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Abstract: Dermal fillers are gel-type substances for nonsurgical medical-device use to achieve facial
rejuvenation. Currently, the most widely used skin fillers are hyaluronic-acid-based dermal fillers.
This study aimed to explain the change in the volume of injected dermal fillers by developing a math-
ematical kinetic model for various dermal fillers. The kinetics of the injected fillers were separated by
a biphasic phenomenon. We attributed an increase in filler volume to the hydration of hyaluronic
acid molecules and injection-site reaction and a decrease in volume to enzyme-mediated degradation.
To explain these in vivo characteristics of dermal fillers, we proposed a two-compartment model,
divided into a depot compartment (where the filler was injected) and a subcutaneous compartment
(an observation compartment where the fillers swell and degrade), assuming that the swelling and
degradation occurred in accordance with the swelling and degradation rate constants, respectively.
The model was developed using five hyaluronic-acid-based dermal fillers and NONMEM. We deter-
mined that the rate-limiting step for the complete degradation of the dermal fillers in vivo was the
swelling phase, as described by the swelling rate constant (Kswell). This study could enable scientists
developing novel dermal fillers to predict the in vivo behavior of fillers.

Keywords: HA-based dermal filler; kinetic model; swelling; degradation; prediction; NONMEM

1. Introduction

Over the last 20 years, interest in dermal fillers as a nonsurgical medical device for
facial rejuvenation has significantly increased. The growing public awareness and demand
for dermal fillers as injectable implants drive the market growth. Approximately 160 dermal
filler products, produced by more than 50 different manufacturers, are currently available
worldwide [1,2].

A dermal filler is a gel-type substance that is injected under the skin. It is composed
of various natural or synthetic substances. Dermal fillers have been classified according to
the product composition; the primary ingredients include collagen, synthetic hyaluronic
acid (HA), poly-L-lactic acid, calcium hydroxyapatite, polymethyl methacrylate, and poly-
acrylamide gel. Currently, the most widely used skin fillers are HA-based dermal fillers
because of their excellent safety, ease of application, and satisfactory aesthetic results.

HA is a naturally occurring high molecular weight polysaccharide, composed of
repeating disaccharide units of N-acetyl-glucosamine and D-glucuronic acid, which form
an essential component of the skin and connective tissues. HA has been widely used
for facial rejuvenation, as it is easy to use, non-immunogenic, non-carcinogenic, and
biocompatible [3]. It’s in vivo degradation occurs primarily through enzymatic degradation
and free radical oxidation [4]. In 2015, HA-based dermal fillers accounted for more than
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92% of all filler treatments in the US market. These fillers consist of long chains of HA that
are usually chemically modified by cross-linking [1,2,5–9]. Cross-linking density affects the
degradation lifetime of HA hydrogel. Hence, the cross-linking technology used determines
the performance of the dermal filler. Besides 1,4-butanediol diglycidyl ether (BDDE), which
has been mainly used for HA’s covalent binding, other chemical cross-linkers have been
used, such as glutaraldehyde, hexamethylenediamine, poly(ethylene glycol) digycidyl
ether, divinyl sulfone, carbodiimide, adipic acid dihydrazide, and 2,7,8-diepoxyoctane.
More recently, HA hydrogels have been cross-linked using novel bis(β-isocyanatoethyl)
disulphide (BIED). This HA hydrogel has good biocompatibility and no cytotoxicity;
moreover, it can act as an inflammatory and immune modulator. Therefore, HA-based
hydrogels have potential medical applications depending on the type and process of
chemical cross-linking [10,11]. In humans, HA-based dermal fillers for volumizing and
contouring are known to retain their effects for a few months to a year or more. In a
rodent model, the effects of a subcutaneously administered dermal filler (Juvederm® Vista
ULTRA PLUS, Allergan Plc., Dublin, Ireland) were maintained for 64 weeks and up to
18 months [12].

