− mice (male) (18)

Pathogenic Tlr2−/− mice (female) (18)

Pathogenic Tlr2−/− mice (female recipient,

passive EAE)

(18)

Pathogenic Tlr2−/− mice (21)

Protective Agonist (Pam2CSK4) (14)

Protective Agonist (L654) (14)

TLR3 Protective Agonist [poly(I:C)] (35)

TLR4 N.D. Tlr4−/− mice (18)

Protective Tlr4−/− mice (28)

Pathogenic Tlr4−/− mice (24)

Protective Agonist (LPS) (26)

Protective Agonist (LPS) (27)

TLR6 N.D. Tlr6−/− mice (28)

TLR9 Protective Tlr9−/− mice (28)

Pathogenic Tlr9−/− mice (18)

NLRs NOD1 Pathogenic Nod1−/− mice (21)

NOD2 Pathogenic Nod2−/− mice (21)

NLRP3 N.D. Nlrp3−/− mice (58)

Pathogenic Nlrp3−/− mice (30)

Pathogenic Nlrp3−/− Rag2−/− mice

(recipient, passive EAE)

(53)

Pathogenic Nlrp3−/− mice (52)

Pathogenic Nlrp3−/− mice (31)

N.D. Nlrp3−/− mice (aggressive EAE) (31)

Pathogenic Inhibitor (MCC950) (56)

Pathogenic Inhibitor (JC-171) (92)

NLRC3 Protective Nlrc3−/− mice (63)

Protective Nlrc3−/− mice (62)

NLRX1 Protective Nlrx1−/− mice (67)

NLRP12 Pathogenic Nlrp12−/− mice (70)

Protective Nlrp12−/− mice (71)

Protective Nlrp12−/− mice (72)

RLRs MAVS Protective Mavs−/− mice (91)

RIG-I Protective Agonist (3pRNA) (91)

MDA-5 Protective Agonist [complexed poly(I:C)] (91)

CLR MICL Pathogenic Clec12a−/− mice (93)

Pathogenic Inhibitor (blocking antibody) (93)

DCIR2 Protective Clec4a4−/− mice (88)

Dectin-1 Protective Agonist (zymosan) (84)

N.D., Not Detected.

particular, treating mice with low-dose TLR2 ligands reduced
EAE severity (14, 16). Interestingly, in the cuprizone model of
demyelination, which is not mediated by autoimmunity, TLR2
stimulation also demonstrates a therapeutic benefit by enhancing
remyelination (15). This protective effect of TLR2 stimulation
is thought to be mediated by TLR tolerance, a process in
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FIGURE 1 | Pattern recognition receptor (PRR) families and their functions in EAE. (A) Diagram of major PRR families with pathogenic or protective function in EAE as

indicated. (B) List of representative effector mechanisms to elicit pathogenic and protective function by PRRs. (C) Diagram of CNS-resident cells and CNS-infiltrating

immune cells capable of expressing PRRs in EAE and MS.

which repeated stimulation of the receptor leads to a dampened
response to subsequent stimuli and a more regulatory response.
In contrast, Tlr2−/− mice developed reduced pathology in the
cuprizone demyelination model, suggesting a pathogenic role for
basal TLR2 signaling in the absence of exogenous stimulation (15,
23). In summary, multiple studies suggest that TLR2 signaling
may be either pathogenic or protective in EAE, depending
on context and timing (14), but further studies are needed
to understand the mechanism of how these distinct functions
are mediated.

