
1 |  INTRODUCTION

The capacity to form new memories is crucial for an animals’ 
adaptation to a complex and often changing environment 

(Bruel-Jungerman, Davis, & Laroche, 2007). The formation 
of new memories involves a wide range of molecular and 
cellular processes (Asok, Leroy, Rayman, & Kandel, 2019; 
Nadel, Hupbach, Gomez, & Newman-Smith, 2012). Memory 
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Abstract
It is widely acknowledged that de novo protein synthesis is crucial for the formation and 
consolidation of long-term memories. While the basal activity of many signaling cascades 
that modulate protein synthesis fluctuates in a circadian fashion, it is unclear whether the 
temporal dynamics of protein synthesis-dependent memory consolidation vary depending 
on the time of day. More specifically, it is unclear whether protein synthesis inhibition 
affects hippocampus-dependent memory consolidation in rodents differentially across the 
day (i.e., the inactive phase with an abundance of sleep) and night (i.e., the active phase 
with little sleep). To address this question, male and female C57Bl6/J mice were trained in 
a contextual fear conditioning task at the beginning or the end of the light phase. Animals 
received a single systemic injection with the protein synthesis inhibitor anisomycin or ve-
hicle directly, 4, 8 hr, or 11.5 hr following training, and memory was assessed after 24 hr. 
Here, we show that protein synthesis inhibition impaired the consolidation of context–fear 
memories selectively when the protein synthesis inhibitor was administered at the first 
three time points, irrespective of timing of training. Even though the basal activity of sign-
aling pathways regulating de novo protein synthesis may fluctuate across the 24-hr cycle, 
these results suggest that the temporal dynamics of protein synthesis-dependent memory 
consolidation are similar for day-time and night-time learning.
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processes can be divided into different phases and include the 
following: (a) the acquisition of new information, (b) the con-
solidation of short-term into long-term memories, and (c) the 
retrieval of the stored information (Abel & Lattal, 2001). These 
processes occur in different time frames and depend on differ-
ent molecular mechanisms, although some of the underlying 
mechanisms may overlap (Abel & Lattal, 2001; Akkerman, 
Blokland, & Prickaerts, 2016). The initial acquisition of sen-
sory input takes place at the moment when new information is 
presented and includes the encoding of this information (Abel 
& Lattal, 2001; Tonegawa, Pignatelli, Roy, & Ryan, 2015). 
Memory consolidation starts directly following acquisition 
(Abel & Lattal, 2001; Havekes, Meerlo, & Abel, 2015). During 
this process, the initial labile memory is stabilized into a long-
term memory, and this process is sensitive to disruption (Abel 
& Lattal, 2001; Havekes et al., 2015). Subsequently, when 
necessary, the stored information can be accessed and recalled 
during retrieval (Abel & Lattal, 2001; Havekes et al., 2015).

The hippocampus critically contributes to the forma-
tion of declarative and episodic memories including spa-
tial and contextual memories (Daumas, Halley, Frances, & 
Lassalle, 2005; Eichenbaum & Cohen, 2014; Morris, Garrud, 
Rawlins, & O'Keefe, 1982; Moser & Moser, 1998; Nadel & 
Moscovitch, 1997; Oliveira, Hawk, Abel, & Havekes, 2010; 
Phillips & LeDoux, 1992; Scoville & Milner, 1957; Squire, 
1992). A frequently used paradigm to elucidate the molecular 
underpinnings of context-specific memories is the contextual 
fear conditioning (CFC) task, which relies on both the hip-
pocampus and the amygdala (Daumas et al., 2005; Havekes, 
Park, Tolentino, et al., 2016a; Kochli, Thompson, Fricke, 
Postle, & Quinn, 2015; Parsons, Gafford, Baruch, Riedner, 
& Helmstetter, 2006; Phillips & LeDoux, 1992; Rudy, 
Barrientos, & O'Reilly, 2002). Training in this paradigm re-
sults in a context–fear association of the conditioning box 
(the conditioned stimulus, CS) with an unexpected adverse 
stimulus, often a mild foot shock (the unconditioned stim-
ulus, US). Upon re-exposure to the same context, mice that 
successfully learned to associate the CS with the US show 
high levels of freezing (i.e., the complete lack of movement 
except for respiratory behavior), indicating a context–fear 
memory. As only a single training session is needed to form 
a robust contextual fear memory, this test is ideally suited to 
examine the molecular mechanisms contributing to the dif-
ferent memory stages.

