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Background and Objective. Breast cancer is a major cause of mortality among women if not treated in early stages. Recognizing
molecular markers from DCE-MRI directly to distinguish the four molecular subtypes without invasive biopsy is helpful for
guiding treatment plans for breast cancer, which provides a fast way to consequential treatment plan decision in early time and
best opportunity for patients. Methods. &is study presents an approach of molecular subtypes recognition from breast cancer
image phenotypes by radiomics. An improved region growth algorithm with dynamic threshold without user interaction is
proposed for cancer lesion segmentation, which gives the precise border of lesion other than area with background.&e lesions are
extracted automatically based on radiologists’ annotation which guarantees the lesion is segmented correctly. Various features are
extracted on lesions data including texture, morphology, dynamic kinetics, and statistics features carried out on a large patient
cohort, which are used to validate the relationship between image phenotypes and the molecular subtypes. A new algorithm of
multimodel-based recursive feature elimination is applied on the radiomics data generated by the feature extraction process. &is
method obtains the feature subset with stable performance for different classification models, and the gradient boosting decision
tree model gets the best results of both classification performance and imbalance performance on molecular subtypes. Result.
From the experimental results, 69 optimal features from 143 original features are found by the multimodel-based recursive feature
elimination algorithms and the gradient boosting decision tree classifier obtains a good performance with accuracy 0.87, precise
0.88, recall 0.87, and F1-score 0.87. &e dataset with 637 patients in this paper has serious imbalance problem on different
molecular subtypes, and the the robust features that are generated by multimodel-based recursive feature eliminiation algorithm
make the gradient boosting decision tree classifier have good behaviors.&e recognition precision for the four molecular subtypes
of luminal A, luminal B, HER-2, and basal-like are 0.91, 0.89, 0.83, and 0.87, respectively. Conclusions. &e improved lesion
segmentation method gives more precise lesion edge, which not only saves the time of automatic extraction of lesion region of
interest without threshold setting for each case, but also prevents the segmentation error by manual and prejudice from different
radiologists. &e feature selection algorithm of multimodel-based recursive feature elimination has the ability to find robust and
optimal features that distinguish the four molecular subtypes from image phenotypes. &e gradient boosting decision tree
classifier rather plays a main role in recognition than other models used in this paper.

1. Introduction

Breast cancer is a major cause of mortality among women if
not treated in early stages. Early screening and diagnosis
have a lot to do with the therapeutic effect of prognosis. For
noninvasive diagnosis, different imaging modalities can be

used, such as molybdenum target X-ray, MRI, Ultra-sound,
etc. Dynamic contrast enhanced breast magnetic resonance
imaging (DCE-MRI) is one of the best imaging techniques
that provide temporal information about the kinetics of the
contrast agent in suspicious lesions along with acceptable
spatial resolution. Recognizing molecular markers from
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DCE-MRI is helpful for guiding treatment plans for breast
cancer.

&e four molecular subtypes of breast cancer are ana-
lyzed in this paper, including luminal A, luminal B, human
epidermal growth factor receptor-2 over-expressing (HER-
2), and basal-like. However, tumor heterogeneity in cancers
has been observed at the histological and genetic levels, and
increased levels of intratumor genetic heterogeneity have
been reported to be associated with adverse clinical out-
comes [1]. Breast tumor structure contains a high degree of
heterogeneity. &is heterogeneity has been correlated with
the level of tumor response to neoadjuvant chemotherapy
[2].

&e use and role of medical imaging technologies in
clinical oncology has greatly expanded from primarily a
diagnostic tool to include a more central role in the context
of individualized medicine over the past decade [3].
Radiomics refers to the extraction and analysis of large
amounts of advanced quantitative imaging features with
high throughput from medical images obtained with
computed tomography, positron emission tomography, or
magnetic resonance imaging [4]. Radiomic studies can be
used to understand relationships between imaging charac-
teristics of tumors, such as heterogeneity, and their genetic
characteristics, phenotype, or expected treatment outcome
[5]. &ese data are combined with other patient data and are
mined with sophisticated bioinformatics tools to develop
models that may potentially improve diagnostic, prognostic,
and predictive accuracy [6].

&e radiomics methodology can be divided into distinct
process which consists of five steps that are image acqui-
sition, image segmentation and rendering, feature extraction
and feature qualification from image, and databases and data
sharing for eventual ad hoc informatics analysis [4]. In this
paper, we investigate the role of the integration of the
contrast agent kinetic heterogeneity features derived from
breast dynamic contrast-enhanced magnetic resonance
imaging and clinical feature from patient medical records for
predicting molecular subtypes. &e computerized quanti-
tative image analysis in this paper includes precise breast
lesion segmentation, phenotype extraction and clinical
symptom, molecular subtypes prediction modeling, and
leave-one-case-out cross validation. 637 patients that are all
confirmed by pathological examination from one institution
are used for discovery and external validation.