Nonclinical investigation of dermal filler products includes filler performance tests
to evaluate their effectiveness (such as contouring, volumizing, and volume maintenance
effects) before clinical trials. Generally, these studies evaluate the residual volume after
subcutaneous or intradermal injection in hairless mice. During the initial phase of treatment
after filler injection, the volume at the injection site increases above the injected volume;
this phenomenon is called swelling. It is followed by a steady decrease in volume over the
mid–late phase of the treatment. Swelling occurs due to injection site reaction on the skin
and hydration of HA molecules. The volume decrease during the mid–late phase of the
treatment results from degradation mediated by endogenous hyaluronidase [13–16].

The International Organization for Standardization (ISO) 10993-6 (Biological evalu-
ation of medical devices—Part 6: Tests for local effects after implantation) recommends
the utilization of a minimum of 3 observation time intervals for medical devices such as
dermal fillers: (1) early time frame when there is no or minimal degradation; (2) middle
time frame when degradation is occurring; and (3) late time frame, when minimal amounts
of the absorbable components remain at the implant site, to evaluate the degradation of
absorbable materials [17,18]. This guideline additionally recommends considering relevant
information from in vitro degradation studies and conducting a pilot study in rodents for
establishing an adequate test period in the main study. However, the complete degradation
of the dermal filler in a rodent model is difficult to evaluate because the lifespan of rodents
is limited and this study requires a considerable amount of observation time and effort.
Thus, a mathematical model was needed to predict the time for complete degradation of
fillers, based on rodent model data.

Although the ISO guideline states that in vitro degradation studies or mathematical
modeling can be helpful to estimate the degradation time point [17,18], it does not pro-
vide details regarding these methods. Furthermore, no previous studies have reported
mathematical modeling approaches and in vitro to in vivo extrapolation methods for this
purpose. Therefore, several researchers evaluating the biological characteristics of dermal
fillers are currently in need of such mathematical approaches.

The objective of this study was to develop a mathematical kinetic model for five
HA dermal fillers from different companies (99 fill®, Hanmi Pharmaceutical Co., Ltd.,
Seoul, Korea; Juvederm® VOLUMA with Lidocaine, Allergan Plc.; Neuramis® VOLUME
Lidocaine, Medytox Inc., Cheongju-si, Korea; Restylane® Lyft with Lidocaine, Galderma
S.A., Lausanne, Switzerland; and YVOIRE® contour plus, LG Chem Ltd., Seoul, Korea) and
to apply this model to simulate the volume–time profile of the fillers to predict the time for
complete degradation. The properties of HA dermal fillers are provided in Supplementary
Materials Table S1. The in vivo characteristics and complete degradation time of five
different dermal fillers were successfully predicted using the mathematical kinetic model
developed in this study.
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2. Materials and Methods
2.1. Animals and Study Design

All experimental procedures were approved by the Institutional Animal Care and Use
Committee of Medytox Inc. (Approval No. A-2018-010, Approval Date. 20 July 2018) before
study initiation. Six- to seven-week-old female hairless mice (SKH1-Hrhr) were purchased
from Orient Bio, Inc. (Seongnam-si, Korea) and housed in individually ventilated cage
(IVC) racks with free access to standard rodent feed (R+40RMM-10, SAFE, Augy, France)
and water. The animals were placed under a controlled environment with a 12 h light/dark
cycle at 23 ± 3 ◦C and relative humidity of 55 ± 15%. The dermal filler was administered
subcutaneously at a dose of 100 µL in the dorsal skin of the hairless female mice (n = 8
mice per group). After anesthetic injection in each mouse, the filler volume was measured
using a PRIMOS Lite system (Canfield Scientific Inc., Parsippany-Troy Hills, NJ, USA) at 0,
1, 4, 7, 21, and 28 days and monthly from 2 to 18 months. The filler image was recorded
using a PRIMOS 5.8E system (Canfield Scientific Inc. Parsippany-Troy Hills, NJ, USA) on
day 0 and at the other time points. The change in volume and height was quantitatively
determined according to the 3D (3 dimensional) analysis for the filler image under the
skin. The minimum detectable value for the filler volume was 3 mm3 (0.003 cm3). The
PRIMOS system is a fast and accurate method for measuring filler volume in humans and
animals [19–22].