The consolidation of stable, naturally retrievable long-term 
memories including those dependent on proper hippocampal 
function require de novo protein synthesis (Bourtchouladze et 
al., 1998; Davis & Squire, 1984; Jarome & Helmstetter, 2014; 
Lattal, Honarvar, & Abel, 2004; Ryan, Roy, Pignatelli, Arons, 
& Tonegawa, 2015). Indeed, blocking protein synthesis using 
protein synthesis inhibitors attenuates the formation of object 
memories (Rossato et al., 2007), spatial memories (Artinian 
et al., 2008), and context–fear associations (Bourtchouladze 

et al., 1998). Interestingly, the regulation of processes in-
volved in learning and memory, such as protein synthesis, 
may vary across the day and night (Aten et al., 2018; Frank, 
2016; Gerstner & Yin, 2010; Jilg et al., 2010; Kim et al., 2019; 
Nakanishi et al., 1997; Ramm & Smith, 1990; Rawashdeh, 
Jilg, Maronde, Fahrenkrug, & Stehle, 2016; Snider, Sullivan, 
& Obrietan, 2018). For example, hippocampal cAMP lev-
els as well as the phosphorylation of mitogen-activated pro-
tein kinase (MAPK), and cAMP response element-binding 
protein (CREB) show daily oscillations, which may suggest 
circadian regulation of cAMP/MAPK/CREB pathways (Eckel-
Mahan et al., 2008; Mizuno & Giese, 2005; Rawashdeh et al., 
2016; Snider et al., 2018; Trifilieff et al., 2006). Importantly, 
the regulation of mammalian target of rapamycin complex 1 
(mTORC1) signaling pathway, which is key for protein synthe-
sis by initiating translation, also shows daily oscillations (Jouffe 
et al., 2013; Robles, Humphrey, & Mann, 2017; Saraf, Luo, 
Morris, & Storm, 2014). Recently, it was shown that accumu-
lation of Per2, a core clock protein, results in the inactivation of 
mTORC1, decreasing translation of proteins (Wu et al., 2019). 
Hence, the regulation of processes that are important for learn-
ing and memory shows oscillations across the day and night.

Despite these observations, it is unclear whether these 
daily oscillations in the basal activity of signaling pathways 
critical for learning and memory affect the temporal dynam-
ics of protein synthesis-dependent memory consolidation. 
In other words, does daily variation in the basal activity of 
these pathways mean that the processing and storage of new 
information that depends on protein synthesis also varies 
across the day? To answer this question, we assessed in mice 
whether inhibition of protein synthesis affects memory con-
solidation similarly during the light phase (the resting phase) 
and dark phase (the active phase). Animals were trained at the 
beginning or end of the light phase, and the protein synthesis 
inhibitor anisomycin or vehicle was systemically delivered 
at different time points following training in the hippocam-
pus-dependent contextual fear conditioning task.

2 |  MATERIALS AND METHODS

2.1 | Subjects

A total of 64 male and 64 female C57BL/6J mice were ob-
tained at 6 weeks of age (Janvier Labs) and housed in same-
sex pairs throughout the experiment. Cages contained a 
cardboard roll, standard bedding, and nesting material. Food 
and water were available ad libitum. During the experiment, 
the mice were housed under constant temperature (21°C) 
and on a 12-hr light/12-hr dark schedule with lights on at 
10 a.m. for animals that were trained at the beginning of the 
light phase, and lights on at 10 p.m. for animals trained at 
the end of the light phase (see next paragraph). Experiments 
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were performed when the animals were 12–16 weeks old. All 
described procedures were approved by the national Central 
Authority for Scientific Procedures on Animals (CCD) and 
the Institutional Animal Welfare Body (IvD, University of 
Groningen, The Netherlands).

