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Abstract: Adoptive cell therapy (ACT) with tumor-infiltrating T cells (TILs) has emerged as a
promising therapy for the treatment of unresectable or metastatic solid tumors. One challenge
to finding a universal anticancer treatment is the heterogeneity present between different tumors
as a result of genetic instability associated with tumorigenesis. As the epitome of personalized
medicine, TIL-ACT bypasses the issue of intertumoral heterogeneity by utilizing the patient’s existing
antitumor immune response. Despite being one of the few therapies capable of inducing durable,
complete tumor regression, many patients fail to respond. Recent research has focused on increasing
therapeutic efficacy by refining various aspects of the TIL protocol, which includes the isolation, ex
vivo expansion, and subsequent infusion of tumor specific lymphocytes. This review will explore
how the therapy has evolved with time by highlighting various resistance mechanisms to TIL therapy
and the novel strategies to overcome them.
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1. Introduction

Solid malignancies encompass a wide range of diseases from lymphomas to carcino-
mas that affect nearly every organ in the body. The malignant transformation from normal
cells is accompanied by progressive accumulation of genetic mutations. As a result, patients
diagnosed with the same histological tumor type exhibit a wide range of genetic mutations
and tumor microenvironments (TME). This inherent heterogeneity in tumors often leads to
variations in patient-specific responses. Precision medicine, which refers to the tailoring
of treatments to tumor-specific cellular or molecular characteristics, has recently became
the mainstay of oncological therapy. The epitome of personalized therapy is adoptive cell
transfer (ACT) with autologous tumor-infiltrating lymphocytes (TIL). This process involves
tumor excision, isolation of TILs, ex vivo selection for autologous tumor reactivity, rapid
expansion, and reinfusion of the T cell product back to the host [1] (Figure 1).

The process of tumorigenesis produces nonsynonymous somatic mutations that lead
to the generation of neoantigens. Neoantigens may be derived from (1) translation of
mutated genes, (2) aberrant expression of non-mutated genes, and/or (3) the untimely
expression of embryonic or cell-lineage specific genes [2,3]. In a similar stochastic process,
every T cell expresses a unique T cell receptor (TCR) specific for one antigenic peptide
sequence. Recognition of the cognate peptide presented on major histocompatibility
complex (MHC) molecules lead to T cell activation and cytolytic target killing [4,5]. This
diversity in potential neoantigens and endogenous TCRs poses a significant challenge for
the effective immune recognition of tumors. As TIL-ACT specifically utilizes endogenous
lymphocytes found within tumors, it increases the probability of enriching for tumor-
specific T cells. Other ACT protocols have experimented with the transfer of different
lymphocyte populations, including, but not limited to, genetically modified lymphocytes
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isolated from peripheral blood. In contrast to TILs, which contain endogenous tumor-
recognition abilities, these lymphocytes are altered ex vivo to express tumor-specific TCRs
and/or to have increased effector functions. [6]. A notable example, which is frequently
used to treat hematological malignancies, is the transfer of genetically modified T cells with
chimeric antigen receptors (CAR-T) that are specific for previously identified tumor-specific
neoantigens [7].
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Figure 1. Schematic overview of the TIL-ACT protocol. Patients with metastatic tumors undergo 
metastastectomy of one lesion, which is then digested into multiple small tumor fragments or sin-
gle-cell suspensions. Tumor fragments are cultured with IL-2 in vitro for the initial TIL isolation 
and expansion. Isolated TILs are screened for tumor reactivity via co-culture with autologous di-
gested tumor cells for IFN-γ secretion as assessed by IFN-γ ELISA. Tumor specific TIL clones are 
then consolidated and rapidly expanded in the presence of anti-CD3 monoclonal antibody, IL-2, 
and irradiated autologous feeder cells. Once the number of TILs has reached treatment levels (typ-
ically > 1 × 1010 cells), they are harvested and transferred back into a lymphodepleted host in one 
infusion. TIL (tumor-infiltrating lymphocytes); ACT (adoptive cell therapy); IL-2 (interleukin-2); 
IFN-γ (interferon-gamma); ELISA (enzyme-linked immunosorbent assay). 
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The first evidence that ACT of autologous TILs leads to tumor-specific cytolysis and 
metastatic tumor control emerged in the 1980 s from murine models of sarcoma, colon 
adenocarcinoma, melanoma, and bladder carcinoma [8]. In the initial clinical study 
demonstrating the curative potential of TIL-ACT, 29 metastatic melanoma patients were 
treated with autologous TILs accompanied by high-dose interleukin-2 (IL-2), with a 31% 
objective response rate (ORR, complete response (CR) + partial response (PR)), and four 

Figure 1. Schematic overview of the TIL-ACT protocol. Patients with metastatic tumors undergo
metastastectomy of one lesion, which is then digested into multiple small tumor fragments or
single-cell suspensions. Tumor fragments are cultured with IL-2 in vitro for the initial TIL isolation
and expansion. Isolated TILs are screened for tumor reactivity via co-culture with autologous
digested tumor cells for IFN-γ secretion as assessed by IFN-γ ELISA. Tumor specific TIL clones
are then consolidated and rapidly expanded in the presence of anti-CD3 monoclonal antibody, IL-
2, and irradiated autologous feeder cells. Once the number of TILs has reached treatment levels
(typically > 1 × 1010 cells), they are harvested and transferred back into a lymphodepleted host in
one infusion. TIL (tumor-infiltrating lymphocytes); ACT (adoptive cell therapy); IL-2 (interleukin-2);
IFN-γ (interferon-gamma); ELISA (enzyme-linked immunosorbent assay).