2.2. Establishment of Kinetic Model for Dermal Fillers

Kinetic modeling for the dermal fillers was performed using NONMEM version 7.4
(ICON Development Solutions, Ellicott City, MD, USA) with the assistance of Pirana (ver.
2.9.8, Princeton, NJ, USA) and PsN (ver. 4.9.0, Husargatan, Uppsala, Sweden). Statistical
and graphical analyses were performed using R (ver. 3.6.1, Welthandelsplatz, Vienna,
Austria), R Studio (ver. 1.2.1335), MS Excel 2016, or GraphPad Prism (ver. 7.05). Following
the visual assessment of the volume–time profiles of the five fillers, the one-compartment
degradation model with first-order swelling were evaluated as the kinetic model to conduct
the analysis and prediction of the time for complete decomposition (Tcd) of the structural
fillers. The kinetic model structure is described in Figure 1.
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Figure 1. The schematic kinetic model for dermal fillers; DEPOT, Depot compartment; SC, Subcuta-
neous compartment, Kswell, Swelling rate constant; Kdeg, Degradation rate constant.

In the kinetic model for these fillers, the depot compartment (DEPOT) represented the
injection site of the filler, and the subcutaneous compartment (SC) represented the subcuta-
neous volume. Although the injected site was also a subcutaneous site, the compartments
were separated to analyze the initial SC volume and the change in volume through the
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two processes of swelling and biodegradation. Hence, the kinetic model of the fillers
consisted of two rate constants, which were parameterized in terms of the swelling rate
constant (Kswell) and degradation rate constant (Kdeg) using ADVAN6 and the first-order
conditional estimation method with interaction (FOCE-I). Since enzyme reactions in the
body follow first-order kinetics, Kswell and Kdeg were assumed as first-order rate constants.
The inter-individual variability (IIV) of each rate constant was evaluated using an expo-
nential method. The IIV of Kdeg was explained by the multiplication of the IIV of Kswell and
the slope obtained with the IIVs of each rate constant because there was a strong linear
relationship between the IIVs of each rate constant. Residual variability (RV) was evaluated
using a proportional error model. Each rate constant of the dermal filler kinetic model was
assumed as log-normal distribution and described as Equations (1) and (2).

Kswell

(
day−1

)
= theta1 · expeta1 (1)

Kdeg

(
day−1

)
= theta2 · exptheta3 · eta1 (2)

The differential equations used to describe the final dermal filler kinetic model were
as follows (Equations (3) and (4)).

dDEPOT
dt

= −Kswell × DEPOT (3)

dSC
dt

= Kswell × DEPOT − Kdeg × SC (4)

where Kswell represents the first-order swelling rate constant for the filler volume from
the DEPOT to the SC compartment and Kdeg represents the first-order degradation rate
constant for the filler volume. The units of the filler volume injected into the DEPOT
compartment and the observed residual volume in the SC compartment coincided in cm3.

2.3. Model Diagnostics and Evaluation

A visual predictive check (VPC) was conducted for the evaluation of the final kinetic
model for the fillers. Using the final model, 1000 simulated replicates of the original
dataset were generated, and the 5th percentile, median, and 95th percentile calculated
from the simulated residual volume were compared to the observed residual volume of
the remaining filler. In addition, bootstrap analysis was performed as an internal model
evaluation. The final model parameters were compared to 95% confidence intervals, which
were calculated using the 2.5 and 97.5 percentiles obtained from 1000 bootstrapping.

2.4. Simulation for Expected Time for Complete Decomposition

Monte–Carlo simulations (n = 1000) were performed using the estimates for Kswell,
Kdeg, and IIV on Kswell and the (RV) of the final model for the fillers to predict the Tcd of
various dermal fillers. Following the NONMEM simulation, we calculated 90% prediction
intervals from the simulation data and subsequently plotted the median and 90% prediction
interval (5% to 95% quantile) using dplyr and ggplot2 of the R package. Because the lowest
detection limit of the PRIMOS 5.8E system used in this animal study was 3 mm3 (0.003 cm3),
we could determine Tcd as the time in which the simulated median volume reached below
3 mm3 (0.003 cm3).

