
sensors

Article

A Personalized Behavior Learning System for
Human-Like Longitudinal Speed Control of
Autonomous Vehicles

Chao Lu 1,* , Jianwei Gong 1, Chen Lv 2, Xin Chen 1, Dongpu Cao 3 and Yimin Chen 3

1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 School of Mechanical and Aerospace Engineering and School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798, Singapore
3 Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue

West Waterloo, Waterloo, ON N2L3G1, Canada
* Correspondence: chaolu@bit.edu.cn; Tel.: +86-10-6891-5062

Received: 6 July 2019; Accepted: 20 August 2019; Published: 23 August 2019
����������
�������

Abstract: As the main component of an autonomous driving system, the motion planner plays an
essential role for safe and efficient driving. However, traditional motion planners cannot make full use
of the on-board sensing information and lack the ability to efficiently adapt to different driving scenes
and behaviors of different drivers. To overcome this limitation, a personalized behavior learning
system (PBLS) is proposed in this paper to improve the performance of the traditional motion planner.
This system is based on the neural reinforcement learning (NRL) technique, which can learn from
human drivers online based on the on-board sensing information and realize human-like longitudinal
speed control (LSC) through the learning from demonstration (LFD) paradigm. Under the LFD
framework, the desired speed of human drivers can be learned by PBLS and converted to the low-level
control commands by a proportion integration differentiation (PID) controller. Experiments using
driving simulator and real driving data show that PBLS can adapt to different drivers by reproducing
their driving behaviors for LSC in different scenes. Moreover, through a comparative experiment with
the traditional adaptive cruise control (ACC) system, the proposed PBLS demonstrates a superior
performance in maintaining driving comfort and smoothness.

Keywords: autonomous driving; driving behavior; human-like control; artificial neural network;
reinforcement learning

1. Introduction

During the last several decades, considerable efforts have been made to design and develop highly
autonomous vehicles that can drive with little or even no interventions from human drivers. However,
the overall architecture for designing autonomous vehicles has not been improved too much. Most of
the existing autonomous vehicles share the same three-layer system architecture, i.e., “sensing and
perception” layer, “motion planner” layer, and “vehicle controller” layer [1,2].

Of the three layers, motion planner is responsible for generating a feasible reference trajectory
for the low-level controllers to follow [3]. In the simple traffic environment with little or even no
surrounding vehicles, this kind of motion planner has shown its effectiveness and has been successfully
applied for autonomous driving [4]. However, when more complex environments with dense traffic are
considered, the increased requirements of driving smoothness, comfort, and personalized adaptation
complicate the motion planner and make it difficult to find a feasible reference trajectory within
the time limit [1]. It has been found that experienced human drivers seem to work well in such
complex environments without using a sophisticated algorithm to compute the optimal trajectory [5,6].

Sensors 2019, 19, 3672; doi:10.3390/s19173672 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7517-2868
http://www.mdpi.com/1424-8220/19/17/3672?type=check_update&version=1
http://dx.doi.org/10.3390/s19173672
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3672 2 of 19

Moreover, human-like driving can improve the acceptance of autonomous vehicles by considering
human personalities [7]. Therefore, how to learn and extract the behavior of human drivers and use the
learned behavior to improve the motion planner has attracted increasing attention in the autonomous
driving community [1,6–8]. To this end, during the last decades, some studies have been done to model
human driving behavior and develop human-like control systems for vehicles.

In the work carried out by [9], a fuzzy system is developed to model the behavior of an experienced
human driver for parking a vehicle. A number of rules for the parking task can be extracted from the
human experience and used to control the vehicle autonomously. Hybrid systems composed of both
continuous models and discrete models are considered in [10] to model the driving behavior of drivers.
A widely used hybrid model named autoregressive exogenous model (ARX) is selected because of
its simplicity and high accuracy. In their model, human driving behavior is classified into different
modes, and each mode corresponds to a continuous ARX model. By combining this kind of hybrid
model with an MPC (model predictive control) controller, the driving behavior can be converted to the
control commands for the vehicle [11].

Although the aforementioned rule- and model-based methods can reproduce human driving
behavior in some cases, prior knowledge about the rule base and the model structure is usually
required. For complex and dynamic scenarios, this kind of knowledge cannot be obtained easily in
advance. In addition, human behaviors are strongly nonlinear, and it is very difficult to model human
behaviors precisely using a physical model. Under such circumstances, learning-based methods
that can learn directly from driving scenes and human demonstrators without prior knowledge are
proposed. This kind of method is usually named learning from demonstration (LFD), which has been
widely used in the humanoid robot domain to generate human-like movements [12]. For the vehicle
control problem, the LFD method can help to reproduce the motion trajectories of the vehicle observed
from human demonstrators [13].

Artificial neural networks (ANN) (both shallow and deep neural networks) [2,6,14–18] and
Gaussian mixture models (GMM) [1,19–21] are commonly used methods for learning from driving
scenes and drivers. Usually, driving data collected from drivers are used to train the ANN and
the GMM offline, and, after training, the learned models can be connected with vehicle controllers
to realize human-like control. Although these models have been applied to deal with complex
traffic environments, the lack of online learning ability makes it difficult for these models to do
the personalized adaptation during the learning process. Because of the online learning capability,
reinforcement learning (RL) has been considered as a promising technology to improve the autonomous
driving systems in recent years [22]. For instance, the Monte Carlo RL method is used by a collaborative
driving system presented in [23] to improve the longitudinal control of vehicles. To solve both the
longitudinal and the lateral control problems, a cooperative adaptive cruise control (CACC) system
using the policy-gradient RL is built in [24]. For helping with the autonomous overtaking control,
Q-learning (a kind of RL algorithm) is adopted by [25,26] to build the learning-based control systems.
An actor-critic RL method is developed in [27] to improve the tracking precision and the driving
smoothness for an autonomous vehicle. Although these RL-based systems can improve navigation
and motion control for vehicles, the problem of learning personalized driving behavior and realizing
the human-like control is not tackled by these studies.

This paper aims to develop a personalized behavior learning system (PBLS) based on RL with
particular focus on the longitudinal speed control (LSC) problem for autonomous driving. The main
contributions of this paper are as follows:

1. A reinforcement-learning-based system is proposed in this paper to learn the driver behavior and
realize the human-like control. Based on RL, the system dynamics are not required and can be
learned directly from the interaction between drivers and the driving environment.

2. By incorporating the controller into the learning system, the learned driving behavior can be
converted to control commands for autonomous vehicles online, which realizes the personalized
adaption for newly-involved drivers.

Sensors 2019, 19, 3672 3 of 19

The remainder of this paper is organized as follows. Section 2 describes the system architecture
of PBLS and gives the definition of different modules in the architecture. Then, Section 3 presents a
solution algorithm for training PBLS. After that, two tests based on the driving simulator and the real
driving data are shown in Sections 4 and 5 to evaluate the performance of PBLS. Finally, Section 6
concludes the paper and gives future directions of the research.

2. Proposed Personalized Behavior Learning System

The system architecture for PBLS is shown in Figure 1, where the learning module is combined
with a proportion integration differentiation (PID) controller to interact with the traffic environment
during the learning process. In this study, the focus is on a typical LSC problem for car following.
Considering the difficulties and the risks of testing the online learning system in real-world scenarios,
the testing traffic scenarios are built in PreScan, a simulation tool for simulating vehicle dynamics and
traffic environments [28]. The testing scenario for LSC consists of one host vehicle and one leading
vehicle. The objective of the host vehicle is to follow the leading vehicle and try to keep a stable
distance to the leading vehicle. Here, the host vehicle can either be controlled by a human driver or the
proposed system. The driving data collected from the on-board sensors can be directly transferred to
the learning module to activate the learning process.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 20

The remainder of this paper is organized as follows. Section 2 describes the system architecture
of PBLS and gives the definition of different modules in the architecture. Then, Section 3 presents a
solution algorithm for training PBLS. After that, two tests based on the driving simulator and the
real driving data are shown in Sections 4 and 5 to evaluate the performance of PBLS. Finally, Section
6 concludes the paper and gives future directions of the research.