The first evidence that ACT of autologous TILs leads to tumor-specific cytolysis
and metastatic tumor control emerged in the 1980 s from murine models of sarcoma,
colon adenocarcinoma, melanoma, and bladder carcinoma [8]. In the initial clinical study
demonstrating the curative potential of TIL-ACT, 29 metastatic melanoma patients were
treated with autologous TILs accompanied by high-dose interleukin-2 (IL-2), with a 31%
objective response rate (ORR, complete response (CR) + partial response (PR)), and four
patients achieving complete tumor regression [9]. A seminal clinical trial conducted by the
Surgery Branch of the National Cancer Institute (NCI) in the early 2000 s demonstrated that
the ORR for metastatic melanoma patients can be as high as 72%, with complete response
rate (CRR) of 22% following one TIL infusion [10]. Therapeutic response to TIL-ACT is
restricted by numerous factors, including, but not limited to, the initial amount of tumor-
infiltrating T cells, the presence of immunosuppressive cell types in the TME, and the
failure of adoptively transferred cells to persist in the host.

Advances in tumor immunology have led to the gradual optimization of the TIL-ACT
protocol from lymphocyte selection to pre-treatment conditioning, and to combination
with adjunctive treatment modalities. In this review, we will provide an overview of
recent preclinical and clinical advances that have led to the continual improvement of
TIL-ACT. We will highlight common mechanisms of resistance as well as novel therapeutic
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strategies that target these pathways to overcome resistance in the treatment of solid tumor
malignancies.

2. Mechanisms of ACT-TIL Resistance

After the initial clinical trials in metastatic melanoma conducted by the NCI, TIL-ACT
has been adopted by numerous other institutions around the world for the treatment
of a variety of solid tumors [11–14]. While objective responses have been replicated in
subsequent clinical trials, a significant percentage of patients experience therapy failure
by displaying innate or acquired therapy resistance. Innate resistance occurs in patients
unresponsive to initial therapy, whereas acquired resistance occurs in patients who were
initially responsive but eventually become unresponsive. Regardless of when resistance
occurs, the underlying mechanisms result in the lack of generation of functional T cells, or
the suppression an otherwise productive T cell response (Figure 2).
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sor cells (MDSCs) or regulatory T cells (Tregs), can secrete factors that inhibit TIL function. These 

Figure 2. Major resistance mechanisms to TIL-ACT. This figure demonstrates four major resistance
mechanisms to TIL therapy as well as strategies (highlighted in green) to overcome these mechanisms.
Tumor cells may downregulate MHC molecules or neoantigen expression to avoid immune detection
by neoantigen-specific T cells. Radiation therapy, chemotherapy, and targeted therapy are common
ways to increase neoantigen generation and upregulate neoantigen presentation. Tumor cells and
other components of the TME may upregulate checkpoint molecules such as PD-L1 to induce T
cell exhaustion, a dysfunction state by which T cells cannot proliferate or secrete effector molecules.
Exhausted T cells can regain effector function with immune checkpoint inhibitor treatment. Another
way to bypass T cell exhaustion is by selecting for TILs that are less prone to exhaustion. Immunosup-
pressive cell types within the TME, such as myeloid-derived suppressor cells (MDSCs) or regulatory
T cells (Tregs), can secrete factors that inhibit TIL function. These host immunosuppressive cells can
be depleted prior to or simultaneously with adoptive cell transfer by chemotherapy or radiation
therapy regimens as well as cell type specific inhibition. Lastly, the TME itself may pose barriers
that exclude T cells and inhibit their migration. Experimental therapies that modify chemotactic
and migratory pathways may restore or increase tumor infiltration by TILs. TIL (tumor-infiltrating
lymphocytes); ACT (adoptive cell therapy); MHC (major histocompatibility complex); TME (tumor
microenvironment); PD-L1 (programmed death-ligand 1); PD-1 (programmed cell death protein 1);
CTLA-4 (cytotoxic T-lymphocyte-associated protein 4); MDSC (myeloid-derived suppressor cells);
Tregs (regulatory T cells).