3. Results
3.1. Volume Change of Fillers after Injection in Hairless Mice

The changes in the volume of the fillers with respect to time were determined, in
compliance with ISO 10993-6 [18]. The volumes in the hairless mice after injection of
the fillers at 100 µL are shown in Figure 2. The volume of the fillers increased for up to
2 months and gradually decreased over time from 2 months to 18 months.
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YVOIRE® Contour plus.

3.2. Kinetic Modeling for Swelling and Degradation

The dataset for the five marketed dermal fillers were included in the analysis. The
observed residual volume from the volume–time profiles were best described by a one-
compartment degradation model with first-order swelling. The estimated Kswell and Kdeg
values from the final kinetic model for each of the five dermal fillers are summarized
in Table 1. The values were similar to those generated from the bootstrap replications,
indicating good precision in the final models. Figure S1 shows basic goodness-of-fit plots
for the final model of each dermal filler. The individual and population predictions were
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evenly distributed across the line of identity, indicating a good model fit. VPCs with
95% prediction intervals using the final kinetic model are shown in Figure 3. The VPC
plots indicate that most of the observed residual filler volume values were within 95%
of the prediction interval of the simulated data. The results indicate that the predictive
performance is adequate for the final kinetic model of the fillers.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 6 of 13 
 

 

3.2. Kinetic Modeling for Swelling and Degradation 

The dataset for the five marketed dermal fillers were included in the analysis. The 

observed residual volume from the volume–time profiles were best described by a one-

compartment degradation model with first-order swelling. The estimated Kswell and Kdeg 

values from the final kinetic model for each of the five dermal fillers are summarized in 

Table 1. The values were similar to those generated from the bootstrap replications, indi-

cating good precision in the final models. Figure S1 shows basic goodness-of-fit plots for 

the final model of each dermal filler. The individual and population predictions were 

evenly distributed across the line of identity, indicating a good model fit. VPCs with 95% 

prediction intervals using the final kinetic model are shown in Figure 3. The VPC plots 

indicate that most of the observed residual filler volume values were within 95% of the 

prediction interval of the simulated data. The results indicate that the predictive perfor-

mance is adequate for the final kinetic model of the fillers. 

 

Figure 3. Visual predictive check for the final filler’s models of (A) 99 fill® ; (B) Juvederm®  

VOLUMA with Lidocaine; (C) Neuramis®  VOLUME Lidocaine; (D) Restylane®  Lyft with Lido-

caine; and (E) YVOIRE®  Contour plus. 

Figure 3. Visual predictive check for the final filler’s models of (A) 99 fill®; (B) Juvederm® VOLUMA with Lidocaine;
(C) Neuramis® VOLUME Lidocaine; (D) Restylane® Lyft with Lidocaine; and (E) YVOIRE® Contour plus.
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Table 1. Parameter estimates of the final kinetic model after subcutaneous injection of 5 HA dermal fillers to hairless mouse
and results of bootstrap validation (n = 1000).

Trade Name Parameters Estimates (%RSE) IIV (%RSE) Bootstrap Median
(2.5–97.5% Percentile)

99 fill®

Kswell (day−1) 2.2 (12. 6%) 17.9% (20.3%) 2.24 (1.84–2.85)
Kdeg (day−1) 1.45 (8.8%) - 1.46 (1.26–1.73)

Slope 0 * - -
Proportional residual variability CV% 16.3% (13.1%) - -

Juvederm®

VOLUMA with
Lidocaine

Kswell (day−1) 3.04 (17.1%) 46.5% (30.9%) 3.06 (2.10–4.03)
Kdeg (day−1) 1.98 (19.6%) - 1.99 (1.30–2.74)