2.2 | Experimental design

This study consisted of 16 groups of mice, each with a total of 
7–8 animals (equal males and females), and animals were ran-
domly assigned to the groups. Half of the groups were trained 
in the CFC task at the beginning of the light phase, that is, at the 
beginning of their circadian resting phase, and half of the ani-
mals were trained in the last hour of the light phase, that is, just 
before the start of their active phase. The second time point was 
chosen to avoid having to expose these animals to light when 
they normally would not perceive, which would have been the 
case if animals had been trained at the beginning in the dark 
phase. Both groups of mice were injected with a protein syn-
thesis inhibitor (see below) or vehicle solution either directly 
(“T0”), 4 hr after training (“T4”), 8 hr after training (“T8”), or 
11.5 hr after training (“T11.5”). In all cases, the CFC test trial 
occurred 24 hr after the initial training. For an overview of the 
experimental design, see Figure 1.

2.3 | Habituation and fear conditioning

Three consecutive days prior to the CFC task, animals were 
transported to the experimental room and handled by the exper-
imenter for 2 min a day. On the last day of habituation, animals 
were weighed and received a tail mark with a black permanent 
marker for identification. Furthermore, the day before CFC 
training, mice also received a subcutaneous mock injection of 
50 μl 0.9% saline in order to habituate them to this procedure.

Animals were trained in the CFC task using a foreground 
conditioning protocol (Havekes et al., 2012; Havekes, Park, 

Tolentino, et al., 2016a). On the training day, mice were 
placed in the fear conditioning box (Ugo Basile). After 
2.5 min, mice were subjected to a single 2-s foot shock of 
0.75 mA. Thirty seconds following the shock, mice were 
returned to the housing chamber and received a subcuta-
neous injection of anisomycin or vehicle at a specific time 
point as shown in Figure 1. Twenty-four hours after train-
ing, animals were re-exposed to the conditioning box for 
5 consecutive minutes, without the delivery of a shock. 
Before the training and test session of each new mouse, the 
fear conditioning box was cleaned with 70% ethanol. Fear 
conditioning was assessed by scoring freezing behavior, 
defined as a complete lack of movement except for respira-
tory behavior, which was determined using EthoVision XT 
software (Noldus Information Technology). This software 
yields reliable measurements of freezing behavior (Pham, 
Cabrera, Sanchis-Segura, & Wood, 2009).

2.4 | Drug treatment

Animals were injected subcutaneously with anisomycin 
(150 mg/kg; A&E Scientific, Marcq, Belgium) to temporally 
inhibit protein synthesis, or with equivalent volume of ve-
hicle solution (0.9% saline). Anisomycin was dissolved in 
0.9% saline using 3.7% HCl, after which the pH was adjusted 
to 7.4 using 4% NaOH. At the concentration used, anisomy-
cin inhibits cerebral protein synthesis in mice for 15–45 min 
(Davis & Squire, 1984). Injections were performed in the 
housing room by an experimenter different from the one who 
performed the behavioral task.

2.5 | Statistics

Delta freezing levels were obtained by normalizing the ani-
mal's freezing behavior during the test to baseline (= pre-
shock) freezing levels. Differences in normalized freezing 

F I G U R E  1  Experimental design. Animals are either trained at the beginning of the light phase (“light phase”) or at the end of the light phase 
(“dark phase”). Animals are trained in the contextual fear conditioning task where they receive a shock of 0.75 mA. After the shock, animals are 
injected subcutaneously with vehicle or anisomycin, either directly after training, 4, 8 hr, or 11.5 hr following training. Twenty-four hours after the 
fear conditioning training, animals are re-exposed to the same training context to measure freezing levels. ANI; anisomycin. SC; subcutaneous
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behavior between the anisomycin-injected mice and con-
trol mice per phase and time point were calculated with 
ANOVA. A one-way ANOVA was used to calculate differ-
ences between time points for the vehicle-injected animals 
per phase. A one-way between-subjects ANCOVA was 
used to test for the effect of sex. Additionally, to calculate 
the relative differences between anisomycin and vehicle-
injected animals, we first averaged the mice injected with 
vehicle per time point, per phase. Then, we subtracted all 
individual anisomycin data points by their corresponding 
vehicle average. A two-way ANOVA, using time point and 
phase as independents, and anisomycin normalized to ve-
hicle freezing levels as dependent, was performed to exam-
ine whether the effect of anisomycin on freezing depended 
on time point of injection, (2) light or dark phase, and (3) 
whether there was an interaction effect of time point and 
phase.