As ACT is based on the premise of delivering antitumor T cells to the tumor, the lack
of functional, tumor-specific T cells within tumor can abrogate therapeutic efficacy [12].
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Effective TILs recognize tumor-specific neoantigens, which are results of stochastic somatic
mutation accumulation during tumorigenesis. Thus, cancers with high mutational burdens,
such as melanoma and lung cancer, have increased chances of generating neoantigens
and are more likely to respond to T cell-based therapies [15–17]. In contrast, cancers
with lower mutational burden, such as cervical cancer, exhibit decreased response to TIL-
ACT (ORR 28%) [18]. However, cytolysis of neoantigen containing tumor clones may
lead to the eventual outgrowth of antigen-negative tumor clones that are unrecognizable
by TILs. Furthermore, tumor cells may also downregulate MHC molecules or other
components of antigen presentation to evade immunosurveillance [19]. Aside from tumor
cells, the TME can physically prevent TIL infiltration via generation of dense extracellular
matrix, secretion of chemo-repulsive chemokines, or aberrant angiogenesis [20]. The
TME can also contain a multitude of immunosuppressive cell types such as myeloid-
derived suppressor cells (MDSCs) and regulatory T cells (Tregs). These cells can secrete
anti-inflammatory cytokines (IL-10 and TGF-β), deplete essential T cell nutrients from
the microenvironment, and suppress antigen presenting cells (APCs) to further inhibit T
cell-mediated immunity [21,22]. Ultimately, different TME factors converge to generate
a microenvironment conducive to T cell exhaustion, a state in which T cells upregulate
checkpoint molecules as they progressively lose the ability to proliferative and perform
effector functions [23]. In reality, numerous distinct escape mechanisms contribute to the
immunosuppression and therapy resistance of TILs.

Given that every tumor is unique as a result of intra- and inter-tumoral heterogeneity,
one must identify and target non-redundant resistance pathways present in each patient to
optimize therapeutic benefit. With this knowledge, multiple clinical trials have focused
on improving TIL-ACT responses by altering the original protocol based on four main
components: (1) ex vivo selection and expansion of tumor-specific T lymphocytes; (2)
patient pre-conditioning regimens; (3) post-infusion in vivo TIL support; and (4) potential
adjuvant therapies. A partial list of current clinical trials involving TIL-ACT is summarized
in Table 1.

Table 1. List of current and recent clinical trials involving TIL-ACT. Clinical trials are separated into sections dependent on
the primary study goal. Derivation from the standard protocol (TIL with cyclophosphamide + fludarabine preconditioning
and high dose IL-2 post-conditioning) or experimental therapies are bolded.

Reference
Number Cell Type Pre- and

Post-Conditioning
Adjuvant
Treatment Tumor Types Site Location Status

TIL-ACT EFFICACY TRIALS

NCT03778814 TIL enriched for
tumor specificity N/A N/A Solid tumors NSCLC

Second Affiliated
Hospital of Guangzhou,

Medical University,
China

Recruiting
12/2021

NCT04596033 TIL
IL-2 +/−

Cyclophosphamide
Fludarabine

N/A Multiple advanced solid
tumors

Genocea Biosciences,
Inc., Nashville, TN

Recruiting
5/2024

NCT04625205 TIL N/A N/A Advanced and
metastatic melanoma

BioNTech US Inc.,
Amsterdam,
Netherlands

Recruiting
11/2023

NCT03610490 TIL
Cyclophosphamide

Fludarabine
IL-2

N/A
Refractory and

metastatic ovarian,
PDAC, and CRC

M.D. Anderson Cancer
Center Houston, TX

Active
09/2021

NCT03449108 Cryopreserved TIL
Cyclophosphamide

Fludarabine
IL-2

N/A
Bone sarcoma

Sarcoma
Thyroid

M.D. Anderson Cancer
Center Houston, TX

Recruiting
12/2022

NCT03935893 TIL
Cyclophosphamide

Fludarabine
IL-2

N/A Multiple solid advanced
cancers

University of Pittsburgh
Medical Center,
Pittsburgh, PA

Recruiting
6/2030

NCT03658785 TIL
Cyclophosphamide

Fludarabine
IL-2

N/A

Recurrent,
metastatic,

persistent carcinoma not
amenable to

currenttreatments

Tongji Hospital China
Not yet

recruiting
12/2024
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Table 1. Cont.

Reference
Number Cell Type Pre- and

Post-Conditioning
Adjuvant
Treatment Tumor Types Site Location Status

NCT03991741 T cell IL-2 N/A

Locally advanced and
metastatic melanoma,
Locally advanced and
metastatic head and

neck cancer

Immunotherapy
Foundation, San Diego,

CA

Recruiting
08/2023

PRECONDITIONING

NCT03992326 TIL

Cyclophosphamide
Fludarabine

+/−
IL-2
LDI

Breast cancer
NSCLC

Colon cancer
Ovarian cancer

Other solid tumors
(excluding brain,

cutaneous, mucosal,
ocular/uveal)