2. Proposed Personalized Behavior Learning System

The system architecture for PBLS is shown in Figure 1, where the learning module is combined
with a proportion integration differentiation (PID) controller to interact with the traffic environment
during the learning process. In this study, the focus is on a typical LSC problem for car following.
Considering the difficulties and the risks of testing the online learning system in real-world
scenarios, the testing traffic scenarios are built in PreScan, a simulation tool for simulating vehicle
dynamics and traffic environments [28]. The testing scenario for LSC consists of one host vehicle and
one leading vehicle. The objective of the host vehicle is to follow the leading vehicle and try to keep a
stable distance to the leading vehicle. Here, the host vehicle can either be controlled by a human
driver or the proposed system. The driving data collected from the on-board sensors can be directly
transferred to the learning module to activate the learning process.

The learning module is based on RL and can learn the desired longitudinal speed from human
drivers when they are controlling the host vehicle. Using a PID controller, the desired speed can be
converted to the low-level control commands for throttle and brake pressure. In this way, the human
car-following behavior can be reproduced.

Figure 1. Architecture of the proposed personalized behavior learning system (PBLS). PID:

proportion integration differentiation.
Figure 1. Architecture of the proposed personalized behavior learning system (PBLS). PID: proportion
integration differentiation.

The learning module is based on RL and can learn the desired longitudinal speed from human
drivers when they are controlling the host vehicle. Using a PID controller, the desired speed can be

Sensors 2019, 19, 3672 4 of 19

converted to the low-level control commands for throttle and brake pressure. In this way, the human
car-following behavior can be reproduced.

2.1. Formulation of the Learning Module

The objective of the learning module is to learn the desired speed of the human driver, i.e., to track
the speed trajectory of a human driver. Thus, the learning problem can be defined as a trajectory
tracking problem for the given system

.
x = f (x, u) and a desired trajectory (xh, uh). Let s = x − xh,

a = u− uh, thus the trajectory tracking problem can be solved by a linear quadratic regulator (LQR)
for minimizing the following cost function:

J =
∞∑

k=0

(
sT

k Csk + aT
k Dak

)
, (1)

such that,
sk+1 = Ask + Bak, (2)

where k is the time index, sk is the state vector of the trajectory tracking problem, ak is the control
action, A and B are matrices related to the system dynamics, and C and D are positive-definite matrices
for weighting the cost function. The system dynamics is required for solving this problem based on
the traditional LQR. For the real applications, the system dynamics are usually difficult to know in
advance. In this case, an RL method can be used to learn the optimal solution to the trajectory tracking
problem defined above.

Following [29], the cost at each time step can be defined by:

rk = sT
k Csk + aT

k Dak. (3)

It should be noted that rk is different from its counterpart in the traditional RL problem where rk
is the reward at each time step and is used to formulate a maximization problem. Here, rk is related to
the tracking error for the human behavior and thus should be minimized. For each state-action pair
(sk, ak), the Q function can be defined following the Bellman equation and is given as follows:

Q(sk, ak) =
[

sT
k aT

k

][Hss Hsa

Has Haa

][
sk
ak

]
, (4)

where Hss, Hsa, Has, and Haa are matrices related to the system dynamics and the weights of the cost
function. By setting the derivative of Q with respect to ak to 0, i.e., ∇ak Q(sk, ak) = 0, the optimal action
can be derived and expressed by:

ak = −(Haa)
−1Hassk = Lsk. (5)

For the car-following scenario considered here, the system dynamics are highly related to the
distance between the host vehicle and the leading vehicle (denoted by d) as well as the speed of the
host vehicle (denoted by v). Thus, for the system

.
x = f (x, u), the following variables can be defined:

x = [vd]T, u = a. (6)

Therefore, the state and the control action of the tracking problem can be defined as:

sk =
[

sk,1 sk,2

]T
=

[
vk − vh,k dk − dh,k

]T
, ak = ak − ah,k (7)

where vk and vh,k are the speeds of the host vehicle controlled by the learning system and the human
driver at time step k, respectively, dk and dh,k are the distances controlled by the learning system and

Sensors 2019, 19, 3672 5 of 19

the human driver at time step k, respectively, and ak and ah,k are the accelerations of the host vehicle
controlled by the learning system and the human driver at time step k, respectively.

Given the definition of state and action, the weights for the cost function can be determined as:

C =

[
C1 0
0 C2

]
, D = D, (8)

where C1 + C2 + D = 1.

2.2. Function Approximation Using ANN

It can be seen from (4) that, to get the explicit Q value for each state-action pair, the system
dynamics are required, i.e., the exact values of Hss, Hsa, Has, and Haa should be given. In the learning
problem considered in this study, the system dynamics are not known in advance, thus an alternative
way is used to learn the Q values from data samples and estimate Hss, Hsa, Has, and Haa for the purpose
of calculating the optimal action.

Assume that the Q function can be approximated by a linear function shown below:

Q(sk, ak) = Q(ξk) = θTξk, (9)

where
ξk =

[
ξk,1 ξk,2 ξk,3 ξk,4 ξk,5

]T
=

[
s2

k,1 s2
k,2 2sk,1ak 2sk,2ak ak

2
]T

, (10)

θ =
[
θ1 θ2 θ3 θ4 θ5

]T
. (11)

Under the definition of Equation (9), Equation (4) can be rewritten as a linear function by setting:

Hss =

[
h1 0
0 h2

]
, Has =

[
h3 h4

]
, Hsa =

[
h5 h6

]T
, Haa = h7. (12)

By substituting Equation (12) into Equation (4), the following equation can be obtained:

Q(sk, ak) = h1s2
k,1 + h2s2

k,2 + (h3 + h5)sk,1ak + (h4 + h6)sk,2ak + h7a2
k . (13)

According to Equation (13), one can easily get:

θ1 = h1, θ2 = h2, θ3 = (h3 + h5)/2, θ4 = (h4 + h6)/2, θ5 = h7. (14)

In this way, Hss, Hsa, Has, and Haa can be constructed when θ is obtained.
From the definition of state and action, it can be seen that both of these two variables are continuous,

thus traditional RL methods such as the standard Q-learning that can only deal with the discrete
state and action space cannot be used here. Under such circumstances, the neural Q-learning (NQL)
algorithm is adopted by this study to deal with the continuous problem. Under the framework of
NQL, the continuous Q function can be approximated by an artificial neural network, and thus all the
possible state and action values can be coped with.

As shown in Figure 1, a three-layer feed forward ANN similar to [29] is designed for the learning
module. To guarantee the performance of the ANN, all the input variables should be normalized [30].
For the feed forward ANN considered in this study, the state and action defined in Equation (7) are
normalized as follows.

sk =
[

sk,1 sk,2

]T
=

[2(∆vk−∆vmin)
∆vmax−∆vmin

− 1 2(∆dk−∆dmin)
∆dmax−∆dmin

− 1
]T

, (15)

where ∆vk = vk − vh,k, ∆dk = dk − dh,k, ∆vmax, and ∆dmax are the maximum values of these two variables,
and ∆vmin and ∆dmin are the minimum values of these two variables. Here, ∆vmin, ∆vmax, ∆dmin,

Sensors 2019, 19, 3672 6 of 19

and ∆dmax can be obtained from the data. In this way, both sk,1 and sk,2 can be normalized into a range
between −1 and 1.