&e primary goal of this paper is to develop an auto-
mated DCE-MRI-based lesion recognition method to dis-
tinguish the four molecular subtypes, which is helpful for the
consequential treatment plan decision.

&is work goes a step further on the original lesion data
other than the intratumoral and peritumoral segmentation
of tumor reported in [7, 8], in which a specialist marked the
boundary contour of the lesion manually. &ere are many
personal prejudices on the location or boundary of the
tumor in different specialists. Moreover, the image patches
containing the lesions are used in the prediction model on
the lesion and lesion background data [9]. An automated
segmentation method in this paper is used to extract the
precise boundary of tumor. &e major difference in the

current work is the integration of higher visual features and
dynamic features on actual lesion area from a larger patient
cohort and combining multiple classifiers for feature vali-
dation. &is is different from Banaie et al.’s method [10] and
Fan et al.’s method [11], in which kinetic feature, such as
ktrans, kep parameters extracted from 26 patients, and
texture features from 173 patients, are validated by a logical
regression without features selection. &e imbalance prob-
lem in these datasets is ignored using a single classifier as we
know that the morbidity of different molecular subtypes is
serious different. In this work, we use radiomics features to
distinguish between full four molecular subtypes other than
on partial classes as work on luminal A and B in [9], or work
on luminal A and other types in [11] by deep learning. &ese
fused features for four subtypes allow not only character-
ization of cancer morphology, but also depiction of het-
erogeneity between imaging phenotypes and molecular
subtypes of breast cancer.

&e workflow of the presented method is depicted in
Figure 1. An improved region growth segmentation algo-
rithm is applied on the lesion images. Different types of
radiomics features are extracted from tumor data. Feature
selection by a cascade validation method is conducted on
both radiomics feature. A large patient cohort is collected
from an institution, which is used for model training and
testing. &e main contributions of this work are as follows:

(i) An improved region growth algorithm with dy-
namic threshold setting is proposed on precise
boundary of lesion segmentation, which not only
saves time of automatic extraction of lesion region
of interest without threshold setting for each case,
but also prevents the segmentation error by manual
and prejudice from different radiologists.

(ii) &e static visual features of texture, morphology,
and statistics on lesion, dynamic kinetic features,
and clinical features are extracted to validate the
relationship between image phenotypes and the
molecular subtypes, which is carried out on a largest
patient cohort as we know from the latest work so
far.

(iii) &e recursive feature elimination method based on
multiple models is used to select useful features for
prediction model, which pays attention to the im-
balance problem of the dataset. &e classification
model based on DCE-MRI data achieves non-
invasive molecular subtypes recognition, which
improves the diagnostic efficiency of breast cancer.

&e rest of this paper is organized as follows. In Section
2, we discuss previous related work. Section 3 describes the
details of the method. &e experimental results and dis-
cussion are presented in Section 4, respectively. Finally, the
concluding remarks are given in Section 5.

2. Related Work

&e development of automated and reproducible analysis
methodologies to extract more information from image-
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based features is a requirement [3]. Radiomics refers to the
extraction and analysis of large amounts of advanced
quantitative imaging features with high throughput from
medical images, which leads to a very large potential subject
pool [4]. Lots of visual features are extracted to quantify
tumor image intensity, shape, and texture, which is asso-
ciated with underlying gene-expression patterns [5, 6,
12, 13]. Combining with the medical character and clinical
recognition of lung tumor, Wang et al. presented a radiomic
analysis of 150 features to build a prediction model for
malignant and benign discrimination of lung tumors [14]. It
is also feasible to use radiomics approach to decode normal
liver features and predict treatment-associated liver injury
[15] and differentiate malignant nodules from benign ones
[16].

DCE-MRI is one of the best imaging techniques that
provide temporal information about the kinetics of the
contrast agent, which is used to predict complete patho-
logical response to neoadjuvant chemotherapy [7, 8, 17–19]
and the risk of breast cancer recurrence in recent years
[20–23]. Tumors exhibit genomic and phenotypic hetero-
geneity, which has prognostic significance and may influ-
ence response to therapy [1, 24]. Burgeoning genetic,
epigenetic, and phenomenological data support the exis-
tence of intratumor genetic heterogeneity in breast cancers
[2, 25, 26].