Centre Hospitalier,
Universitaire Vaudois
Lausanne, Switzerland

Recruiting
09/2025

NCT04643574 TIL enriched for
tumor specificity

Cyclophosphamide
Fludarabine

+/−
IL-2
LDI

Solid tumors except CNS
Centre Hospitalier,

Universitaire Vaudois
Lausanne, Switzerland

Not yet
recruiting
11/2027

IL-2 DOSAGE

NCT01462903 TIL Low dose IL-2 N/A

Hepatocellular
carcinoma

Breast carcinoma
Nasopharyngeal

carcinoma

Sun Yat-sen University,
China Unknown

ADJUVANT THERAPIES

NCT00002733 TIL IL-2 Cimetidine
IFN-α

Metastatic melanoma
Metastatic RCC

Hoag Memorial Hospital
Presbyterian, Newport

Beach, CA

Completed
01/2000

NCT02876510 TIL
Cyclophosphamide

Fludarabine
IL-2

Atezolizumab Advanced solid cancers Immatics US, Inc.,
Houston, TX

Active
not

recruiting
12/2021

NCT03645928 Cryopreserved TIL
Cyclophosphamide

Fludarabine
IL-2

Pembrolizumab
Ipilimumab
Nivolumab

Metastatic melanoma
SCC of the head and

neck
NSCLC

Iovance Biotherapeutics,
Inc., San Carlos, CA

Recruiting
12/2024

TIL (tumor-infiltrating lymphocytes); ACT (adoptive cell therapy); N/A (not applicable); IL-2 (interleukin-2); LDI (low dose irradiation);
CNS (central nervous system); NSCLC (non-small cell lung cancer); SCC (squamous cell carcinoma); HCC (hepatocellular carcinoma); RCC
(renal cell carcinoma); IFN-α (interferon alpha); PDAC (pancreatic ductal adenocarcinoma); CRC (colorectal cancer).

3. TIL-ACT Protocol Refinement
3.1. TIL Cell Type Selection

ACT is the process by which endogenous cells are isolated, selected, expanded, and re-
infused back into the patient; however, the type of cells transferred ultimately determines
the therapeutic effects. Although TILs and genetically modified T cells both derive from
autologous lymphocytes and are eventually transferred back to the patient, there exist
significant differences between the two (Figure 3). Although a thorough dissection of
non-TIL based ACT is beyond the scope for this review, we will briefly compare the use of
CAR-T with TIL in the treatment of solid tumors.

TILs typically refer to unmodified T cells with endogenous TCRs, whereas CAR-T
cells contain synthetic, modified TCRs. Endogenous TCRs consist of heterodimers that
recognize MHC restricted short peptide chains but cannot initiate downstream signaling
without the recruitment of additional accessory molecules [24]. In contrast, CAR-T cells
express synthetic single-chain receptors derived from monoclonal antibodies that are not
MHC restricted and are coupled with T cell signaling domains. First generation CARs
consist of a single CD3ζ TCR activation domain, whereas subsequent generations of CARs
contain one or more costimulatory molecules to further augment T cell signaling and
activation [25–28]. CAR-T cells can thus automatically activate downstream signaling
pathways upon binding to cognate neoantigen without the requirement for engagement of
external co-stimulatory molecules or co-receptors. The differences between TCR and CAR
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dictate the functionality of these T cells in immunotherapy. The diversity of the TCRs allows
endogenous TILs to recognize a wider range of unknown tumor neoantigens, while the
specificity of the synthetic monoclonal receptor allows high affinity CAR binding to known
neoantigens [6,29]. However, this high affinity CAR-T binding to a single neoantigen
leads to increased probability of off-target toxicities secondary to antigen presence on
normal cells [7]. Whereas the toxicities for ACT-TIL are predominantly attributed to
lymphodepletion and IL-2 regimens with rare, minor autoimmunity (vitiligo and uveitis)
secondary to TIL infusion, CAR-T infusions have frequently been linked to cytokine release
syndrome (CRS) and CAR T-cell-related encephalopathy syndrome (CRES) in addition to
toxicities from preparative regimens [7,30]. As a result, CAR-T is preferentially used in the
treatment of hematological malignancies with well-characterized mutations, such as CD19
CAR-T for B cell leukemias, while a more diverse set of tumor-reactive TILs is preferred
in the ACT of heterogeneous solid tumors [31]. As the generation of CAR-T is limited by
the knowledge of receptor sequences targeting specific neoantigens, continued efforts in
identifying a wide range of neoantigens unique to solid tumors and subsequent reverse
engineering of cognate chimeric receptors is necessary to improve CAR-T cell usage and
efficacy.
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Figure 3. Structural and functional differences between TILs and CAR-Ts in antitumor treatment. ACT can be accomplished
using either TILs or CAR-Ts. TILs use endogenous T cell receptors (TCRs) that are MHC restricted. The inherent diversity
of TCRs present on TILs allows recognition of a wide range of tumor neoantigens expressed by heterogeneous tumor cells.
In contrast, CAR-Ts have synthetic receptors modeled after non-MHC restricted monoclonal antibodies. These receptors
contain co-stimulatory and signaling molecules that can independently activate the T cell without recruitment of additional
factors. However, as CARs are synthesized to have high affinity binding against one known neoantigen, they are more
prone to have off-target effects if the neoantigen is present on normal tissues. TIL (tumor-infiltrating lymphocytes); CAR
(chimeric antigen receptor); TCR (T cell receptor); MHC (major histocompatibility complex).