Similarly, the action can be normalized as:

ak =
2(∆ak − ∆amin)

∆amax − ∆amin
− 1. (16)

In this way, all the elements of ξk are normalized into [−1, 1]. Let ξk be the input vector for the
input layer, then the feed forward ANN can be defined by its activation functions Γi, i = 0, 1, 2, 3 for
each node. The output of ANN is the optimal Q function, which can be expressed by:

Q(ξk) = Γ0

 3∑
i=1

(
wo,iΓi

(
Wh,iξk + bi

))
+ b0

, (17)

where Wh,i (Wh,i = [w1
h,i · · ·w

5
h,i] for five input variables) is the weight vector for the ith node in the

hidden layer, wo,i is the weight for the link from the ith hidden node to the output node, b j is the bias
for the ith hidden node, and b0 is the bias of the output node. When the optimal Q value is obtained,
the elements of the parameter vector θ can be calculated by:

θl(ξk) =
∂Q(ξk)

∂ξk,l
, l = 1, 2, 3, 4, 5. (18)

Then, the optimal action can be derived from Equation (5) through reconstructing Haa and Has

from θ according to Equation (14).

2.3. Speed Control Module

Given the action, the desired speed can be easily derived from Equation (16) and calculated by:

ak =
∆amax(ak + 1) − ∆amin(ak − 1)

2
+ ah,k,vd,k+1 = vd,k + ak∆t, (19)

where vd,k and vd,k+1 are the desired speeds for the kth and the k + 1th time step, respectively.
The speed control module can then convert the desired speed to control commands for the throttle

and the break pressure control of the host vehicle using a PID controller [31].

y(t) = Kp

[
ve(t) +

1
TI

∫ t

0
ve(τ)dτ+ TD

dve(t)
dt

]
, (20)

where ve(t) is the tracking error between the desired speed and the actual speed, Kp is the proportional
gain, TI is the integral time, TD is the derivative time, and y(t) is the output of the controller, which
can be converted to the throttle and the breaking control commands by a conversion block. Both the
PID controller and the conversion block are embedded in PreScan and implemented as a module
named “Path follower”. In this study, the default parameter values (provided by PreScan) for the PID
controller are applied for all of the experiments. These default parameters provided by PreScan are set
as: Kp = 20, Kp/TI = 0.3, and Kp/TD = 3.0625.

3. Training Algorithm for PBLS

Technically, the goal of the learning system is to find the optimal Q value and its corresponding
parameter vector θ. Temporal difference (TD) learning [32] is a method to solve this problem by
making the TD error defined by Equation (21) approach zero:

ek = rk + Q(sk+1, ak+1) −Q(sk, ak). (21)

Sensors 2019, 19, 3672 7 of 19

Here, the feed forward ANN is used to accomplish this goal. For N time steps, the errors should
be cumulated to formulate the loss function for ANN. For ease of calculation, a quadratic loss function
is defined as follows:

E =
1

2N

N∑
k=1

ek
2

︸ ︷︷ ︸
cumulative error

+
λ
2

 3∑
i=1

(wo,i)
2 +

3∑
j=1

5∑
l=1

(
wl

h, j

)2
︸ ︷︷ ︸

regularisation term

. (22)

The first term of Equation (22) is related to the sum of squares of errors, which should be minimized
by ANN. The second part of Equation (22) is named weight decay term, which is used here to avoid
over-fitting by reducing the magnitude of the weights [33].

From the definition of ek, it can be seen that the bias of the hidden node does not affect the loss
function and thus can be removed from Equation (17). Let Γ0 be a linear function and Γi, i = 1, 2, 3 be
a number of hyperbolic tangent functions, then Equation (17) can be rewritten as:

Q(ξk) =
3∑

i=1

(
wo,itanh

(
Wh,iξk + bi

))
. (23)

The hyperbolic tangent function is selected, as it is a typical activation function for ANN and has
been proven to be effective in many practical cases [30].

Thus, according to Equations (18) and (21), the elements of θ can be obtained from:

θl(ξk) =
3∑

i=1

(
wo,iwl

h,i

(
1− tanh2

(
Wh,iξk + bi

)))
=

3∑
i=1

(
wo,iwl

h,i

)
−

3∑
i=1

(
wo,iwl

h,itanh2
(
Wh,iξk + bi

))
≈

3∑
i=1

(
wo,iwl

h,i

)
.

(24)

The second part
∑3

i=1 (wo,iwl
h,itanh2(Wh,iξk + bi)) of Equation (24) is very small when the weights

and the biases are small and can be ignored, as suggested by [29]. Therefore, θ is only related to the
weight matrix of the ANN and can be calculated when wo,i and wl

h, j are updated. As the objective of
ANN is to minimize the loss function shown in Equation (22), the gradient decent method can be used
here to update the weights. The weights for the output layer can be updated by:

wo,i,u = wo,i,u−1 − α
(
∂E
∂wo,i

)
u−1

= wo,i,u−1 − α

(
1
N

N∑
k=1

(
∂ek
∂wo,i

)
u−1

+ λwo,i,u−1

)
,

(25)

where u is the updating index, and the network is updated every N time steps. Similarly, the weights
for the hidden layer and the biases can be calculated by:

wl
h,i,u = wl

h,i,u−1 − α

 1
N

N∑
k=1

 ∂ek

∂wl
h,i

u−1

+ λwl
h,i,u−1

 (26)

and

bi,u = bi,u−1 − α
1
N

N∑
k=1

(
∂ek
∂bi

)
u−1

. (27)

Sensors 2019, 19, 3672 8 of 19

The key issue right now is how to get the gradients of weights and biases at each updating step,
i.e., the terms ∂ek/∂wo,i, ∂ek/∂wl

h,i, and ∂ek/∂bi. To this end, the back propagation (BP) algorithm can be
used to train the ANN via a mini-batch training method. Frequently updating the weights of the neural
network, e.g., step-by-step update with N = 1, may lead to poor generalization and unstable learning
curves, especially for learning unstable human behaviors. To overcome this limitation, the network
weights are usually updated every N steps (N > 1) by using a small batch of data. This kind of training
method is named mini-batch training and has been widely used for training neural networks [34].
In this paper, the mini-bath training is used to train the feedforward ANN, and, as suggested by [34],
a small N with the value 10 (between two and 32) is selected. This kind of setting can help to avoid
the bias of newly collected driving data and guarantee a relatively smooth learning curve in our
experiment. Based on BP, the whole algorithm for the learning system is developed and shown in
Algorithm 1.

Algorithm 1: Pseudo-code for PBLS

Initialization

(1) Initialize ANN in terms of α, wo,i, Wh,i and bi

(2) Initialize Q function Q = 0, state s0 and action a0

Action generation

(3) For each time step k < Nk do

a. Observe the state sk at the current step and get the recorded state sk−1 and action ak−1.
b. Get the reward rk−1 through Equation (3)
c. Get the action ak through Equation (5)
d. Get the desired speed vd,k through Equation (19)
e. Get the control commands though Equation (20)
f. Calculate ANN-related parameters

Forward propagation, get Q through Equation (23)
Back propagation, get:
The error for the output δo ← ek through Equation (21)

The error for the hidden layer: zi = Wh,iξ+ bi, δh,i ←
(
wo,iδo

)
Γ′i (zi), i = 1, 2, 3

Calculate the gradients for i = 1, 2, 3 and l = 1, 2, 3, 4, 5:

• ∂ek/∂wo,i ← Γiδo

• ∂ek/∂wl
h,i ← ξlδh,i

• ∂ek/∂bi ← δh,i

Let

• ∆wo,i ← ∆wo,i + ∂ek/∂wo,i

• ∆wl
h,i ← ∆wl

h,i + ∂ek/∂wl
h,i

• ∆bi ← ∆bi + ∂ek/∂bi

Mini-batch updating

g. IF Mod(Nk/N = 0) (N = 10) for i = 1, 2, 3 and l = 1, 2, 3, 4, 5 do

• wo,i ← wo,i − α
[

1
N ∆wo,i + λ∆wo,i

]
• wl

h,i ← wl
h,i − α

[
1
N ∆wl

h,i + λwl
h,i

]
• bi ← bi − α

1
N ∆bi

(4) End if
(5) End for

ANN: artificial neural network.