Five animals showed very high freezing levels during 
the pre-shock training interval, that is, more than 2 SD 
above the group mean, and were therefore excluded from 
the analysis (SPSS extreme value analysis). These five ani-
mals belonged to the groups: Light phase, T0, Anisomycin; 
Dark phase, T4, Anisomycin; Dark phase, T8, Vehicle; 
Dark phase, T8, Anisomycin; and Dark phase, T11.5, 
Anisomycin. Data are presented as mean ± SEM, includ-
ing a pirateplot showing the spread of the individual data 
points. Statistical analyses were performed using SPSS 
25.0 software (IBM Corp). Data figures were produced in 
R (Boston, MA, USA), using the yarrr package (Phillips, 
2017). Differences were considered statistically significant 
when p < .05.

3 |  RESULTS

We first examined at which time points protein synthesis 
inhibition impaired hippocampus-dependent memory con-
solidation when the animals were trained in the beginning 
of the light phase (Figure 1). Animals received subcutane-
ous vehicle or anisomycin injections after contextual fear 
conditioning, and 24  hr after training, animals were re-ex-
posed to the CFC chamber and freezing levels were meas-
ured. No differences were found in pre-shock freezing levels 
during the training at the beginning of the light phase (T0: 
Control 0.9 ± 0.3% (n = 8), Anisomycin 0.7 ± 0.3% (n = 7), 
ANOVA F < 1; T4: Control 0.7 ± 0.2% (n = 8), Anisomycin 
1.7 ± 0.7% (n = 8), ANOVA F = 1.7; T8: Control 1.3 ± 0.3% 
(n = 8), Anisomycin 1.2 ± 0.4% (n = 8), ANOVA F < 1; 
T11.5: Control 1.6 ± 0.4% (n = 8), Anisomycin 0.8 ± 0.2% 
(n = 8), ANOVA F = 2.9; see also Figure S1a).

Subsequently, we calculated the delta freezing levels by 
normalizing the animal's freezing behavior during the test to 
baseline (pre-shock) freezing levels. As indicated in Figure 

2, anisomycin successfully inhibited CFC memory consol-
idation when injected directly, 4 hr and 8 hr after training, 
respectively (F1,14  =  24.6, p  <  .001; F1,15  =  6.4, p  <  .05; 
F1,15 = 11.2, p < .01; Figure 2a). However, anisomycin did 
not impair memory consolidation when injected 11.5 hr fol-
lowing training (F1,15 = 0.1, p > .5; Figure 2a). Importantly, 
there was no difference in freezing levels between the differ-
ent time points for the vehicle-injected animals (F3,31 = 0.9, 
p > .1; Figure 2a). Hence, protein synthesis inhibition directly 
following training, or 4, and 8  hr following training effec-
tively impaired memory consolidation in the light phase. In 
contrast, delivery of the protein synthesis inhibitor at 11.5 hr 
after training did not impact the consolidation of context–fear 
memories.

In the next set of studies, we examined whether protein 
synthesis inhibition impaired memory consolidation at the 
same time points following training when training was con-
ducted just before the onset of the dark phase, that is, the an-
imals’ active phase (Figure 1). Again, animals did not differ 
in pre-shock freezing levels during the training at the end of 
the light phase (T0: Control 2.4 ± 0.6% (n = 8), Anisomycin 
2.3 ± 0.6% (n = 8), ANOVA F < 1; T4: Control 2.7 ± 0.8% 
(n = 8), Anisomycin 4.6 ± 0.7% (n = 7), ANOVA F = 2.9; 
T8: Control 0.8  ±  0.2% (n  =  7), Anisomycin 1.6  ±  0.5% 
(n = 7), ANOVA F = 1.5; T11.5: Control 1.1 ± 0.3% (n = 8), 
Anisomycin 0.8 ± 0.2% (n = 7), ANOVA F < 1; see also 
Figure S1b).