The generation of a diverse set of tumor-specific TILs is both complex and time-
consuming. After initial ex vivo isolation and expansion from a resected tumor, multiple T
cell clones are selected against autologous tumor cell lines for IFN-γ activity, which acts as a
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surrogate marker for tumor-reactivity. Clones negative for tumor-specificity are eliminated
while the rest undergo rapid expansion to generate the ultimate infusion product which
typically contains at minimum 1 × 1010 cells [32]. The entire process from tumor resection
to cell administration normally takes 6–8 weeks [33]. However, objective clinical response
to TIL-ACT has been associated with increased average telomere length in transferred TILs
(6.7 kb in CR, 6.2 kb in PR vs. 5.1 kb in no response (NR), p = 0.006), which is inversely
associated with the ex vivo culture time [14,34]. To reduce culturing time, the Surgery
Branch at the NCI subsequently developed a TIL-ACT protocol with “young” TILs that are
enriched for CD8+ T cell but not additionally selected for tumor reactivity. Patients treated
with “young” TILs exhibited similar ORR as those treated with traditional TILs. However,
as the new protocol accelerated and increased the success rate for TIL generation, it has
since been adopted by other institutions [13,35,36].

While other short-term selection methods have been attempted, inherent intra- and in-
tertumoral heterogeneity complicates the selection process. The NCI has recently developed
an unbiased high-throughput TIL screen against autologous neoantigens to circumvent
this issue. In this novel protocol, TILs are selected against autologous antigen presenting
dendritic cells (DC) pulsed with peptide pools or tandem minigenes derived from non-
synonymous mutations identified by whole-exome sequencing of the tumor [37–39]. This
highly sensitive screen requires less time than traditional autologous tumor cell co-cultures.
Furthermore, it is capable of isolating multiple tumor-specific T cell clones when the tradi-
tional screen failed in a patient that otherwise would have been excluded from receiving
TIL-ACT [31,40]. However, as whole exome sequencing remains costly, the widespread
usage of this selection method is currently limited.

Multiple clinical trials have associated objective treatment responses to increasing
total number of infused TIL, and more specifically of CD8+ T cells [14,35,41,42]. Tumors
isolated from patients with low lymphocytic infiltration often fail to generate sufficient
numbers of T cells required for re-infusion (median of 8% lymphocytic infiltration for
failed cultures vs. ~50% successful cultures, p = 5 × 10−8) [36]. In contrast, no correlation
has been identified between the number of CD4+ T cells and treatment response. The
heterogeneity within overall CD4+ T cell population may contribute to its ambiguous role
in antitumor immunity. CD4+ T cells can be characterized into helper T cells (TH1, TH2,
and TH17) and Tregs. Tregs secrete anti-inflammatory cytokines that suppress ongoing
immune responses, and their presence is associated with poor clinical prognosis [43,44]. In
contrast, helper T cells secrete pro-inflammatory cytokines and chemokines that enhance
antitumor responses and mediate tumor regression in preclinical models [44–46]. Case
reports have shown the potential of adoptively transferred tumor-infiltrating TH1 and of
bulk CD4+ T cells in mediating transient tumor regression in cholangiocarcinoma and
melanoma, respectively, via tumor antigen-specific secretion of IFN-γ [47,48]. However, the
adoptive transfer of CD8+ T cell enriched TIL products containing minimal CD4+ T cells
results in ORRs similar to that of bulk TILs, indicating that CD4+ T cells do not significantly
contribute to the observed therapeutic response [35,49].

Another characteristic that has been positively correlated with objective treatment
response is the persistent survival of transferred, functional TILs in the patient [10,11,42,50].
Tumor-specific TILs have been detected within peripheral blood of responsive patients
for up to 34 months post infusion [11]. Furthermore, in one clinical study, increasing
response to therapy has been correlated with increasing half-lives of tumor-specific TIL
clonotypes (132–173 days for CR vs. 31–53 days for PR and 13–15 days for NR, p < 0.05) [51].
Often, in vivo persistence and clinical response are dependent on the type of TIL trans-
ferred. In fact, effector CD8+ T cells derived from less differentiated precursors, such as
central memory and naïve T cells, demonstrate increased secretion of effector molecules
and proliferation over those derived from the heterogeneous bulk TIL populations [52].
Conversely, the transfer of more differentiated T cells leads to impaired antitumor efficacy
and decreased overall survival in preclinical models [53,54]. Single cell analysis of different
TIL clonotypes in a patient with metastatic colorectal cancer exhibiting partial response
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revealed a set of genetic signatures associated with T cell persistence that resembles less
differentiated T cells. Of note, compared to non-persistent cells, persistent cells express de-
creased levels of EOMES (transcription factor upregulated in terminally exhausted T cells),
and elevated levels of IL7R (receptor for homeostatic proliferation cytokine IL-7) [55–57].
Thus, the selection for CD8+ T cells with more progenitor-like phenotypes may increase
the ORR of TIL-ACT.