Sensors 2019, 19, 3672 9 of 19

4. Experiments with Constant Speed

The proposed learning system (PBLS) is tested in a simulation platform built by PreScan and
Matlab/Simulink in this section. As mentioned in Section 2, the vehicle information and the driver
data are required by the learning system. In PreScan, both the host and the leading vehicles are
equipped with a virtual lidar system, a Global Positioning System (GPS), and vehicle-to-vehicle (V2V)
communication systems. The vehicle information in terms of location, speed, and distance between
the host vehicle and the leading vehicle can be obtained through these on-board systems.

As shown in Figure 2, driver data can be collected by the Logitech G29 driving simulator through
the human-in-the-loop experiments. For real applications, the driving data can be obtained through
the on-board sensing system. The vehicles involved in the experiments are modeled by the typical 2-D
vehicle dynamics models (single-track model), which are embedded in Matlab/Simulink. The traffic
environment and the driving scene are simulated in PreScan, which is connected to the driving
simulator and provides drivers with the visual information. Two groups of experiments with different
speed profiles—constant speed (CS) and variant speed (VS)—for the leading vehicle are carried out to
evaluate the performance of the proposed system.

In all the tests, the weight values are set as C1 = C2 = D = 1/3 to guarantee that each part of the
cost rk has the same importance. Other parameters for PBLS are shown in Table 1, which are chosen
according to experience and can guarantee a stable performance of PBLS.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 20

 α← − Δ1
i i ib b b

N

(4) End if
(5) End for

 *ANN: artificial neural network.

4. Experiments with Constant Speed

The proposed learning system (PBLS) is tested in a simulation platform built by PreScan and
Matlab/Simulink in this section. As mentioned in Section 2, the vehicle information and the driver
data are required by the learning system. In PreScan, both the host and the leading vehicles are
equipped with a virtual lidar system, a Global Positioning System (GPS), and vehicle-to-vehicle
(V2V) communication systems. The vehicle information in terms of location, speed, and distance
between the host vehicle and the leading vehicle can be obtained through these on-board systems.

As shown in Figure 2, driver data can be collected by the Logitech G29 driving simulator
through the human-in-the-loop experiments. For real applications, the driving data can be obtained
through the on-board sensing system. The vehicles involved in the experiments are modeled by the
typical 2-D vehicle dynamics models (single-track model), which are embedded in Matlab/Simulink.
The traffic environment and the driving scene are simulated in PreScan, which is connected to the
driving simulator and provides drivers with the visual information. Two groups of experiments
with different speed profiles—constant speed (CS) and variant speed (VS)—for the leading vehicle
are carried out to evaluate the performance of the proposed system.

In all the tests, the weight values are set as = = =1 2 1 3C C D to guarantee that each part of the

cost kr has the same importance. Other parameters for PBLS are shown in Table 1, which are chosen
according to experience and can guarantee a stable performance of PBLS.

Figure 2. Driving simulator used for the experiment.

Table 1. Parameters for PBLS.

Figure 2. Driving simulator used for the experiment.

Sensors 2019, 19, 3672 10 of 19

Table 1. Parameters for PBLS.

Scenarios α λ ∆vmax [m·s−1] ∆vmin [m·s−1] ∆dmax [m] ∆dmin [m] ∆amax [m·s−2] ∆amin [m·s−2]

CS/10 [m·s−1] 0.1 0.0005 15 −15 80 0 4 −4
CS/15 [m·s−1] 0.1 0.0005 20 −20 80 0 4 −4
CS/22 [m·s−1] 0.1 0.0005 25 −25 80 0 6 −6

VS/Scene I 0.01 0.05 25 −25 80 0 4 −4
VS/Scene II 0.01 0.5 25 −25 80 0 8 −8

CS: constant speed; VS: variant speed.

4.1. Experimental Settings

The driving scene used by the constant speed scenarios is shown in Figure 3. A straight two-lane
urban road with a length of 30 km is considered. In the test, the driver is asked to drive the host vehicle
first, and then the driving data collected from the driver are transferred to PBLS, which is used to
control the host vehicle in the same scene and learn the driving behavior from the collected driving
data online. When the learning algorithm is converged, PBLS can reproduce the learned behavior by
setting the learning rate as zero.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 20

Scenarios α λ Δ maxv [m·s−1] minvΔ [m.s−1] Δ maxd [m] mindΔ [m] Δ maxa [m.s−2] minaΔ [m.s−2]

CS/10 [m·s−1] 0.1 0.0005 15 −15 80 0 4 −4
CS/15 [m·s−1] 0.1 0.0005 20 −20 80 0 4 −4
CS/22 [m·s−1] 0.1 0.0005 25 −25 80 0 6 −6
VS/Scene I 0.01 0.05 25 −25 80 0 4 −4
VS/Scene II 0.01 0.5 25 −25 80 0 8 −8

 *CS: constant speed; VS: variant speed.

4.1. Experimental Settings

The driving scene used by the constant speed scenarios is shown in Figure 3. A straight
two-lane urban road with a length of 30 km is considered. In the test, the driver is asked to drive the
host vehicle first, and then the driving data collected from the driver are transferred to PBLS, which
is used to control the host vehicle in the same scene and learn the driving behavior from the collected
driving data online. When the learning algorithm is converged, PBLS can reproduce the learned
behavior by setting the learning rate as zero.

Figure 3. Driving scene for constant speed scenario.

In the first test, the leading vehicle keeps a constant speed, and three speed profiles, namely,
low speed (L, 10 m·s−1), medium speed (M, 15 m·s−1), and high speed (H, 22 m·s−1), are designed to
form three different test scenarios. To test the adaptive learning ability of the proposed system, two
drivers (A and B) are involved and asked to follow the leading vehicle in all three scenarios. Then,
the learning system is triggered to learn the driving behavior from these two drivers. It should be
noted here that the focus of this study is to develop a personalized learning system that has the
ability to adapt to different driving behaviors. This kind of adaptation can be tested by involving
two different drivers in this section. Analytical work involving more drivers can be considered in
our future study to analyze the algorithm performance under various kinds of driving behaviors.

RMSE (Root Mean Square Error) can be used to measure the learning error of the learning
system, which is calculated by:

−

=
= − 1 2

0
ˆRMSE() (1 /) ()kN

k k kk
z N z z (28)

where kz is the data point related to the learning system at step k , and ˆkz is the observed data
from human drivers at step k .

4.2. Experimental Results

Figure 4 presents the learning curves of PBLS for different speed scenarios. In all three
scenarios, the learning system can learn the stable distance and the speed curves within 5000 time

Figure 3. Driving scene for constant speed scenario.

In the first test, the leading vehicle keeps a constant speed, and three speed profiles, namely,
low speed (L, 10 m·s−1), medium speed (M, 15 m·s−1), and high speed (H, 22 m·s−1), are designed
to form three different test scenarios. To test the adaptive learning ability of the proposed system,
two drivers (A and B) are involved and asked to follow the leading vehicle in all three scenarios. Then,
the learning system is triggered to learn the driving behavior from these two drivers. It should be
noted here that the focus of this study is to develop a personalized learning system that has the ability
to adapt to different driving behaviors. This kind of adaptation can be tested by involving two different
drivers in this section. Analytical work involving more drivers can be considered in our future study
to analyze the algorithm performance under various kinds of driving behaviors.