As can be seen in Figure 2b, delivery of anisomycin di-
rectly, 4 and 8 hr after training during the dark phase inhib-
ited CFC memory consolidation, respectively (F1,15 = 14.8, 
p < .01; F1,14 = 7.4, p < .05; F1,13 = 23.9, p < .001; Figure 
2b). However, when injected 11.5 hr after training, anisomy-
cin did not result in a memory deficit (F1,15 = 1.0, p >  .1; 
Figure 2b). In addition, the vehicle-injected animals showed 
no difference in freezing levels between the different time 
points of injection (F3,30 = 1.1, p > .1; Figure 2b). Therefore, 
these data indicate that inhibition of protein synthesis directly 
after training as well as 4 and 8 hr following training attenu-
ates memory consolidation, in the dark and light phase in a 
similar fashion.

In addition, we calculated the relative differences between 
anisomycin- and vehicle-injected animals by first averag-
ing the mice injected with vehicle per time point, per phase. 
Then, we subtracted all individual anisomycin data points by 
their corresponding vehicle average and plotted this for both 
the light and dark phases (Figure 2c). In line with the pre-
vious findings, there is a significant effect of time point of 
injection, indicating that the effect of anisomycin on freezing 
levels depends on the time when administered (F3,52 = 10.1, 
p < .001; Figure 2c). In addition, there is no general effect of 
phase, suggesting that the delta freezing levels do not differ 
between the light and dark phases (F1,52 = 3.2, p > .05; Figure 
2c). Furthermore, there is no interaction effect between phase 
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and time point of injection (F3,52 = 1.0, p < .1; Figure 2c). 
Altogether, these additional analyses suggest that the effect 
of anisomycin on the delta freezing levels only depends on 
the time point of injection, irrespective of phase, which is in 
accordance with our conclusion based on the analyses above.

Finally, we assessed whether sex differences influenced 
freezing levels and response to protein synthesis inhibition. 
We first performed a one-way between-subjects ANCOVA 
to examine the effect of protein inhibition on freezing levels 
during the test phase (i.e., 24 hr after the training) controlling 
for the effect of sex. Analysis indicated that sex was not sig-
nificantly related to freezing levels (F1,120 = 2.7, p > .1; data 
separated for sexes not shown). Altogether, protein synthesis 
inhibition decreased freezing levels in both phases in a simi-
lar fashion independent of sex.

4 |  DISCUSSION

This study aimed to gain insight into the role of protein 
synthesis in the consolidation of hippocampus-dependent 

F I G U R E  2  Protein synthesis inhibition attenuates the 
consolidation of context–fear memories at specific time points 
following training, irrespective of time of day. Animals were trained 
in the contextual fear conditioning paradigm either at the beginning or 
the end of the light phase. Injections were given either directly (T0), 
4 hr (T4), 8 hr (T8), or 11.5 hr (T11.5) after training. Animals were re-
exposed to the same context 24 hr after training during which freezing 
levels were measured. Then, delta-freezing levels were calculated by 
normalizing freezing levels during the test to baseline (pre-shock). (a) 
Delta-freezing levels after contextual fear training at the beginning of 
the light phase and drug treatment during the light phase. T0: vehicle 
n = 8, Anisomycin n = 7 (p < .001); T4: vehicle n = 8, Anisomycin 
n = 8 (p = .024); T8: vehicle n = 8, Anisomycin n = 8 (p = .005); 
T11.5: vehicle n = 8, Anisomycin n = 8 (p = .912). (b) Delta-freezing 
levels after contextual fear training at the end of the light phase and 
drug treatment during the dark phase. T0: vehicle n = 8, Anisomycin 
n = 8 (p = .002); T4: vehicle n = 8, Anisomycin n = 7 (p = .017); T8: 
vehicle n = 7, Anisomycin n = 7 (p < .001); T11.5; vehicle n = 8, 
Anisomycin n = 7 (p = .168). (c) Delta-freezing levels in anisomycin-
treated animals relative to vehicle-treated animals. T0: Light phase 
n = 7, Dark phase n = 8; T4: Light phase n = 8, Dark phase n = 7; T8: 
Light phase n = 8, Dark phase n = 7; T11.5: Light phase n = 8, Dark 
phase n = 7. Panel a & b: Data are expressed as the mean, the area 
(band) around the mean indicates SEM, the smoothed density curve 
(bean) shows the full data distribution, and dots indicate individual 
data points. Freezing behavior was assessed during 300 s. * p < .05, 
**p < .01, ***p < .001, as calculated by ANOVA. Panel c: All data 
are expressed as the mean ± SEM. Freezing behavior was assessed 
during 300 s. Time point ***p < .001, Phase p = .081, interaction 
effect p = .386, as calculated by a two-way ANOVA
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memories across different phases of the 24-hr cycle. For this 
purpose, we trained mice in the CFC task either at the begin-
ning or end of the light phase and inhibited protein synthe-
sis at different time points following training. We found that 
protein synthesis inhibition impaired CFC memory consoli-
dation independent of the timing of training, directly, 4, and 
8 hr following training. These data underscore the importance 
of de novo protein synthesis for the consolidation of contex-
tual fear memories and suggest that the temporal dynamics of 
protein synthesis-dependent consolidation of contextual fear 
memories are similar across the light and dark phase.