3.2. Role of Cytokine Support

Cytokines play an indispensable role in the generation, activation, and proliferation
of lymphocytes. As objective responses to TIL-ACT have been linked to the continual
persistence of adoptively transferred lymphocytes in vivo, the cytokines used for the
ex vivo expansion and post-infusion support of TIL become important determinants of
treatment efficacy.

IL-2, IL-7, IL-12, and IL-15 all affect T cell differentiation and, thus, are optimal can-
didates for the ex vivo expansion and differentiation of TILs used for therapy. IL-2 is a
pleiotropic cytokine that induces cell-type specific responses. For example, IL-2 is not only
involved in the differentiation and homeostasis of Tregs but it also promotes the differ-
entiation of effector CD8+ T cells and increased synthesis of effector molecules [44,58,59].
Since the initial clinical trials in the 1980s, TIL-ACT protocols have incorporated the use of
IL-2 in the ex vivo expansion phase [9,32]. Thus far, this has led to a highly reproducible
and largely successful generation of sufficient numbers of TIL for subsequent adoptive
transfer. With increasing understanding of how different lymphocytic subsets mediate
tumor regression, other cytokines are currently being considered to enrich for more effec-
tive T cells. IL-12 is a potential antitumor cytokine that can both directly augment T cell
cytolytic potential and increase antigen presentation [60]. Murine models indicate that
IL-12 mediated activation of naïve T cells generate highly proliferative progenies with
elevated cytolytic function and increased resistance to exhaustion [61–63]. Furthermore,
the adoptive transfer of IL-2 + IL-12 primed T cells lead to enhanced tumor regression
in multiple studies [61,62,64]. In contrast, IL-7 and IL-15 have been identified as critical
factors for maintaining in vivo homeostatic T cell proliferation and function, particularly
of memory T cells [57,65,66]. However, the combination of IL-7 + IL-15 does not result in
superior ex vivo generation of effector T cell for ACT than when compared to IL-2 [67].

Beyond ex vivo expansion, TIL protocols also use high-dose (HD) IL-2 as an adju-
vant to support lymphocyte proliferation in vivo after transfer [32,68]. However, systemic
IL-2 treatment is associated with severe toxicities that restrict its widespread clinical us-
age [14,69,70]. In fact, most patients do not complete the entire post-transfer IL-2 regimen
due to overwhelming adverse reactions, including, but not limited to, vascular leak syn-
dromes and neurological symptoms [71]. Many clinical trials have explored the use of
attenuated or low-dose (LD) IL-2. This dosage reduction leads to better tolerance of the
therapy and less severe, more transient adverse events [72–75]. A meta-analysis of the effi-
cacy of HD (n = 332) vs. LD IL-2 (n = 78) with TIL-ACT showed that the pooled ORR (CRR)
was estimated to be 43% (14%) and 35% (7%), respectively [71]. Hence, LD IL-2 regimens
have the potential to elicit durable responses while minimizing associated adverse effects.
However, at this point, clinical trials involving LD IL-2 have limited patient enrollment
with no trial directly comparing the efficacy of HD vs. LD IL-2 as adjuvants to TIL-ACT.

3.3. Role of Pre-Conditioning Regimens

The necessity of modifying the host immune environment prior to TIL transfer has
been long established as therapeutic effects were only achieved with the addition of cy-
clophosphamide [8,12,76]. Currently, the main preparative conditioning regimens for
TIL-ACT consist of non-myeloablative chemotherapy (NMA) with cyclophosphamide +
fludarabine and/or total body irradiation (TBI). Both methods result in the depletion of host
lymphocyte-mediated immunosuppressive factors that potentially hinder the functions of
transferred T cells [77,78]. Further research indicates that lymphodepletion can eliminate
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homeostatic cytokine sinks, inhibit immunosuppressive Tregs, and increase neoantigen
presentation [53,79,80]. The eradication of endogenous cells that compete for homeostatic
cytokines IL-7 and IL-15 leads to an increase in serum levels that is thought to be beneficial
for TIL persistence [42,69,81]. The removal of host tumor-infiltrating and peripheral CD4+
CD25+ FoxP3+ Tregs liberates adoptively transferred TILs from extrinsic immunosuppres-
sion [43,44,82]. Lastly, preconditioning may induce tumor cells to undergo immunogenic
cell death, resulting in the release of pro-inflammatory cytokines and tumor neoantigens
that further augments the antitumor immune response [83].