Banaie et al. proposed a method to help physicians
determine the likelihood of malignancy in breast cancer
using DCE-MRI without biopsy [10]. Quantitative radiomics
of breast cancer may enable precision medicine with dif-
ferentiating luminal A and luminal B breast cancer mo-
lecular subtypes [9, 27]. &ree different deep learning
approaches were used to classify the tumor according to
their molecular subtypes. Computer-extracted image phe-
notypes as well as dynamic features from tumor and
background parenchymal enhancement were used to de-
termine DCE-MRI characteristics discriminating among
four molecular subtypes of breast cancer [11, 28–31]. Deep
learning with MRI dataset utilizing convolutional neural

network may also play a role in discovering radiogenomic
associations in breast cancer [32, 33].

&e dataset used in this paper contains DCE-MRI image
data and golden standard from pathology. A variety of
radiomics features are extracted on the accurately segmented
lesion data by an improved region growth algorithm and the
automatic feature selection process is realized by recursive
feature elimination optimization method, rather than
manually selecting features. Secondly, the dataset contains a
comprehensive range of molecular types, and the imbalance
of each molecular subtype of data is considered in the
predictive model, rather than considering small datasets and
partial category recognition studies which are presented in
existing research.

3. Methodology

&e data collected from a hospital in this paper are all cases
with malignant lesions confirmed by histopathology. Gen-
erally, the edge of the malignant lesion is not clear. It is
difficult to extract the edge of the lesion area accurately
because of the image background enhancement. However, it
is difficult to fetch good characteristics for image phenotypes
without accurate lesion area. &erefore, the approximate
location of each lesion in this dataset is labeled by experi-
enced radiologists, and it is a time-consuming work to
annotate the area of the lesion. Meanwhile, the labeling
results from different radiologists may be quite inconsistent.
In this paper, the radiologists only marked out the lesion
locations in the images. &en an improved regional growth
algorithm is used to realize the automatic edge extraction of
the lesions. Based on the extracted lesion regions, 142 image
features including texture features, morphological features,
statistical features, and dynamic enhancement characteris-
tics are extracted. Feature selection is performed using the
multimodel-based recursive feature elimination (mmRFE)
method. &e mmRFE method considers the sorting factors
of each feature in each model other than the traditional RFE
with single model. &e models in mmRFE used in this paper
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Figure 1: Workflow of presented breast cancer molecular subtypes recognition.

Computational and Mathematical Methods in Medicine 3



are logistic regression (LR), support vector machine (SVM),
random forest (RF), and gradient boosting decision tree
(GBDT). Different classifiers differ in the recognition of
molecular subtypes classification for patient cohort data
which has imbalance problem on four molecular subtypes.
&e mmRFE method finds robust features for all four
subtypes better than the classification effect of a single model
in classification effect.

3.1. Lesion Segmentation. Breast lesions are relatively small.
It will be useless if the radiomics features are extracted from
the entire image. &erefore, it is general that the lesion
areas are segmented firstly, on which the features are
extracted.

&ere are generally three ways to extract lesions, auto-
matic segmentation, manual segmentation, and interactive
segmentation [34]. Automatic segmentation does not re-
quire human intervention, completely separated by the al-
gorithms, that is also the focus of current research. However,
this method is often inaccurate for complex image objects.
Manual segmentation usually requires the assistance of an
experienced operator, which is time-consuming and in-
accurate for irregular images. Interactive segmentation
firstly finds the approximate location of the region of interest
(ROI) and marks it with a rectangular box, which has less
human intervention and a good segmentation effect on
complex images. &is paper presents an interactive seg-
mentation for breast lesions. &e breast lesions are marked
by two radiologists with 10 and 15 years experiences, re-
spectively. &e lesion in the ROI with border marks are
connected areas and the grayscale is similar. It is known
from above that the enhancement mode of breast lesion is
mostly enhanced by internal interval, for which the regional
growth (RG) algorithm has better segmentation effect.

&e regional growth algorithm has two important
influencing factors, namely, the selection of seed point and
the definition of growth criteria. If the seed point is not
selected properly, it is possible that the result of segmen-
tation is very different from the original target and even the
segmented result is wrong part of the image rather than the
original target. As the lesions are labeled by the radiologists,
the centroid of the ROI region is used as the seed point in
this paper.

Once the seed point in target area is obtained, the
surrounding connected pixels that follow the certain growth
criteria are added to target areas one by one and finally
complete the growth until there are no more connected
pixels that follow the criteria.

&e DCE-MRI images are grayscale images, so we only
preset a certain threshold (T) that the pixel value is less than.
Different growth thresholds have strictly different results on
the segmentation effect of target results as shown in Figure 2
(T � 20, 30, 40, 50). &e differences between the segmented
results with different thresholds are obvious.