Interestingly, we found that blocking protein synthesis 
8  hr after CFC training at the beginning of the light phase 
impaired memory consolidation. This finding is somewhat 
surprising as previous work revealed that CFC memory is se-
lectively affected by inhibition of protein synthesis either di-
rectly or 4 hr, but not 8 hr after training (Bourtchouladze et 
al., 1998). Regarding this discrepancy, it should be noted that 
Bourtchouladze and colleagues used a background condition-
ing rather than foreground conditioning protocol. During back-
ground conditioning, the US is paired with a tone, which acts 
as a second CS in addition to the training context. Thus, subtle 
differences in the CFC training protocol (in this case the pres-
ence or lack of a tone during the shock) may alter the temporal 
dynamics of protein synthesis-dependent memory consolida-
tion. Indeed, the use of a more robust background conditioning 
training protocol (i.e., with multiple shocks) results in the con-
solidation of context–fear memories that is disrupted by aniso-
mycin treatment immediately following training, but not at the 
four-hour time point (Bourtchouladze et al., 1998). However, 
in line with our observations, Trifilieff et al. showed that CFC 
training leads to an activation of the ERK/CREB pathway in 
the CA1 region of the hippocampus approximately nine hours 
following training (Trifilieff et al., 2006). This activation may 
contribute to the de novo synthesis of proteins that are crucial 
for the consolidation of contextual fear memories. In future 
studies, it would be interesting to examine how subtle alter-
ations in CFC training protocols affect the temporal dynamics 
of protein synthesis-dependent memory consolidation and ac-
tivation patterns of the related signaling pathways.

As mentioned previously, the activity of signaling path-
ways involving MAPK, cAMP, and PKA is critical for 
learning and memory and varies across the circadian cycle 
(Eckel-Mahan et al., 2008). Whereas some studies examined 
baseline circadian rhythms of signaling pathways, other stud-
ies focused on learning-induced plasticity. Background con-
ditioning, for example, is associated with a single phase of 
activation of the ERK/CREB pathway in the CA1 region of 
the hippocampus directly after training. Unpairing of the tone 
and the US—that is, when the tone is given pseudorandomly, 
not together with the shocks—leads to a paradigm that is 
more comparable to foreground conditioning and the proto-
col that was used in this study. This results in two distinct 