The association of increased lymphodepletion intensity to increasing TIL-ACT ef-
ficacy further demonstrates the importance of preparative regimens [84]. In a clinical
trial conducted by the NCI, the addition of 2 or 12 Gy irradiation to preconditioning
NMA chemotherapy increased the ORR from 49% (21/43 patients) to 52% (13/25 patients)
and 72% (18/25 patients), respectively, in metastatic melanoma patients treated with TIL-
ACT [69]. Subsequently, a randomized trial of NMA chemotherapy vs. NMA + 12 Gy TBI
showed similar complete response rates (24% in both), but latter group had more partial
responders (22% vs. 38%) [42]. While patients typically recover endogenous bone marrow
function accompanied by a return of peripheral hematological values to normal limits
within 2 to 3 weeks after lymphodepletion, the majority does experience severe treatment-
related toxicities requiring advanced medical support [69,85,86]. Thus, the optimization of
preconditioning regimens that minimize adverse events is necessary to increase the clinical
utility of TIL-ACT.

4. Combination Treatments
4.1. Immune Checkpoint Inhibitors

A common immunotherapy resistance mechanism exhibited by various types of tu-
mors is the upregulation of negative T cell checkpoint pathways, such as programmed
cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
in the TME. Chronic co-inhibitory signaling induces T cell exhaustion, a functional state
defined by the loss of effector functions and proliferative capability [87–89]. Accumulation
of exhausted T cells eventually lead to tumor progression and immune evasion. Without
extensive TME changes, any adoptively transferred TILs would be subjected to the same
external suppression mechanisms, nullifying the therapy. However, blocking these path-
ways with immune checkpoint inhibitors (ICIs) can re-invigorate previously exhausted T
cells to promote metastatic tumor regression [90]. Recently, ICIs against PD-1 and CTLA-4
have been approved by the Food and Drug Administration (FDA) for the treatment of
numerous solid malignancies [91].

Although the characterization of TIL products demonstrate increased PD-1 expression
on tumor-reactive T cells [11,92–94], chronic persistence of PD-1 expression on post-transfer
T cells is associated with therapeutic resistance [72]. The existence of PD-1+ TIL cells may
indicate potential sensitivity to ICI. Preclinical data suggest that the combination of ICI with
TIL-ACT can synergistically increase T cell cytolytic ability, effector molecule synthesis,
and tumor infiltration, leading to greater tumor control and improved survival [95–98].
In one case study, combinatory treatment of TIL and a PD-1 inhibitor led to complete
regression of all six metastases in a patient with metastatic breast cancer [99]. Furthermore,
multiple metastatic melanoma patients who previously failed ICI treatments were able to
achieve partial response with TIL and went on to have durable complete responses with
subsequent ICI treatment [14,75]. Patients treated with ACT of peripheral blood-derived,
antigen-specific T cells in combination with CTLA-4 blockade also achieved complete
response after prior progression on salvage CTLA-4 therapy [100]. These results suggest
the possibility of ICI potentiating adoptively transferred TIL to elicit complete tumor
regressions in vivo. A small pilot trial for the combination of TIL-ACT with nivolumab
(anti-PD-1) in ovarian cancer demonstrated the safety and feasibility of this combination
with two out of six patients achieving objective response [101]. Other on-going clinical
trials aiming to assess the efficacy of TIL-ACT and ICI in solid tumors are listed in Table 1.
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4.2. Targeted Therapy

The advent of genetic sequencing has led to the identification of common driver
mutations in solid tumor malignancies. Targeted therapies are designed to specifically
kill tumor cells expressing these oncogenes. Increased tumor lysis generates a more pro-
inflammatory TME as well as releases additional tumor neoantigens to be recognized
by TILs. Although preliminary experiments exploring targeted therapy combined with
TIL-ACT have only been conducted in melanoma at this point, there exists potential for the
extrapolation of this combination in the treatment of other solid tumors with identifiable
driver mutations.

Roughly 50% of melanomas carry the BRAFV600E or BRAFV600K driver mutations
that are targetable by BRAF inhibitors (BRAFi) such as vemurafenib and dabrafenib [102].
BRAFi mediated apoptosis of BRAF-mutant cells results in transient tumor regression [103].
Preclinical studies suggest that the addition of BRAF inhibition to TIL-ACT can increase T
cell tumor infiltration, induce antigen presentation, and sensitize BRAF mutant melanoma
to T cell mediated cytolysis [104–107]. A clinical trial investigated the combined efficacy of
BRAFi with TIL-ACT where patients with BRAFV600 mutations underwent metastastectomy
for TIL growth, followed by two weeks of vemurafenib, another metastastectomy, standard
TIL infusion, and resumption of vemurafenib for up to two years. Patients on combination
therapy demonstrated an ORR of 64% (n = 11 patients), which was similar to the 60%
ORR (n = 15 patients) of TIL-ACT monotherapy [108]. However, metastases isolated
from patients following combination treatment do exhibit increased T cell infiltration
compared to monotherapy, suggesting the existence of potential synergistic effects of
BRAFi pretreatment with TIL-ACT.

Another targeted therapy commonly used in the treatment of malignant melanoma is
MEK inhibitors (MEKi). MEKi are typically added to BRAFi to prevent acquired resistance
and patients on this combination experience drastic but transient tumor regression, with
median progression-free survival of less than 10 months [109]. The mechanism by which
MEKi affects the T cell mediated immunity is relatively unknown due to contradictory pre-
clinical data. While some murine studies demonstrated that neoadjuvant MEK inhibition
generate memory T cells with increased effector functions, others have shown that MEKi
impairs T cell proliferation and function [110]. Given the lack of concrete evidence, further
investigation is needed to determine whether MEKi offers additional clinical benefits when
used in combination with TIL-ACT or BRAFi + TIL-ACT.