Figure 2 lists two types of lesion ROIs. &e first in
Figure 2(a) has a more regular shape, and the other ROI in
Figure 2(b) is more irregular in shape besides more burrs. In
this paper, the threshold value of segmentation growth is

determined dynamically by the Otsu method, rather than by
manual setting [35].

&e results generated by our method are shown in
Figure 2 (ours). Although the ROI in Figure 2(b) is more
irregular and burr, the experimental result shows that the
improved algorithm is still doing well. &e improved re-
gional growth algorithm not only reduces the artificial
participation, but also saves the time, which makes the ROI
segmentation more automated. &e later feature extraction
task is performed on precise lesions other than lesion with
background which is generally used in exists works.

&e lesion segmentation results are evaluated by the dice
coefficient, which is a set similarity measurement function,
as shown in formula (1). X represents the pixel set of the
segmented lesion, and Y represents the actual collection of
lesion pixels, where every pixel is represented as coordinate.
&e dice coefficient represents the percentage of the in-
tersection of two sets that are segmented correctly. S � 1
indicates that X and Y are fully coincident, and the seg-
mentation accuracy rate is 100%. S � 0 indicates that the
segmentation results are totally wrong.

S �
2|X∩Y|

|X| + |Y|
. (1)

In order to verify the accuracy of the lesion segmentation
in this paper, the two lesions are manually hand-drawn by
the radiologist to obtain the complete borders as shown in
Figure 2 (source). &e yellow curves are drawn by the ra-
diologist manually. At the same time, the traditional region
growth algorithm with different threshold and our method
are conducted for comparison. It is seen that t � 20 is ob-
viously different from the lesion, and T � 50 is obviously
oversegmented. &erefore, the dice coefficients of the three
thresholds (T � 30, 35, 40) and our algorithm are evaluated,
respectively, and the results are shown in Table 1.

As seen from the results of the evaluation indicators in
Table 1, the traditional RG algorithm threshold cannot be
determined automatically. It is necessary to find right seg-
mentation threshold which is hard work for a large dataset.
However, the results are greatly improved by our method,
which dynamically searches the threshold without human
interaction.

3.2. Feature Extraction. Once the lesions are segmented
from DCE-MR images, the radiomics features are extracted
consequently for molecular subtypes recognition, which is
the quantitative expression of image information so that we
can find effective imaging features. &e effective features
are important to realize the correct classification of breast
cancer molecular subtypes. &e breast cancer lesion is
highly heterogenous. &is characteristic presented in DCE-
MRI images is quantified by textures in this paper. At the
same time, the internal density of differences areas in lesion
are changed over time and this feature is obtained by ki-
netics parameters.

&e radiomics features including texture features,
morphological features, statistical features, and kinetics
features are designed in this paper.
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Figure 2: Breast cancer lesion segmentation. Regular lesion with smooth edge (a) and irregular lesion with more burrs (b). &e lesion
marked by rectangle and the actual border of lesion is shown as yellow curves; RG (T� 20, 30, 40, 50) shows the segmentation results by
regular region growth algorithm. Ours is the result by the improved region growth algorithm in this paper.
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3.2.1. Texture Features. Texture reflects the arrangement
properties of the surface organization of things, and it is a
visual feature. Different tissues within the human body
exhibit different textures in imaging examinations, and the
same tissues exhibit different texture differences in a healthy
area or in the lesion [36]. &e image area has an invariant
texture if a series of statistical or other characteristics of an
image are fixed, slowly changing, or approximate [37, 38].

According to the characteristics of the lesion, the texture
features of breast cancer were extracted by gray-level co-
occurrence matrix (GLCM) and locality binary pattern
(LBP), respectively.

(i) &e GLCM is calculated from the pairs of pixel gray
levels i and j that represent the probability of (i, j)

appearing in a given spatial distance and direction,
and all calculated results can be represented in the
form of a matrix.&is paper takes the direction as [0,
45, 90, 135]; that is, the GLCM is constructed in these
four directions for the statistics characteristics of
energy, entropy, deficit matrix, contrast, and cor-
relation on three-time phase in each direction [39].

(ii) LBP is an operator that characterizes local textures
and is also used for texture feature extraction. &e
feature is then used in conjunction with the histo-
gram of oriented gradient (HOG) feature classifier to
improve the detection effect of some datasets [40–
42]. &e LBP mask used in this paper is the 3 × 3
matrix. If its value of each neighbor pixel is greater
than the center point pixel value, the value of its
location is set to 1. Otherwise, the center point pixel
value is set to 0. &is process will form a binary
sequence with length 8, and then the value of the
binary sequence as binary data is computed and is
regarded as the LBP value. &e computing process is
shown as the formula (2) for a pixel (x, y), and gc is
the center pixel value and gp is the neighbor pixel
value.