RMSE (Root Mean Square Error) can be used to measure the learning error of the learning system,
which is calculated by:

RMSE(z) =

√
(1/Nk)

∑Nk−1

k=0
(zk − ẑk)

2 (28)

where zk is the data point related to the learning system at step k, and ẑk is the observed data from
human drivers at step k.

Sensors 2019, 19, 3672 11 of 19

4.2. Experimental Results

Figure 4 presents the learning curves of PBLS for different speed scenarios. In all three scenarios,
the learning system can learn the stable distance and the speed curves within 5000 time steps (250 s).
As shown in Figure 5, in the low speed scenario, the learning RMSE for both the speed and the distance
of two drivers can be kept at a very low level close to zero. However, with the growth of speed for
the leading vehicle, the performance of PBLS gets worse with RMSE for the speed increasing from
0.01 m·s−1 to 0.37 m·s−1 and RMSE for the distance increasing from 0.05 m to 2.43 m. This result is
reasonable, as in the low-speed scenario, both drivers can perform well in keeping a stable distance to
the leading vehicle. In this situation, the curves for speed and distance are very smooth without large
fluctuation after around 5000 time steps, and thus PBLS performs better in this scenario.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 20

steps (250 s). As shown in Figure 5, in the low speed scenario, the learning RMSE for both the speed
and the distance of two drivers can be kept at a very low level close to zero. However, with the
growth of speed for the leading vehicle, the performance of PBLS gets worse with RMSE for the
speed increasing from 0.01 m.s−1 to 0.37 m.s−1 and RMSE for the distance increasing from 0.05 m to
2.43 m. This result is reasonable, as in the low-speed scenario, both drivers can perform well in
keeping a stable distance to the leading vehicle. In this situation, the curves for speed and distance
are very smooth without large fluctuation after around 5000 time steps, and thus PBLS performs
better in this scenario.

Figure 4. Learning curves for the distance and the speed of two drivers: the figures in the first row
are for the low speed scenario; the figures in the second row are for the medium speed scenario; the
figures in the third row are for the high-speed scenario.

Figure 5. Root Mean Square Error (RMSE) for the constant speed scenarios.

In all three scenarios, PBLS shows a better performance on reproducing the behavior of Driver
A than Driver B with lower RMSE for Driver A. This is mainly because Driver A has more
experience in driving and can keep a relatively stable curve for both speed and distance.

5. Experiments with Variant Speed

Figure 4. Learning curves for the distance and the speed of two drivers: the figures in the first row are
for the low speed scenario; the figures in the second row are for the medium speed scenario; the figures
in the third row are for the high-speed scenario.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 20

steps (250 s). As shown in Figure 5, in the low speed scenario, the learning RMSE for both the speed
and the distance of two drivers can be kept at a very low level close to zero. However, with the
growth of speed for the leading vehicle, the performance of PBLS gets worse with RMSE for the
speed increasing from 0.01 m.s−1 to 0.37 m.s−1 and RMSE for the distance increasing from 0.05 m to
2.43 m. This result is reasonable, as in the low-speed scenario, both drivers can perform well in
keeping a stable distance to the leading vehicle. In this situation, the curves for speed and distance
are very smooth without large fluctuation after around 5000 time steps, and thus PBLS performs
better in this scenario.

Figure 4. Learning curves for the distance and the speed of two drivers: the figures in the first row
are for the low speed scenario; the figures in the second row are for the medium speed scenario; the
figures in the third row are for the high-speed scenario.

Figure 5. Root Mean Square Error (RMSE) for the constant speed scenarios.

In all three scenarios, PBLS shows a better performance on reproducing the behavior of Driver
A than Driver B with lower RMSE for Driver A. This is mainly because Driver A has more
experience in driving and can keep a relatively stable curve for both speed and distance.

5. Experiments with Variant Speed

Figure 5. Root Mean Square Error (RMSE) for the constant speed scenarios.

In all three scenarios, PBLS shows a better performance on reproducing the behavior of Driver A
than Driver B with lower RMSE for Driver A. This is mainly because Driver A has more experience in
driving and can keep a relatively stable curve for both speed and distance.

Sensors 2019, 19, 3672 12 of 19

5. Experiments with Variant Speed

In the previous section, the learning ability of the proposed system was tested in scenarios with
constant speed. In this section, three driving scenes with variant speeds for the leading vehicle
are considered. In the first two driving scenes, the whole test is similar to the constant speed case,
except that a traditional adaptive cruise control (ACC) system is considered here to make a comparison
with PBLS, which is the focus of this section. In the third driving scene, driving data collected from
real vehicles on the real road are used to test the learning system. The driver (Driver A) with more
driving experience is involved in this section. In the following test, PBLS only learns from Driver A.

The ACC system is a widely used longitudinal speed control system, which is designed to assist
drivers to keep a pre-set time headway between the host vehicle and the leading vehicle [35]. The time
headway is defined as the ratio of the distance (d) to the speed of the host vehicle (v). The desired time
headway for ACC is set as 1.8 s in the test, which can keep d between 20 m and 40 m when the leading
vehicle has a speed between 10 m·s−1 and 20 m·s−1. In this way, the d kept by ACC and PBLS can be
ranged to the same level, which helps to make a fair comparison.

Two indicators suggested by [36] are used here to evaluate and compare the performance of PBLS
and ACC on driving comfort and smoothness. These two indicators are given by:

J1 =
amean

vmean
, (29)

J2 =
da
dt

, (30)

where the driving comfort is measured by J1, which is obtained by dividing the average acceleration
amean by the average speed vmean, and the driving smoothness is measured by J2, which is the jerk of
the vehicle.

The driving comfort is considered low when J1 is at a high level, while a high driving smoothness
corresponds to a low and stable J2.

5.1. Driving Scene I

As shown in Figure 6a, in the first driving scene, the road layout is the same as in Section 4,
while the speed of the leading vehicle changes between 10 m·s−1 and 20 m·s−1 during the whole test.
For data collection, the driver in the host vehicle is asked to follow the leading vehicle with variant
speed in the first run. After that, the proposed PBLS is triggered for behavior learning. In this case,
the algorithm runs for 80,000 time steps (around 1 h for convergence) for learning and then runs for
40,000 time steps by setting the learning rate as zero to reproduce the learned behavior.

Figure 7 presents the distance and the speed comparison among the driver with PBLS and ACC
in the first driving scene. PBLS performs well in learning from the driver with the distance and the
speed curves close to the driver, which means the learning error (RMSE) of PBLS is at a very low level.

Compared to PBLS, the speed of ACC fluctuates more greatly, especially when the speed is close
to 20 m·s−1. As shown in Figure 8, the acceleration and the jerk (J2) of ACC vary significantly during
the whole test, while PBLS can keep a relatively stable curve for both the acceleration and the jerk.
Thus, PBLS can provide better driving smoothness than ACC.

Sensors 2019, 19, 3672 13 of 19

Sensors 2019, 19, x FOR PEER REVIEW 13 of 20

Figure 6. Driving scenes for variant speed scenarios.

Figure 7 presents the distance and the speed comparison among the driver with PBLS and ACC
in the first driving scene. PBLS performs well in learning from the driver with the distance and the
speed curves close to the driver, which means the learning error (RMSE) of PBLS is at a very low
level.

Compared to PBLS, the speed of ACC fluctuates more greatly, especially when the speed is
close to 20 m.s−1. As shown in Figure 8, the acceleration and the jerk (2J) of ACC vary significantly
during the whole test, while PBLS can keep a relatively stable curve for both the acceleration and the
jerk. Thus, PBLS can provide better driving smoothness than ACC.

Figure 7. Distance and speed for Driving Scene I.