4.3. Other Investigative Therapies

Other adjuvant therapies aimed at (1) increasing tumor infiltration of TILs, (2) en-
hancing T cell antitumor potentials, or (3) alleviating TME immunosuppression have been
explored in both preclinical and small clinical settings. Some strategies for increasing tumor
infiltration of adoptively transferred TIL include, but are not limited to, overexpression
of adhesion molecule CD62L or chemokine receptor CXCR2 on TILs [95,111], along with
intratumoral overexpression of chemokine CCL21 [112]. Alternatively, cytokines such as
IL-12 and tumor antigen-specific vaccinations have also been shown to augment transferred
TIL effector function and prolong their survival [113–116]. In a proof-of-concept clinical
trial, patients with tumor neoantigen NY-ESO-1 positive advanced sarcoma or melanoma
were treated with ACT of NY-ESO-1 specific T cells in combination with NY-ESO-1 DC
vaccination. Two out of six patients experienced objective response, with one attaining
complete tumor regression [117]. This study suggests the potential of combining tumor
vaccination with ACT.

Recent advances in identifying immunosuppressive MDSCs within the TME indicate
potential for modifying the immune microenvironment to augment TIL efficacy. Additional
activation of antigen presenting cells and macrophages by agonist CD40 monoclonal anti-
bodies leads to enhanced T cell antitumor activity and proliferation [118,119]. Inhibition of
MDSC migration by CXCR1/2 inhibitors resulted in increased accumulation of adoptively
transferred TILs in murine models of melanoma, lung, and oral carcinomas [120]. Fur-
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thermore, MDSC depletion via doxorubicin and docetaxel in combination with TIL-ACT
increased T cell tumor-infiltration and enhanced tumor control in preclinical models of
melanoma and breast cancer [121,122]. However, due to the preliminary nature of these
studies, further investigation is necessary to determine if these strategies could provide
additional benefits to TIL-ACT and be safely translated into the clinical setting.

5. The Future of TIL-ACT

Although the clinical success of TIL-ACT has been replicated across multiple insti-
tutions, its availability has so far been limited to large academic medical centers. These
centers have the expertise to successfully grow TILs and the capability to adequately
manage adverse events patients experience [123]. The ex vivo TIL expansion protocol is
labor-intensive and the requirement to use fresh TIL products for infusion impose further
restrictions on the implantation. Outsourcing TIL production to dedicated manufacturing
centers is necessary to increase the cost-effectiveness and expand the availability of this
therapy [124]. Iovance Biotherapeutics has established a centralized, high-throughput
manufacturing facility for the production of cryopreserved TILs (brand named Lifleucel).
Iovance’s model involve receiving surgically resected tumors shipped by different medical
centers, expanding TILs to therapeutic numbers in their central facility, and shipping
cryopreserved TIL products back to the medical centers [125] (Figure 4). This alleviates the
burdens on medical centers and theoretically allows TIL-ACT to be administered anywhere
that has the capacity to surgically excise tumors and medically monitor patients during the
reinfusion. Furthermore, cryopreserved TIL products offer more flexibility in scheduling as
opposed to the rigid timeline dictated by the use fresh TILs. Despite the fact that TIL-ACT
has yet to be FDA approved for the treatment of solid malignancies, strong preclinical and
clinical results support its potential in eliciting durable tumor regression.
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6. Conclusions

Preclinical studies and early phase clinical trials of TIL-ACT have shown promising
results in the treatment of solid tumors, including the potential for eliciting durable com-
plete tumor regression. TIL-ACT takes advantage of the body’s own immune system and
intrinsic antitumor immunity. Autologous TILs are isolated, expanded, and selected for
tumor reactivity in this epitome of personalized medicine. Despite the intimate nature
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of the therapy, a significant amount of patients develop resistance and fail to objectively
respond to TIL-ACT. With increasing knowledge of tumor immunology, TIL research has
been focused on refining all parts of TIL-ACT protocol to overcome various resistance
mechanisms and improve overall therapeutic efficacy. From the initial trial conducted by
Rosenberg et al. in the 1980s, the ORR for unresectable melanoma patients treated with
TIL-ACT has improved from 31% to as much as 72%, and its usage has been extended
to the treatment of other solid tumor [10,32]. The addition of other adjuvant therapies,
including, but not limited to, targeted therapy, immune checkpoint inhibitors, monoclonal
antibody therapy, and other biologics, may further enhance TIL efficacy via non-redundant
pathways and prevent subsequent tumor immune escape. Continual protocol refinement
and larger clinical trials of these new avenues can facilitate the widespread adaptation of
this personalized immunotherapy for the treatment of malignant solid tumors.
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