Similar to TLR2, TLR4 is also known to be both pathogenic
(24, 25) and protective (18, 26–28) in EAE. Other MyD88-
dependent TLRs include endosomal TLR7, TLR8, and TLR9,
which induce Type-1 interferons (IFN-I) expression. Again,

some reports indicated a pathogenic role of TLR7, TLR8, and
TLR9 (18, 19, 29), while others found TLR9 to be protective
(28). The discrepancy in TLR9 results may be attributed to
different EAE induction methods. The studies suggesting TLR9
to be pathogenic applied a booster immunization on Day
7 (18, 19), but no booster was applied in the latter study,
which found TLR9 to be protective (28). EAE induction with a
booster immunization is a similar method to what we previously
described as “Type-B EAE,” a distinct EAE subtype resistant
to IFNβ treatment (30, 31). Therefore, with the strong EAE
induction with repeated immunization, IFN-I generated by TLR9
stimulation may not inhibit EAE. Instead, the pathogenicity of
TLR9 may be enhanced by TLR9-mediated pro-inflammatory
cytokine production. TLR8, identified in the spinal cord axons
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during EAE (32), was demonstrated to inhibit neurite growth and
enhance neuronal apoptosis (33), possibly serving as a pathogenic
receptor in EAE. Lastly, TLR3 which is endosomal, transduces its
signal through TRIF but notMyD88, and appears to be protective
in EAE. Trif−/− mice exhibit severe EAE, likely due to reduced
IFN-I expression leading to an enhanced Th17 response (34).
Indeed, the TLR3 ligand, poly(I:C), suppressed EAE by elevating
the production of IFN-I (35). In summary, some endosomal TLRs
(TLR3, 7, 9) appear to be protective in IFNβ-responsive EAE
subtypes (30, 31), as these TLRs strongly induce protective IFN-I
expression (36).

NOD-LIKE RECEPTORS (NLRs)

NLRs are an evolutionarily ancient family of receptors and
potent regulators of inflammation and immunity (37, 38). They
are intracellular, and regulate danger signals through pre- and
post-translational mechanisms (37). Collectively, NLRs possess a
diverse array of functions, including NFκB activation/inhibition,
gene transcription, and formation of inflammatory signaling
platforms termed inflammasomes (37, 38).

Some NLRs are now known to be associated with MS,
though most remain uninvestigated. As inflammasome-forming
NLRs, NLRP1, NLRP3, and NLRC4 are closely associated with
inflammatory immune reactions, and have been linked to MS
risk. Specifically, SNPs in the NLRP1 and NLRP3 loci have been
associated with MS (39–43). Expression levels of NLRP3 mRNA
in PBMCs correlate with disease relapse in RRMS patients (43),
and ex vivo stimulation of PBMCs from primary progressive MS
patients also showed enhanced NLRP3 expression and activation
(44). NLRC4 protein is abundantly expressed in MS lesions, and
most prominently in lesion-associated astrocytes (45). Loss of
function NLRC4 mutations are also associated with improved
response to IFNβ treatment (6). Although NOD2 stimulation
on DCs enhances Th17 responses in human T cells ex vivo
(46), SNPs in neither NOD1 nor NOD2 are associated with MS
risk (47).

NLRs have both pathologic and protective functions in the
EAE model. Both NOD1 and NOD2 are pathogenic in EAE (21),
and T cells in Nod1−/− and Nod2−/− mice do not accumulate
in the CNS, presumably due to poor cell migration or reduced
antigen presentation in the CNS (21). NLRP1, an inflammasome-
forming NLR, is highly expressed in the CNS, specifically by
neurons (48–50), astrocytes (51), and oligodendrocytes (48).
In the non-autoimmune cuprizone model of demyelination,
the NLRC4 inflammasome is functional in both microglia and
astrocytes, and contributes to demyelination (45). The NLRP3
inflammasome detects a wide range of sterile and pathogen-
derived insults to trigger its activation. Under some conditions,
Nlrp3−/− mice are resistant to EAE (30, 31, 52, 53), due to their
inability to promote immune cell migration to the CNS via IL-1β
and IL-18 priming, despite the presence of pathogenic Th17 cells
(30). Nlrp3−/− mice are also protected from cuprizone-induced
demyelination (54), in which T cell involvement is minimal
(55). These results suggest multiple roles for NLRP3 in CNS
inflammation and demyelination. Indeed, while inhibition of