LBP(x, y) � 
7

p�0
S gp − gc ∗ 2p

,

S(u) �
1, u≥ 0,

0, u< 0.


(2)

(iii) &e LBP matrix is computed by the formula ap-
plying all the pixels of the image, and then the
histogram is extracted on the LBP matrix.

3.2.2. Morphological Features. When a part of the tissue
becomes a malignant lesion, it is usually accompanied by

morphological changes. For example, the benign lesions of
the breast are mostly lumpy, and the edges are smooth, while
the malignant lesions are more morphological. Some ma-
lignant lesions are lumpy and the edges are irregular; others
are diffuse with no obvious edge. &e malignant tumor is
surrounded by abundant blood vessels and has a strong
aggression [43]. &e BI-RADS standard divided the mor-
phology of breast lesions into three types as mass, nonmass,
and point-like [44]. &e lumps are divided into circles, el-
lipses, and irregular shapes. &e distribution of nonmass
lesions is more diffuse and multiregional. &e point-like
lesions are usually less than 5mm in diameter and are not
easily detected displayed on enhanced images. &e mor-
phological features of breast DCE-MRI images in this paper
mainly are designed as the morphological features in the
study of breast molybdenum target images, which include
standardized radial length mean and standard deviation,
compactness, roughness, smoothness, roundness, and area
[45].

3.2.3. Kinetics Features. &e dynamic enhancement
characteristic presents the metabolism of the contrast
agent in the lesion area which can provide the hemo-
dynamic information of the lesion and shows the signal
change of the lesion or normal tissue in different en-
hancement phase (8 phases in this paper) [46, 47]. &e
features are extracted on both the whole lesion and single
pixel as study objects.

Firstly, the radiomics features extracted on the whole
lesion includes lesion enhancement rate and absorption rate.
&e first phase in DCE-MRI is normal status without the
contrast agent. &e other phases are obtained where the
lesion is enhanced that pixel’s grayscales are relatively high.
&e lesion enhancement rate is expressed as

T �
Si

S0
, i ∈ 1, 2{ }, (3)

where Si represents the grayscale mean of the pixels in
lesion area of the corresponding time series. &e en-
hancement rate reflects the aggregation degree of the
contrast agent in the lesion. &e absorption rate is
expressed as formula (4), which represents the grayscale
mean of the pixels in lesion area of the corresponding time
series. &e absorption rate of the lesion reflects the blood
perfusion condition in the lesion.

T �
Si − S0( 

S0
∗ 100%, i ∈ 1, 2{ }. (4)

Secondly, the enhancement rate is defined on every pixel,
which is expressed as

Table 1: Evaluation result of image segmentation with different algorithms.

ID &reshold ROI (a) ROI (b) Mean dice
1 RG with T � 30 0.712 0.652 0.682
2 RG with T � 35 0.714 0.710 0.712
3 RG with T � 40 0.622 0.632 0.627
4 Our method 0.897 0.877 0.887
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RTt � r | r �
IT(i, j) − It(i, j)

It(i, j)
 ,

i � 1, 2, . . . , M,

j � 1, 2, . . . , N,

T ∈ 1, 2{ },

i ∈ 0, 1{ },

T> t,

(5)

where T and t represent moments (such as s0, s1, s2 three-
time phase), and the ROI matrix size is M∗N, IT(i, j) or
It(i, j) representing the pixel value of the t moment on
image coordinate (i, j). &e standard deviation, mean, and
maximum dynamic characteristics are extracted using the
obtained dataset.

3.2.4. Statistics Features. &e statistical characteristics of the
image refer to the calculation of the grayscale values of each
pixel point in the lesion. In this paper, the statistical features
of three-time phase are extracted, including grayscale mean,
standard deviation, information quantity, maximum value,
peak degree, and deflection degree. Peak degree reflects the
degree of steep easing of data distribution patterns. De-
flection degree reflects the symmetry of the data distribution
pattern.

Based on the three-time phase of breast cancer DCE-
MRI images (three periods before and after adding contrast
agents), the above paragraphs introduce the extraction of
features, including texture, dynamics, statistics, and four
types of morphological features. Among them, GLCM
texture features include energy, contrast, correlation, en-
tropy, and deficit matrix using representation as F1 ∼ F15.
LBP texture includes the three histograms as F160 ∼ F16255,
F170 ∼ F17255, and F180 ∼ F18255. Dynamic characteristics
include absorption rate, enhancement rate, standard de-
viation, mean, and maximum, represented as T1 ∼ T13;
statistical features include grayscale mean, grayscale stan-
dard deviation, information entropy, maximum value, de-
viation, and peak, labeled as C1 ∼ C18. Morphological
features include standardized radial length mean and
standard deviation, tightness, roughness, smoothness,
roundness, and area, known as M1 ∼ M7. From the DCE-
MRI sequential scans, we applied a computerized scheme to
extract 142 imaging features while all invalid columns with 0
values are removed. Table 2 summarizes these DCE-MRI
features.