waves of ERK/CREB activation in the CA1 region: one di-
rectly after training and the second approximately nine hours 
after training (Trifilieff et al., 2006). Inhibition of ERK/
CREB during any of these phases was sufficient to impair 
memory formation after unpaired fear conditioning. As stated 
in the previous paragraph, the timing of these two waves of 
ERK/CREB activation appears to be comparable to the time 
points directly and eight hours after contextual fear training 
in this study, at which the consolidation of contextual fear 
memories depends on de novo synthesis of proteins. Thus, 
ERK/CREB signaling may contribute to the de novo synthe-
sis of proteins that are crucial for the consolidation of contex-
tual fear memories directly or 8–9 hr after training. Protein 
synthesis at the 4-hr time point may be orchestrated by other 
ERK-independent mechanisms such as the PKA-CREB path-
way. Indeed, intrahippocampal injection with Rp-cAMPs (a 
PKA inhibitor) at 4  hr following fear conditioning impairs 
the consolidation of context–fear memories (Bourtchouladze 
et al., 1998). The notion of two waves of protein synthesis 
is supported by another study which used a motor learning 
paradigm (Peng & Li, 2009).

It is important to note that it is challenging to separate 
the circadian and/or time-of-day effects on memory consol-
idation from changes in the sleep/wake cycle (Snider et al., 
2018). Sleep has a strong influence on memory processes, 
and hippocampus-dependent memories are vulnerable to 
sleep loss (Graves, Heller, Pack, & Abel, 2003; Havekes 
et al., 2014; Havekes, Park, Tudor, et al., 2016b; Raven, 
Zee, Meerlo, & Havekes, 2017; Vecsey et al., 2009). For 
example, 5–6  hr of sleep deprivation (SD) directly after 
CFC training impairs memory consolidation in both mice 
and rats (Graves et al., 2003; Hagewoud et al., 2010; 
Kreutzmann, Havekes, Abel, & Meerlo, 2015; Vecsey et 
al., 2009). Importantly, these studies were conducted in the 
light phase, which is the main resting phase of sleep phase 
of laboratory rats and mice. In contrast, six hours of sleep 
deprivation directly following training at the beginning of 
the dark phase, the active phase in which rodents sleep far 
less, did not impair memory consolidation (Hagewoud et 
al., 2010). Only when animals were deprived of sleep for 
twelve hours, spanning the entire dark period, it hampered 
the formation of long-term CFC memories (Hagewoud et 
al., 2010). While these findings suggested that the tempo-
ral regulation of the molecular processes underlying hip-
pocampus-dependent memory consolidation may differ 
across the active and the inactive phases, dependent on the 
amount of sleep in these phases, they raise the question 
how it is possible that protein synthesis inhibition affects 
memory consolidation independent of time of day. Does it 
imply that the negative consequences of sleep loss are at 
least in part protein synthesis independent? For a memory 
to come to exist, an initial memory trace needs to be made 
from de novo proteins, eventually forming actin filaments 
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creating new spines, hence forming new synaptic connec-
tions. Therefore, inhibition of protein synthesis directly 
hampers memory consolidation as new memories cannot 
be formed. This process involves, and is sensitive to, many 
molecular constructors modulating the formation of new 
synapses. One example of such a molecular constructor is 
cofilin. Cofilin is an actin-destabilizing protein and, when 
activated, disassembles actin filaments causing loss of 
dendritic spines (Bamburg & Wiggan, 2002; Bernstein & 
Bamburg, 2010). A short period of SD in the light phase 
increases cofilin activation eventually causing spine loss 
(Havekes, Park, Tudor, et al., 2016b). Furthermore, SD re-
duces mTORC1 activity signaling in the hippocampus, af-
fecting translation, thereby also indirectly reducing protein 
synthesis, potentially resulting in memory impairments 
(Tudor et al., 2016). Together, SD impairs important mo-
lecular mediators of synaptic plasticity, and thereby indi-
rectly affecting memory storage. This could explain why 
SD only impairs memory in the light phase, when sleep 
pressure is high, targeting the constructors instead of the 
fundamental building blocks of memories itself (Figure 3).