Figure 6. Driving scenes for variant speed scenarios.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 20

Figure 6. Driving scenes for variant speed scenarios.

Figure 7 presents the distance and the speed comparison among the driver with PBLS and ACC
in the first driving scene. PBLS performs well in learning from the driver with the distance and the
speed curves close to the driver, which means the learning error (RMSE) of PBLS is at a very low
level.

Compared to PBLS, the speed of ACC fluctuates more greatly, especially when the speed is
close to 20 m.s−1. As shown in Figure 8, the acceleration and the jerk (2J) of ACC vary significantly
during the whole test, while PBLS can keep a relatively stable curve for both the acceleration and the
jerk. Thus, PBLS can provide better driving smoothness than ACC.

Figure 7. Distance and speed for Driving Scene I. Figure 7. Distance and speed for Driving Scene I.

Sensors 2019, 19, 3672 14 of 19
Sensors 2019, 19, x FOR PEER REVIEW 14 of 20

Figure 8. Acceleration and jerk (J2) for Driving Scene I.

5.2. Driving Scene II

In the second driving scene presented in Figure 6b, the leading vehicle is controlled by a human
driver without predefined speed profiles. Therefore, in the data collection phase, both the host
vehicle and the leading vehicle are driven by human drivers. A typical intersection with a traffic
light is involved to form Driving Scene II.

In this scene, the leading vehicle is asked to go through the intersection according to the traffic
light, and the host vehicle follows the leading vehicle all the time. The traffic light changes following
the order: yellow, red, and green. The time for the yellow light is set as 5 s (100 steps), and the red
light lasts for 40 s (800 steps). There is no time limit for the green light, which guarantees that both
vehicles can pass through the intersection.

The initial speed for the leading vehicle and the host vehicle is 8 m.s−1, and the initial distance
between these two vehicles is 30 m. It can be seen from Figure 9 that, because of the yellow and the
red light, the leading vehicle slows down in the first 600 steps (30 s) when it is approaching the stop
line. Then, it restarts and speeds up after 300-step waiting at the stop line.

Figure 8. Acceleration and jerk (J2) for Driving Scene I.

5.2. Driving Scene II

In the second driving scene presented in Figure 6b, the leading vehicle is controlled by a human
driver without predefined speed profiles. Therefore, in the data collection phase, both the host vehicle
and the leading vehicle are driven by human drivers. A typical intersection with a traffic light is
involved to form Driving Scene II.

In this scene, the leading vehicle is asked to go through the intersection according to the traffic
light, and the host vehicle follows the leading vehicle all the time. The traffic light changes following
the order: yellow, red, and green. The time for the yellow light is set as 5 s (100 steps), and the red light
lasts for 40 s (800 steps). There is no time limit for the green light, which guarantees that both vehicles
can pass through the intersection.

The initial speed for the leading vehicle and the host vehicle is 8 m·s−1, and the initial distance
between these two vehicles is 30 m. It can be seen from Figure 9 that, because of the yellow and the red
light, the leading vehicle slows down in the first 600 steps (30 s) when it is approaching the stop line.
Then, it restarts and speeds up after 300-step waiting at the stop line.

In this test, the algorithm runs for 12,000 time steps (600 s) to get convergence, which means the
whole test needs to repeat 10 times. Similar to the test in Driving Scene I, after learning, the learning
rate of the algorithm is set as zero to reproduce the learned behavior. As shown in Figure 10, compared
with ACC, PBLS has better driving smoothness with smoother acceleration and jerk trajectories.
From Figure 11, it can be seen that PBLS can reproduce the behavior of the driver who controls the host
vehicle with a very low RMSE, while the difference between the curves of ACC and the driver is very
large (see Figure 9). Thus, compared with ACC, PBLS is more consistent with the driver’s behavior
and habits. Except for the driving smoothness, PBLS also performs better than ACC in the driving
comfort. As shown in Figure 12, the J1 of PBLS is much smaller than the J1 of ACC.

Sensors 2019, 19, 3672 15 of 19
Sensors 2019, 19, x FOR PEER REVIEW 15 of 20

Figure 9. Distance and speed for Driving Scene II.

In this test, the algorithm runs for 12,000 time steps (600 s) to get convergence, which means the
whole test needs to repeat 10 times. Similar to the test in Driving Scene I, after learning, the learning
rate of the algorithm is set as zero to reproduce the learned behavior. As shown in Figure 10,
compared with ACC, PBLS has better driving smoothness with smoother acceleration and jerk
trajectories. From Figure 11, it can be seen that PBLS can reproduce the behavior of the driver who
controls the host vehicle with a very low RMSE, while the difference between the curves of ACC and
the driver is very large (see Figure 9). Thus, compared with ACC, PBLS is more consistent with the
driver’s behavior and habits. Except for the driving smoothness, PBLS also performs better than
ACC in the driving comfort. As shown in Figure 12, the 1J of PBLS is much smaller than the 1J of
ACC.

Figure 9. Distance and speed for Driving Scene II.Sensors 2019, 19, x FOR PEER REVIEW 16 of 20

Figure 10. Acceleration and jerk (J2) for Driving Scene II.

Figure 11. RMSE in different scenes.

Figure 12. Comfort measurement (J1) for different systems in different scenes.

5.3. Driving Scene III

In the third driving scene, as shown in Figure 13, two real vehicles are involved for collecting
the real driving data. The Beijing Institute of Technology (BIT) intelligent vehicle [37] is used as the
host vehicle in this work. This vehicle is equipped with on-board sensing systems to capture the

Figure 10. Acceleration and jerk (J2) for Driving Scene II.

Sensors 2019, 19, 3672 16 of 19

Sensors 2019, 19, x FOR PEER REVIEW 16 of 20

Figure 10. Acceleration and jerk (J2) for Driving Scene II.

Figure 11. RMSE in different scenes.

Figure 12. Comfort measurement (J1) for different systems in different scenes.

5.3. Driving Scene III

In the third driving scene, as shown in Figure 13, two real vehicles are involved for collecting
the real driving data. The Beijing Institute of Technology (BIT) intelligent vehicle [37] is used as the
host vehicle in this work. This vehicle is equipped with on-board sensing systems to capture the

Figure 11. RMSE in different scenes.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 20

Figure 10. Acceleration and jerk (J2) for Driving Scene II.

Figure 11. RMSE in different scenes.

Figure 12. Comfort measurement (J1) for different systems in different scenes.

5.3. Driving Scene III

In the third driving scene, as shown in Figure 13, two real vehicles are involved for collecting
the real driving data. The Beijing Institute of Technology (BIT) intelligent vehicle [37] is used as the
host vehicle in this work. This vehicle is equipped with on-board sensing systems to capture the

Figure 12. Comfort measurement (J1) for different systems in different scenes.

5.3. Driving Scene III

In the third driving scene, as shown in Figure 13, two real vehicles are involved for collecting the
real driving data. The Beijing Institute of Technology (BIT) intelligent vehicle [37] is used as the host
vehicle in this work. This vehicle is equipped with on-board sensing systems to capture the speed and
the distance information. The detailed description of the host vehicle can be found in [37]. Both host
and leading vehicles are driven by human drivers. The driver in the leading vehicle is asked to drive
along a straight road with a changeable speed.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 20

speed and the distance information. The detailed description of the host vehicle can be found in [37].
Both host and leading vehicles are driven by human drivers. The driver in the leading vehicle is
asked to drive along a straight road with a changeable speed.

Figure 13. An illustration of the real driving data and vehicles.