NLRP3 with MCC950 potently suppresses traditional EAE (56),
it also suppresses mechanical allodynia in a neuropathic pain
model of EAE (57). Nevertheless, under specific circumstances,
EAE can be induced in Nlrp3−/− and Asc−/− mice, which are
also inflammasome-incompetent (31, 53, 58). EAE in the absence
of the NLRP3 inflammasome exhibits an atypical pathogenesis
with brain-targeted inflammation (31). IFNβ, a treatment for
RRMS which inhibits NLRP3 inflammasome activation, is
ineffective in treating this form of EAE (31, 53), which is instead
dependent on CXCR2 and lymphotoxin (31). This relationship
between IFNβ and NLRP3 in EAE may reveal insights into the
heterogeneity of response to IFNβ treatment within the MS
patient population (31).

In contrast to the inflammation-inducing NLRs, NLRC3,
NLRX1, and NLRP12 are protective in EAE. NLRC3 negatively
regulates inflammatory pathways in innate and adaptive immune
cells (59–61) by suppressing NFκB activation (61) and IFNβ

release (60). Nlrc3−/− mice demonstrate more severe EAE (62,
63) with enhanced DC priming of pathogenic T cells (62).
NLRX1 localizes to the mitochondrial outer membrane (64) and
interferes with MAVS signaling and induction of IFN-I (64, 65).
NLRX1 suppresses NFκB induced by TLR signaling (65, 66)
and Nlrx1−/− mice are more susceptible to EAE (67) due to
hyperactivation of myeloid cells in the CNS (67). Notably, both
NLRC3 and NLRX1 are protective despite having the potential
to suppress IFN-I induction. NLRP12 also suppresses NFκB
activation (68, 69), and the lack ofNlrp12 results in atypical EAE,
with ataxia and balance deficits (70). These Nlrp12−/− mice had
increased infiltration of T cells into the brain rather than the
spinal cord, as well as an increase in Th2 cells over Th1 and Th17
subsets (70). Another report demonstrated that Nlrp12−/− mice
develop more severe, but traditional EAE (71, 72), however, both
studies agreed upon a T cell-intrinsic suppressive function of
NLRP12 (70–72). The reason for these different EAE phenotypes
is unclear, though the Nlrp12−/− mice used in these studies were
generated independently with different deletions in exon 2 (70)
or exon 3 (71, 72).

C-TYPE LECTIN RECEPTORS (CLRs)

CLRs are a large family of carbohydrate-recognition domain
(CRD) containing proteins, a subset of which have described
immune functions. CLRs can recognize both MAMPs and
DAMPs, and mediate their response by multiple pathways.
Most commonly, CLRs function through association with
immunoreceptor tyrosine-based activation motif (ITAM) or
inhibition motif (ITIM) signaling, depending on the receptor
(73). Notably, SNPs in the C-type lectin CLEC16A gene have
been significantly linked to the risk of developing MS in
multiple GWAS studies (7, 74–77). Yet, unlike other CLRs,
CLEC16A is localized to the cytosol and its function remains
relatively uncharacterized (78). Although CLRs have significant
and diverse immune functions, their involvement inMS is poorly
understood, and only a limited number of studies on CLRs in
EAE have been published.
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Initial studies of CLR function focused on the ability of
some CLRs to recognize and respond to adjuvant used for
EAE induction. Specifically, Mincle, MCL, and Dectin-2
recognize components of heat-killed Mycobacteria (hkMtb), the
most common adjuvant used in complete Freund’s adjuvant
(CFA) to induce EAE (79–81). These CLRs appear to mediate
their response to hkMtb through Syk/CARD9 signaling
which can induce pro-inflammatory cytokine production and
inflammasome activation, thus promoting pathogenic Th17
differentiation (79, 80). Specific agonists for MCL and Dectin-2
(TDM and Man-LAM, respectively) are sufficient adjuvants to
induce EAE (81, 82). In contrast, the TLR2/Dectin-1 agonist
zymosan can only induce limited disease compared to hkMtb,
while the Dectin-1 specific agonist, curdlan is unable to induce
EAE at all (83).