Given that sleep loss has a strong effect on learning and 
memory (Havekes & Abel, 2017; Raven et al., 2017), one 
might wonder if the effects of anisomycin on memory for-
mation are not only directly caused by inhibition of protein 
synthesis, but perhaps in part indirectly by affecting sleep. 
Although in our study we did not measure EEG or motion 
during the course of the experiment, literature shows that 
anisomycin can have subtle effects on sleep. For example, 
whereas non-rapid eye movement (NREM) sleep is more 

often reported to be unaffected, injections of anisomycin 
might decrease rapid eye movement (REM) sleep (Drucker-
Colin, Zamora, Bernal-Pedraza, & Sosa, 1979; Gutwein, 
Shiromani, & Fishbein, 1980; Rojas-Ramirez, Aguilar-
Jimenez, Posadas-Andrews, Bernal-Pedraza, & Drucker-
Colin, 1977). Yet, it is uncertain whether these effects on 
sleep are strong enough to explain the memory deficits in 
our study. Moreover, such an indirect effect of anisomycin 
on memory through changes in sleep is not supported by 
the results of the injections at the end of the dark phase, 
just before the start of the main circadian sleep phase. If 
anisomycin would have major effects on sleep that could 
impair memory formation, one would expect this to have 
occurred with injections at that time point as well, which 
was not the case.

Although, as mentioned previously, the indirect effects of 
anisomycin on memory are largely unknown, it remains one 
of the most widely used tools to manipulate protein synthesis 
in order to investigate memory processes (Davis & Squire, 
1984; Gold, 2008; Rudy, Biedenkapp, Moineau, & Bolding, 
2006). Using anisomycin, researchers found that protein 
synthesis is necessary for long-term memories to persist. 
Several studies have been performed applying anisomycin 
locally and therefore increasing spatial resolution, combined 
with its already advantageous temporal resolution. Recently, 
Ryan et al. (2015) showed that anisomycin impaired memory, 
but that this amnesia could be recovered, thereby implying 
that protein synthesis is important for structural strengthen-
ing of the synapse, which is necessary during memory re-
trieval (Ryan et al., 2015). One disadvantage of anisomycin 

F I G U R E  3  A hypothetical model describing how sleep deprivation and protein synthesis inhibition impact memory consolidation. Long-term 
memory requires synthesis of de novo proteins, which are the building blocks of dendritic spines, eventually forming new synaptic connections. 
Inhibition of de novo protein synthesis during sensitive periods therefore directly impairs long-term memory. On the other hand, the building blocks 
need to be assembled by protein assembly regulators or “builders” such as actin (de)stabilizers. When the balance between regulators is disturbed 
during sensitive periods, for example, as a result of sleep deprivation, memory can be impaired. ANI, anisomycin; SD, sleep deprivation

Learning

Protein assembly regulators
“The constructors”

Protein synthesis
“The building blocks”

Dendritic spines 
& memory
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is that it is also capable of disrupting basic neurobiologi-
cal functions, for example, by causing apoptosis (Iordanov 
et al., 1997), which can affect the neurons’ well-being and 
thereby contribute to memory impairments. For example, a 
few studies showed that anisomycin hampered basic mem-
brane properties of hippocampal neurons (Scavuzzo et al., 
2019; Sharma, Nargang, & Dickson, 2012). Therefore, the 
memory impairments seen after injections of anisomycin 
could also be influenced by anisomycin-induced alterations 
in neural activity. However, in our study, we observed no ef-
fects of anisomycin at the latest time point, which indicates 
that if anisomycin reduced basic cell properties, these effects 
are almost negligible in our paradigm of the contextual fear 
conditioning task. Nevertheless, the use of other more spe-
cific inhibitors, such as rapamycin, which specifically tar-
gets mTORC1 is advised to largely rule out any effects on 
basic cell functioning.

Knowledge on the dynamics of memory consolidation 
across the day and night is of great importance for all stud-
ies that aim to unravel the molecular mechanisms underlying 
memory formation. Future research should examine whether 
other molecular mechanisms supporting memory and known 
to be susceptible to SD are differently affected across the day 
and night. These may include transcription, translation, RNA 
binding, and ubiquitination, as revealed by a genomic anal-
ysis (Vecsey et al., 2012). Furthermore, future studies can 
utilize novel and more sophisticated techniques, such as op-
togenetics to tag neurons in an activity-dependent way to see 
how and when certain memories are formed and preserved in 
time (Ryan et al., 2015; Tonegawa et al., 2015). These tech-
nological advances may lead to a better understanding of the 
molecular underpinnings of hippocampus-dependent mem-
ory consolidation across day and night.
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