Slope 1.15 (2.8%) - 1.15 (1.07–1.41)
Proportional residual variability CV% 13.8% (12.3%) - -

Neuramis®

VOLUME
Lidocaine

Kswell (day−1) 3.55 (8.5%) 22.3% (13.5%) 3.54 (3.03–4.19)
Kdeg (day−1) 2.2 (8.8%) - 2.19 (1.87–2.63)

Slope 1.06 (11.1%) - 1.05 (0.754–1.33)
Proportional residual variability CV% 14.9% (14%) - -

Restylane® Lyft
with Lidocaine

Kswell (day−1) 4.74 (13.1%) 29% (22.3%) 4.79 (3.87–5.90)
Kdeg (day−1) 4.24 (11.6%) - 4.25 (3.52–5.23)

Slope 1.01 (18.3%) - 1.02 (0.436–1.53)
Proportional residual variability CV% 17.9% (11.9%) - -

YVOIRE®

Contour plus

Kswell (day−1) 1.82 (10.2%) 25% (38.5%) 1.84 (1.50–2.25)
Kdeg (day−1) 1.47 (10.7%) - 1.49 (1.20–1.83)

Slope 1.16 (14.5%) - 1.19 (0.891–2.88)
Proportional residual variability CV% 11.2% (10.8%) - -

* The slope for 99 fill® was fixed as 0 because of the estimation tendency to zero value.

3.3. Simulation for Expected Time for Complete Decomposition of Dermal Fillers

The time for complete decomposition (Tcd) of the fillers was predicted by simulation;
the data are summarized in Table 2. The Tcd values for 99 fill®, Juvederm® VOLUMA
with Lidocaine, Neuramis® VOLUME LIDOCAINE, Restylane® LYFT with Lidocaine, and
YVOIRE® contour plus were estimated to be 1750 days with 45% variation as an IIV or RV,
1250 days with over 100% variation, 1120 days with approximately 60% variation as IIV
and RV, 740 days with 90% variation as IIV and RV, and 2050 days with approximately 80%
variation as IIV and RV, respectively (Figure 4).

Table 2. Parameter estimates of the final kinetic model and results of the Monte Carlo simulation
(n = 1000).

Trade Name Tcd Median
(5–95% Quantile)

99 fill 1750 day
(1450~2220 day)

Juvederm® VOLUMA with Lidocaine
1250 day

(630~2800 day)

Neuramis® VOLUME Lidocaine
1120 day

(760~1630 day)

Restylane® Lyft with Lidocaine
740 day

(490~1190 day)

YVOIRE® Contour plus
2050 day

(1360~3130 day)
Kswell, swelling rate constant; Kdeg, degradation rate constant; Tcd, complete decomposition time.
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4. Discussion

Mathematical kinetic models were developed for five HA dermal fillers and evaluated
with respect to the rate constants of swelling and degradation of each dermal filler. Gener-
ally, the decomposition of cross-linked hydrogels, such as HA-based dermal filler is caused
by two mechanisms: hyaluronidase degradation and free radical degradation [23,24].
Hyaluronidase and free radical-mediated degradation is the natural elimination process
of HA filler because of constant exposure to endogenous hyaluronidase and free radical
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oxidation [4,25]. The swelling of HA dermal filler is known to follow first-order kinetics in
in vitro swelling tests, in accordance with the following equations [26–30].

Q =
Wt − W0

W0
(5)

dQt

dt
= k ·(Qe − Qt) (6)

where Q, W0, Wt„ Qe, Qt, and k indicate the swelling ratio, dry (dehydrated) weight of the
hydrogel, wet (hydrated) weight of the hydrogel at time t, swelling ratio when the hydrogel
reaches the maximum volume or equilibrium, swelling ratio at time t, and proportionality
constant between the rate of swelling and the unrealized swelling capacity, respectively.
Hence, after injection of the dermal fillers, the kinetics model was well explained using a
one-compartment degradation model with first-order swelling. In addition, a population
approach including IIV and RV was conducted to minimize variability originated from skin
injection on subjects; subsequently, the kinetics of the dermal fillers was well implemented
based on the evaluation of visual and numerical criteria such as a decrease in objective
function value (OFV), goodness-of-fit plots, VPC, and bootstrapping.