3.3. PredictionModel Training. &e above feature extraction
process generates a large number of radiomics feature data,
but these features are not all useful for the recognition of
molecular phenotypes. &ere are many methods of feature
selection, and there is no strict uniform method of the
feature selection for breast cancer DCE-MRI images. &e
feature selection is based on recursive feature elimination

algorithm in this paper. &e main idea of the recursive
feature elimination (RFE) is to constantly repeat the build
model, and each time, all features are sorted according to
their importance.&e least important features will be deleted
until no more features can be deleted [48–50]. It can be seen
that recursive feature elimination is a greedy algorithm.

Usually, a model is selected at first which is trained with
sample data. &e scores of importance for all features are
calculated using the trained model, and the features with the
least importance are removed from the current set of fea-
tures. &en the remaining features are used in the model
repeatedly until no features can be deleted. After the iter-
ation is completed, the optimal feature subset is generated
according to the evaluation criteria.&e traditional recursive
feature elimination is based on a single model for feature
selection.

In the process of selecting features by the RFE method,
the optimal subset of features selected by different classifi-
cation models is varied. &ere is some overlap in the feature
subsets for each model. In this paper, a multimodel-based
recursive feature elimination (mmRFE) feature selection
method is proposed. First, each model sorts all features
according to their importance in order to get multiple sets of
different sorts, and then the index of the positions of each
feature in each set of sorts are recorded according to the sort
results of each set of models. Finally, the index is summed up
and the features are sorted again according to the sum re-
sults. A new comprehensive sort can be obtained. In the new
sorted results, the index factors of each feature in different
model are fully taken into account.

&e comprehensive sorting features are used to train
each model and the classification results are deposited into
the result set. &e lowest fractional features are removed by
the importance of all the features in the comprehensive sort
until no features can be deleted. Finally, each model will get
multiple sets of results. Selecting a subset of features based
on the results of each model makes this subset of features
perform well in every model, such as a subset of features is
selected that each classification model has an accuracy of
more than 85%. &e flow chart of the mmRFE method is
shown in Figure 3.

&e classification models to be trained in this paper
include logistic regression (LR), support vector machine
(SVM), random forest (RF), and gradient boosting decision
tree (GBDT). &e performance of each classifier is evaluated
and discussed in the next section. &e experimental results
are obtained between traditional RFE based on single model
and mmRFE in this paper.

4. Results and Discussion

4.1.PatientPopulation. In this paper, collected data of breast
cancer DCE-MRI from a cancer hospital in Liaoning consist
of 637 cases of patients in total. All 637 cases are malignant
cases of breast cancer in women.&e age range is between 43
and 70 years, and the average age is 57.2 ± 13.3 years.

&ese conditions are confirmed by histopathology ex-
amination after the patient received DCE-MRI examination
which is diagnosed by radiologist. Diagnosis includes ductal
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carcinoma, invasive ductal carcinoma, invasive papillary
carcinoma, mucous cancer, invasive lobular carcinoma,
medullary carcinoma, solid papillary carcinoma, ductal
carcinoma in situ, extensive ductal carcinoma, and extensive
ductal carcinoma in situ. &e pathological data of 637 pa-
tients are shown in Table 3 as well as the statistics of mo-
lecular subtypes. It is easy to see that the dataset has
imbalance problem on molecular subtypes.

4.2. DCE-MRI Acquisition. &e DCE-MRI data were gen-
erated by GE 1.5 T magnetic resonance imaging equipment
(Hdx, GE Healthcare, waukesha, WI, USA) with breast
dedicated 4-channel coil. Routine scanning parameters are
axial T1WI SPGR sequence, sagittal T2WI fat inhibition
sequence, and axial DWI sequence. &e above sequence
layer thickness is 3mm, FOV for 36∗ 36 cm. DCE-MRI data
take parameters as axial 3D dynamic SRGR sequence (TR
6.1, TE 2.9, Fov36∗ 36 cm, Matrix 512∗ 512) using the flip
angle 2 degrees and 15 degrees scan to obtain T1 mapping,
and then the flip angle 15 degrees for dynamic enhancement
scanning. After collecting 1 phase sample, the high pressure
syringe (Ulrich Medical) was injected intravenously Gd-
DTPA 0.1mmol/Kg, the injection rate was 3ml/s, and the
tube was washed with the 25ml saline, and then the scanning
of 8-time phase was continued.