After the data collection process, real driving data are used to test the learning system. Testing
the on-line learning and control system directly on a real-world road is highly risky, as slight
learning deviations may lead to severe safety issues for both testing and surrounding vehicles. Thus,
in this study, the real driving data are used to reproduce the observed real driving scene in PreScan,
where the simulated leading vehicle follows the speed profile observed from the real world. The
real behavior data collected from the host vehicle are used to train the PBLS in PreScan. The
collected data shown in Figure 13 are divided into eight groups, and each group contains the data
collected from 2000 time steps. Seven groups of data are used to train the algorithm, and the
remaining group is used for testing. The test result is shown in Figure 14.

Figure 14. Test result for Driving Scene III.

Compared with Driving Scenes I and II, PBLS in Driving Scene III performs slightly worse
with higher RMSE for both distance and speed. This is mainly because the real driving data are
noisier than the simulation data, especially when the leading vehicle has a changeable speed.

Figure 13. An illustration of the real driving data and vehicles.

After the data collection process, real driving data are used to test the learning system. Testing the
on-line learning and control system directly on a real-world road is highly risky, as slight learning
deviations may lead to severe safety issues for both testing and surrounding vehicles. Thus, in this
study, the real driving data are used to reproduce the observed real driving scene in PreScan, where the
simulated leading vehicle follows the speed profile observed from the real world. The real behavior
data collected from the host vehicle are used to train the PBLS in PreScan. The collected data shown in

Sensors 2019, 19, 3672 17 of 19

Figure 13 are divided into eight groups, and each group contains the data collected from 2000 time
steps. Seven groups of data are used to train the algorithm, and the remaining group is used for testing.
The test result is shown in Figure 14.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 20

speed and the distance information. The detailed description of the host vehicle can be found in [37].
Both host and leading vehicles are driven by human drivers. The driver in the leading vehicle is
asked to drive along a straight road with a changeable speed.

Figure 13. An illustration of the real driving data and vehicles.

After the data collection process, real driving data are used to test the learning system. Testing
the on-line learning and control system directly on a real-world road is highly risky, as slight
learning deviations may lead to severe safety issues for both testing and surrounding vehicles. Thus,
in this study, the real driving data are used to reproduce the observed real driving scene in PreScan,
where the simulated leading vehicle follows the speed profile observed from the real world. The
real behavior data collected from the host vehicle are used to train the PBLS in PreScan. The
collected data shown in Figure 13 are divided into eight groups, and each group contains the data
collected from 2000 time steps. Seven groups of data are used to train the algorithm, and the
remaining group is used for testing. The test result is shown in Figure 14.

Figure 14. Test result for Driving Scene III.

Compared with Driving Scenes I and II, PBLS in Driving Scene III performs slightly worse
with higher RMSE for both distance and speed. This is mainly because the real driving data are
noisier than the simulation data, especially when the leading vehicle has a changeable speed.

Figure 14. Test result for Driving Scene III.

Compared with Driving Scenes I and II, PBLS in Driving Scene III performs slightly worse with
higher RMSE for both distance and speed. This is mainly because the real driving data are noisier than
the simulation data, especially when the leading vehicle has a changeable speed.

6. Conclusions

A personalized behavior learning system (PBLS) was proposed in this paper to learn the human
driving behavior from demonstrations. PBLS is based on a reinforcement learning method named
neural Q-learning (NQL), which can approximate the Q function in a continuous state and action space,
such that the human-like longitudinal speed control (LSC) problem can be solved properly. To train
PBLS online, a batch-updating algorithm based on back-propagation (BP) was developed.

A series of driving simulator experiments with different speed profiles for the leading vehicle
were carried out to evaluate the performance of PBLS. In all the experiments, PBLS kept a low learning
error, especially for the driver who had a stable operation. In the test with variant speed, by learning
from an experienced driver, PBLS achieved higher driving comfort and smoothness than the traditional
adaptive cruise control (ACC) system.

As mentioned in Section 4, this study focused on developing a personalized behavior learning
system that can adapt to different drivers. In future work, a systematic analysis involving more drivers
will be conducted to investigate the effects of different drivers and driving styles on the performance of
the learning system.

Author Contributions: Conceptualization, C.L. (Chao Lu), D.C., and C.L. (Chen Lv); methodology, J.G. and C.L.
(Chao Lu); data collection and validation, X.C.; writing—original draft preparation, C.L. (Chao Lu) and Y.C.

Funding: This research was funded by the National Natural Science Foundation of China, grant number 6170304,
Beijing Institute of Technology Research Fund Program for Young Scholars and Key Laboratory of Biomimetic
Robots and Systems, Beijing Institute of Technology, grant number 2017CX02005.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2019, 19, 3672 18 of 19

References

1. Lefevre, S.; Carvalho, A.; Borrelli, F. A Learning-Based Framework for Velocity Control in Autonomous
Driving. IEEE Trans. Autom. Sci. Eng. 2016, 13, 32–42. [CrossRef]

2. Kocić, J.; Jovičić, N.; Drndarević, V.J.S. An End-to-End Deep Neural Network for Autonomous Driving
Designed for Embedded Automotive Platforms. Sensors 2019, 19, 2064. [CrossRef] [PubMed]

3. Zhang, Y.; Chen, H.; Waslander, S.; Yang, T.; Zhang, S.; Xiong, G.; Liu, K.J.S. Toward a more complete, flexible,
and safer speed planning for autonomous driving via convex optimization. Sensors 2018, 18, 2185. [CrossRef]
[PubMed]

4. González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A review of motion planning techniques for automated
vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1135–1145. [CrossRef]

5. Naranjo, J.E.; Gonzalez, C.; Garcia, R.; De Pedro, T. Lane-change fuzzy control in autonomous vehicles for
the overtaking maneuver. IEEE Trans. Intell. Transp. Syst. 2008, 9, 438–450. [CrossRef]

6. Li, A.; Jiang, H.; Zhou, J.; Zhou, X. Learning Human-Like Trajectory Planning on Urban Two-Lane Curved
Roads From Experienced Drivers. IEEE Access 2019, 7, 65828–65838. [CrossRef]

7. Li, L.; Ota, K.; Dong, M. Humanlike Driving: Empirical Decision-Making System for Autonomous Vehicles.
IEEE Trans. Veh. Technol. 2018, 67, 6814–6823. [CrossRef]

8. Lu, C.; Hu, F.; Cao, D.; Gong, J.; Xing, Y.; Li, Z. Transfer Learning for Driver Model Adaptation in
Lane-Changing Scenarios Using Manifold Alignment. IEEE Trans. Intell. Transp. Syst. 2019, 1–13. [CrossRef]

9. Li, T.-H.S.; Chang, S.-J.; Chen, Y.-X. Implementation of human-like driving skills by autonomous fuzzy
behavior control on an FPGA-based car-like mobile robot. Ind. Electron. IEEE Trans. 2003, 50, 867–880.
[CrossRef]

10. Okuda, H.; Ikami, N.; Suzuki, T.; Tazaki, Y.; Takeda, K. Modeling and Analysis of Driving Behavior Based on
a Probability-Weighted ARX Model. IEEE Trans. Intell. Transp. Syst. 2013, 14, 98–112. [CrossRef]

11. Lin, T.; Tseng, E.; Borrelli, F. Modeling driver behavior during complex maneuvers. In Proceedings of the
American Control Conference (ACC), Washington, DC, USA, 17–19 June 2013; IEEE: Piscataway, NJ, USA,
2013; pp. 6448–6453.