Additional studies suggest that CLR signaling outside the
context of adjuvant recognition may be able to limit EAE
development. Specifically, the Dectin-1/TLR2 agonist zymosan
can ameliorate EAE when administered in either the MOG35−55

(B6 mice) or PLP139−151 (SJL mice) models of EAE (84),
suggesting a potential protective role for Dectin-1 signaling
in EAE. Notably, two out of three publications studying CLR
function in experimental autoimmune uveitis (EAU) reported
data which indicates that Dectin-1-deficient mice develop more
severe disease than WT controls (79, 85). However, the role of
Dectin-1 in EAU is not clear, and a separate study identified a
contradictory pathogenic function for Dectin-1 in EAU (86). The
origin of this discrepancy is not known, but may be due in part
to experimental approaches which may vary in adjuvant usage
or clinical evaluation. Further work is needed to understand the
function and mechanism of Dectin-1 in EAE and EAU. Another
CLR, DC-SIGN, was reported to recognize endogenous N-glycan
modifications of human MOG protein (87). In response to this
endogenous ligand, DC-SIGN facilitated phagocytosis of myelin
and enhanced IL-10 production by DCs after LPS stimulation
in culture. DCIR2 (gene name Clec4a4) was also found to
regulate DC function and reduce EAE by suppressing TLR-
mediated activation and limiting the pathogenic T-cell response
(88). Further study is needed to characterize CLR signaling
beyond adjuvant recognition, particularly the mechanisms by
which some CLRs may be protective while others are pathogenic
in the setting of CNS autoimmunity.

RIG-I LIKE RECEPTORS (RLRs)

RLRs are cytoplasmic RNA sensors which signal through MAVS
to promote IFN-I response during viral infections and in
autoimmunity (89). RIG-I and MDA5 are the most well-studied
RLRs and are encoded by DDX58 and IFIH1 genes, respectively.
In the context of MS, one study suggests that combinations of
multiple SNPs in genes encoding RLRs (DDX58, IFIH1, LGP2)

may increase disease risk, although no individual SNPs alone
were found to be significantly associated with MS risk (90). In
addition, elevated expression of DDX58 and IFIH1 was identified
in a subset of MS patients with high expression ofMX1, a marker
of active IFN-I stimulation (4).

In EAE, RLR signaling limits disease development (91).
Specifically, genetic deletion of Mavs exacerbates EAE severity,
while administration of RLR ligands [5′-triphosphate dsRNA and
poly(I:C)] ameliorates disease in an IFN-I-mediatedmanner (91).
However, as previously mentioned, poly(I:C) can also function as
a TLR3 ligand. A better understanding of RLR signaling during
EAE and MS could facilitate novel RLR-targeted therapeutic
approaches. Since IFN-I production is not the only outcome of
RLR stimulation, targeting RLRs might have additional benefits
in treating MS in addition to the production of IFN-I.

CONCLUSION

Pattern recognition receptors (PRRs) orchestrate the innate
immune response in MS and EAE. The pathogenic functions
of PRR signaling in CNS autoimmunity are well-described
and include promoting pro-inflammatory cytokine production,
antigen presentation, and regulation of cell death. In contrast, the
protective functions of innate immunity in CNS autoimmunity
are less appreciated, yet PRR signaling can regulate the
adaptive immune response, restrain innate immune activation,
and promote tissue repair pathways. Both MAMPs and
DAMPs trigger PRR signaling, but the specific ligands that
mediate PRR function in CNS autoimmunity remain poorly
characterized. Furthermore, non-immune cells in the CNS
including astrocytes, oligodendrocytes, and neurons can also
express some PRRs. To understand the role of PRRs in MS and
EAE, we will need to better understand detailed mechanisms
of the protective functions of PRRs, PRRs ligands in sterile
inflammation, and how PRRs in CNS-resident cells modulate
disease outcomes.
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