4.3. Performance on Traditional RFE-Based PredictionModel.
&is paper uses four models LR, SVM, RF, and GBDT to
select the optimal feature subset based on the traditional RFE

with single model. &e accuracy, precision, recall, and F1-
score are used to evaluate classification performance.

&e experimental results by LR show filtered features
with 80 dimensions, including GLCM texture features with 9
dimensions (energy, contrast, correlation, deficit matrix in
the first time phase, correlation in the second time phase,
energy, correlation, entropy, and deficit matrix in the third
time phase), morphological features with 2 dimensions
(standardized radial length standard deviation, roughness),
statistical features with 5 dimensions (the first phase of the
grayscale standard deviation, the maximum grayscale, the
second time phase of the grayscale mean, the maximum
value, and the third time phase of the grayscale standard
deviation), dynamic enhancement features with 7 di-
mensions (T1,0 standard deviation, mean value, maximum
value, T2,0 mean, T2,1 standard deviation, mean, and max-
imum), and other LBP features.

&e results from SVM experiment show that the
features of the RFE filter are 77 dimensions, including the
GLCM texture features with 8 dimensions (the contrast,
correlation, deficit matrix of the first time phase, the
correlation of the second time phase, the energy, contrast,
entropy, and deficit matrix of the third time phase), and
the morphological characteristics of 2 dimensions
(standardized radial length mean and standard deviation),
statistical features with 8 dimensions (grayscale mean,
grayscale standard deviation, grayscale maximum, second
time phase grayscale mean, bias, peak, third time phase
grayscale standard deviation, and grayscale maximum),
dynamic enhancement feature with 5 dimensions (T1,0
standard deviation, maximum value, T2,0 mean value, T2,1

Table 2: Summary of extracted radiomics features on DCE-MRI data.

ID Features Time phases Detail features without 0 values Feature labels
1 GLCM T0 Energy, contrast, correlation, entropy, deficit matrix F1 ∼ F5
2 GLCM T1 Energy, contrast, correlation, entropy, deficit matrix F6 ∼ F10
3 GLCM T2 Energy, contrast, correlation, entropy, deficit matrix F11 ∼ F15

4 LBP T0

Histogram index at [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 240, 241, 242, 243, 244, 245, 246, 247, 248,

249, 250, 251, 252, 253, 254, 255]
F160 ∼ F16255

5 LBP T1

Histogram index at [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 240, 241, 242, 243, 244, 245, 246, 247, 248,

249, 250, 251, 252, 253, 254, 255]
F170 ∼ F17255

6 LBP T2

Histogram index at [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 240, 241, 242, 243, 244, 245, 246, 247, 248,

249, 250, 251, 252, 253, 254, 255]
F180 ∼ F18255

7 Kinetic T1,0/T2,0/T2,1 Standard deviation, mean, maximum value T1 ∼ T9
8 Kinetic T1,0/T2,0 Enhancement rate, absorption rate T10 ∼ T13

9 Statistics T0

Grayscale mean, grayscale standard deviation,
information entropy, grayscale maximum value, bias,

peak
C1 ∼ C6

10 Statistics T1

Grayscale mean, grayscale standard deviation,
information entropy, grayscale maximum value, bias,

peak
C7 ∼ C12

11 Statistics T2

Grayscale mean, grayscale standard deviation,
information entropy, grayscale maximum value, bias,

peak
C13 ∼ C18

12 Morphology T0

Standardized radial length mean, standardized radial
length standard deviation, tightness, roughness,

smoothness, roundness, area
M1 ∼ M7
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the standard deviation, and the maximum value), and
other LBP features.

&e results of RF experiments show that the features of
the RFE filter are a total of 55 dimensions, including GLCM
texture features with 11 dimensions (energy, contrast,
correlation, entropy, deficit matrix in the first phase, energy,
contrast, correlation in the second phase, energy, contrast,
correlation in the third time phase), morphological features
with 4 dimensions (standardized radial length mean, stan-
dardized radial length standard deviation, tightness,
roughness), statistical characteristics with 14 dimensions
(first time phase grayscale mean, grayscale standard de-
viation, grayscale maximum, bias, peak, second time phase
grayscale standard deviation, maximum value, bias, peak,
third time phase grayscale mean, grayscale standard

difference, grayscale maximum, bias, and peak), dynamic
enhancement feature with 9 dimensions (T1,0 standard
deviation, mean, maximum value, T2,0 standard deviation,
mean value, maximum value, T2,1 standard deviation, mean
value, and maximum value), and other LBP features.