12. Argall, B.D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from demonstration.
Robot. Auton. Syst. 2009, 57, 469–483. [CrossRef]

13. Yin, X.; Chen, Q. Trajectory Generation With Spatio-Temporal Templates Learned from Demonstrations.
IEEE Trans. Ind. Electron. 2017, 64, 3442–3451. [CrossRef]

14. Zheng, J.; Suzuki, K.; Fujita, M. Car-following behavior with instantaneous driver–vehicle reaction delay:
A neural-network-based methodology. Transp. Res. Part C Emerg. Technol. 2013, 36, 339–351. [CrossRef]

15. Khodayari, A.; Ghaffari, A.; Kazemi, R.; Braunstingl, R. A modified car-following model based on a neural
network model of the human driver effects. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2012, 42,
1440–1449. [CrossRef]

16. Morton, J.; Wheeler, T.A.; Kochenderfer, M.J. Analysis of recurrent neural networks for probabilistic modeling
of driver behavior. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1289–1298. [CrossRef]

17. Yang, S.; Wang, W.; Liu, C.; Deng, W. Scene Understanding in Deep Learning-Based End-to-End Controllers
for Autonomous Vehicles. IEEE Trans. Syst. ManCybern. Syst. 2019, 49, 53–63. [CrossRef]

18. García Cuenca, L.; Sanchez-Soriano, J.; Puertas, E.; Fernandez Andrés, J.; Aliane, N.J.S. Machine learning
techniques for undertaking roundabouts in autonomous driving. Sensors 2019, 19, 2386. [CrossRef]

19. Wiest, J.; Höffken, M.; Kreßel, U.; Dietmayer, K. Probabilistic trajectory prediction with gaussian mixture
models. In Proceedings of the Intelligent Vehicles Symposium (IV), Madrid, Spain, 3–7 June 2012; IEEE:
Piscataway, NJ, USA, 2012; pp. 141–146.

20. Lefèvre, S.; Carvalho, A.; Gao, Y.; Tseng, H.E.; Borrelli, F. Driver models for personalized driving assistance.
Veh. Syst. Dyn. 2015, 53, 1705–1720. [CrossRef]

21. Lv, C.; Xing, Y.; Lu, C.; Liu, Y.; Guo, H.; Gao, H.; Cao, D. Hybrid-Learning-Based Classification and
Quantitative Inference of Driver Braking Intensity of an Electrified Vehicle. IEEE Trans. Veh. Technol. 2018,
67, 5718–5729. [CrossRef]

22. Lu, C.; Wang, H.; Lv, C.; Gong, J.; Xi, J.; Cao, D. Learning Driver-Specific Behavior for Overtaking: A Combined
Learning Framework. IEEE Trans. Veh. Technol. 2018, 67, 6788–6802. [CrossRef]

http://dx.doi.org/10.1109/TASE.2015.2498192
http://dx.doi.org/10.3390/s19092064
http://www.ncbi.nlm.nih.gov/pubmed/31058820
http://dx.doi.org/10.3390/s18072185
http://www.ncbi.nlm.nih.gov/pubmed/29986478
http://dx.doi.org/10.1109/TITS.2015.2498841
http://dx.doi.org/10.1109/TITS.2008.922880
http://dx.doi.org/10.1109/ACCESS.2019.2918728
http://dx.doi.org/10.1109/TVT.2018.2822762
http://dx.doi.org/10.1109/TITS.2019.2925510
http://dx.doi.org/10.1109/TIE.2003.817490
http://dx.doi.org/10.1109/TITS.2012.2207893
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1109/TIE.2016.2613843
http://dx.doi.org/10.1016/j.trc.2013.09.010
http://dx.doi.org/10.1109/TSMCA.2012.2192262
http://dx.doi.org/10.1109/TITS.2016.2603007
http://dx.doi.org/10.1109/TSMC.2018.2868372
http://dx.doi.org/10.3390/s19102386
http://dx.doi.org/10.1080/00423114.2015.1062899
http://dx.doi.org/10.1109/TVT.2018.2808359
http://dx.doi.org/10.1109/TVT.2018.2820002

Sensors 2019, 19, 3672 19 of 19

23. Ng, L.; Clark, C.M.; Huissoon, J.P. Reinforcement learning of dynamic collaborative driving part I:
Longitudinal adaptive control. Int. J. Veh. Inf. Commun. Syst. 2008, 1, 208–228. [CrossRef]

24. Desjardins, C.; Chaib-draa, B. Cooperative adaptive cruise control: A reinforcement learning approach.
IEEE Trans. Intell. Transp. Syst. 2011, 12, 1248–1260. [CrossRef]

25. Ngai, D.C.K.; Yung, N.H.C. A multiple-goal reinforcement learning method for complex vehicle overtaking
maneuvers. IEEE Trans. Intell. Transp. Syst. 2011, 12, 509–522. [CrossRef]

26. Li, X.; Xu, X.; Zuo, L. Reinforcement learning based overtaking decision-making for highway autonomous
driving. In Proceedings of the 2015 Sixth International Conference on Intelligent Control and Information
Processing (ICICIP), Wuhan, China, 26–28 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 336–342.

27. Huang, Z.; Xu, X.; He, H.; Tan, J.; Sun, Z. Parameterized Batch Reinforcement Learning for Longitudinal
Control of Autonomous Land Vehicles. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 730–741. [CrossRef]

28. Kim, I.-H.; Bong, J.-H.; Park, J.; Park, S. Prediction of driver’s intention of lane change by augmenting sensor
information using machine learning techniques. Sensors 2017, 17, 1350. [CrossRef]

29. Ten Hagen, S.; Kröse, B. Neural Q-learning. Neural Comput. Appl. 2003, 12, 81–88. [CrossRef]
30. Priddy, K.L.; Keller, P.E. Artificial Neural Networks: An Introduction; SPIE Press: Bellingham, WA, USA, 2005;

Volume 68.
31. Li, Y.; Ang, K.H.; Chong, G.C. Patents, software, and hardware for PID control: An overview and analysis of

the current art. IEEE Control Syst. 2006, 26, 42–54.
32. Boyan, J.A. Technical update: Least-squares temporal difference learning. Mach Learn 2002, 49, 233–246.

[CrossRef]
33. Gnecco, G.; Sanguineti, M. The weight-decay technique in learning from data: An optimization point of

view. Comput. Manag. Sci. 2009, 6, 53–79. [CrossRef]
34. Masters, D.; Luschi, C. Revisiting small batch training for deep neural networks. arXiv 2018, arXiv:1804.07612.
35. Marsden, G.; McDonald, M.; Brackstone, M. Towards an understanding of adaptive cruise control. Transp. Res.

Part C Emerg. Technol. 2001, 9, 33–51. [CrossRef]
36. Xu, Y.; Song, J.; Nechyba, M.C.; Yam, Y. Performance evaluation and optimization of human control strategy.

Robot. Auton. Syst. 2002, 39, 19–36. [CrossRef]
37. Wang, B.; Li, Z.; Gong, J.; Liu, Y.; Chen, H.; Lu, C. Learning and Generalizing Motion Primitives from Driving

Data for Path-Tracking Applications. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV),
Changshu, China, 26–30 June 2018; pp. 1191–1196.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1504/IJVICS.2008.022355
http://dx.doi.org/10.1109/TITS.2011.2157145
http://dx.doi.org/10.1109/TITS.2011.2106158
http://dx.doi.org/10.1109/TSMC.2017.2712561
http://dx.doi.org/10.3390/s17061350
http://dx.doi.org/10.1007/s00521-003-0369-9
http://dx.doi.org/10.1023/A:1017936530646
http://dx.doi.org/10.1007/s10287-008-0072-5
http://dx.doi.org/10.1016/S0968-090X(00)00022-X
http://dx.doi.org/10.1016/S0921-8890(02)00169-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Personalized Behavior Learning System
	Formulation of the Learning Module
	Function Approximation Using ANN
	Speed Control Module

	Training Algorithm for PBLS
	Experiments with Constant Speed
	Experimental Settings
	Experimental Results

	Experiments with Variant Speed
	Driving Scene I
	Driving Scene II
	Driving Scene III

	Conclusions
	References