Additionally, the relationships among the three parameters (Kswell, Kdeg, and Tcd), as
presented in Figure 5, were estimated (Kswell and Kdeg) and simulated (Tcd). According to
these relationships among the five filler products, Kswell exhibited a strong linear relation-
ship with Kdeg, indicating that fillers with faster swelling behavior degrade faster and vice
versa. Because both parameters were strongly related to Tcd, fillers that swell and degrade
faster were also associated with a shorter Tcd. Therefore, the rate-limiting step for Tcd was
suggested to be the swelling phase, as described by Kswell, based on the abovementioned
relationships and the order of the physiological reaction in the body (Kswell, Kdeg, and Tcd).
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Generally, dermal fillers can be categorized as bi-phasic and mono-phasic HA fillers
based on the differences in their formulations. The material properties of each dermal filler
are listed in Table S1. Bi-phasic fillers contain a mixture of cross-linked HA and non-cross-
linked HA used as a carrier. Mono-phasic HA fillers are produced through various degrees
of cross-linking by varying the amount of high and low molecular weight HA [31–33]. In
this study, two types of dermal fillers (monophasic fillers (99 fill®, Juvederm® VOLUMA
with Lidocaine, and Neuramis® VOLUME Lidocaine) and bi-phasic fillers (Restylane®

Lyft with Lidocaine and YVOIRE® contour plus)) were applied with the same structural
mathematical model. There was a considerable difference from the modeling results
between mono-phasic and bi-phasic fillers. The ratio of Kswell, to Kdeg was approximately
1.5–1.6 for the mono-phasic fillers; however, the ratio was approximately 1.1 for the bi-
phasic fillers. This difference in the ratio indicated that the swelling rate of the mono-phasic
fillers was considerably faster than that of the bi-phasic fillers and that the characteristics
of the mono- and bi-phasic HA fillers were reflected in the parameter estimation step.
Therefore, the final structural model sufficiently explained the kinetics of each HA filler
based on the characteristics of the HA types. In addition, other animal studies have
reported that the degree of swelling was more pronounced in monophasic fillers than
in biphasic fillers [16,34]. We also explored the other correlations between the estimated
parameters and each property of HA filler (e.g., molecular weight); however, there were no
meaningful relationships, except gel type.

The simulation results of our study revealed that the Tcd of most fillers exceeded the
lifespan or was close to the maximum lifespan of animals used in experiments. However,
it is important to predict Tcd in the early stages of any animal experiment to assess dermal
filler performance and determine the adequate time for histopathological evaluation in
GLP studies, in accordance with the ISO guidelines.

This study had some potential limitations. First, the results of this study were obtained
only for HA-based dermal fillers. The mathematical kinetic model developed by us does
not reflect the kinetics of semi-permanent or permanent fillers; therefore, our model should
be utilized for HA-based dermal fillers. Second, in this study, the in vivo prediction of filler
characteristics was conducted with only rodent data. Further studies in mini-pigs, the skin
structure of which is similar to human skin structure, would be beneficial in predicting
dermal filler characteristics in humans.

In conclusion, we present a new approach to predict the in vivo behavior of dermal
fillers using rodent data and pharmacometrics. This approach would be beneficial for
analyzing the early, middle, and late phases of dermal filler degradation as recommended
by ISO 10993-6.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
923/13/2/133/s1, Table S1: Properties of four HA dermal fillers (except for 99 fill®*); Text S1:
The NONMEM 7.4 code of the kinetic model of Neuramis® VOLUME LIDOCAINE; Figure S1:
The goodness of fit plots of the final filler’s models (A) 99 fill®; (B) Juvederm® VOLUMA with
Lidocaine; (C) Neuramis® VOLUME Lidocaine; (D) Restylane® Lyft with Lidocaine; and (E) YVOIRE®

Contour plus.
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