&e experimental results by GBDTshow that the filtered
features are 66 dimensions, including GLCM texture fea-
tures with 13 dimensions (energy, contrast, correlation,
deficit matrix in the first phase, energy, contrast, correlation,
deficit matrix in the second time phase, energy, contrast,
correlation, entropy in the third phase, and deficit matrix),
morphological features with 4 dimensions (standardized
radial length mean, standardized radial length standard
deviation, tightness, roughness), statistical characteristics of
with 14 dimensions (first time phase grayscale mean,

Init m and n, 
m: feture size, n: model size

i = 0, j = 0

Start

i < n

Sorted features by importance

j < m

i = i + 1

Get the index of feature j in each 
sorted feature order and then sum 

up the index values.

j = j + 1

Re-sorted the features

Init a empty feature subset F and 
result sub sets R1, …, Rn, k = 0

Put k-th feature into F from the new 
order feature list

Stop

Y

Analyse the R and select the sub 
feature set that gives good 

performance on each classifier.

Nk < m

Calculate the accuracy for each 
model based on features in F, and 

add the results in R

k = k + 1

N

Y

Y

N

Figure 3: Flow chart of mmRFE algorithm for feature selection.
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grayscale standard deviation, bias, peak, second time phase
grayscale mean, grayscale standard difference, maximum
value, deviation, peak, grayscale mean, grayscale standard
difference, grayscale maximum, deviation, and peak value of
the third time phase), the dynamic enhancement feature
with 8 dimensions (T1,0 standard deviation, mean, maxi-
mum value, T2,0 standard deviation, mean value, maximum
value, T2,1 standard deviation, mean value), and other LBP
features.

&e feature subsets selected by the four models re-
spectively are shown in Table 4, from which it is known that
the subsets of features selected by the four classifiers are
different.

As shown in Table 5, it can be seen from the exper-
imental results that the GBDT has the best experimental
results compared to the other models, which perform best
in each evaluation index, followed by SVM and then RF,
while the experimental results of LR is slightly worse, less
than 0.8, and not as effective as the results of the
remaining three models. If the molecular classification is
based on the RFE single model, GBDT is best suited as the
selected object.

4.4. Performance on mmRFE Based PredictionModel. In this
experiment, the four classifiers are also used in RFE, re-
spectively.&e accuracy contained in eachmodel is shown in
Table 6. &e logic regression accuracy is the lowest. &ree
feature subsets are found in all logistic regression experi-
ments, in which the accuracy is more than 0.8. Compared
with SVM, RF, and GBDT models, the first set for experi-
mental results is more robust, so the first feature set is se-
lected as the optimal subset of features in this experiment.

&e selected feature subset with 69 dimensions includes
GLCM texture features with 12 dimensions (energy, con-
trast, correlation, deficit matrix in the first phase, energy,
correlation in the second phase, deficit matrix, energy,
contrast, correlation, entropy, and deficit matrix in the third
time phase), morphological features with 4 dimensions
(standardized radial length mean, standardized radial length
standard deviation, tightness, and roughness), statistical
characteristics with 13 dimensions (first time phase grayscale
mean, grayscale standard deviation, maximum value, second
time phase grayscale mean, grayscale standard deviation,
maximum value, bias, peak, third time grayscale mean,

grayscale standard deviation, grayscale maximum, bias, and
peak), and dynamic enhancement features with 6 di-
mensions (R10 mean, maximum value, R20 mean, R21
standard deviation, mean, and maximum), and the rest are
LBP features. &e detail features are C14, T7, T11, T9, F17247,
F18243, F1615, F5, F167, F177, T5, F11, F8, C4, C7, F16248,
F18245, F1611, T13, F2, C12, C2, C11, M2, F13, F1812, T6,
F1712, F17242, C16, F3, F1, C10, M1, F18249, F176, T12, F164,
C1, F14, F1815, F12, F6, C17, F17241, F15, F189, F17246,
F18250, F1710, F18244, F18252, F175, F16245, F10, C8, F17240,
F1814, F1614, F16250, F181, F16246, M4, F1810, F17248, C13,
F187, M3, F17244 ordered by importance descendent.

&e feature subset selected by the mmRFE is the result
of considering the position factors of each feature in
different models. &e molecular subtypes classification is
made by using the selected features and compared with
the results selected by the single model. &e validity of
the selected features by the multimodel is further
verified.

Based on the mmRFE, the feature screening is carried
out by using the optimal feature subsets based on the current
model selected by LR, SVM, RF, and GBDT, and the ex-
perimental results are displayed in combination with ac-
curacy, precision, recall, and F1-score.

&e performance evaluation on each molecular subtype
classification by logistic regression is shown in Table 7, and it
can be learnt from the table that the logistic regression has
better classification performance on luminal A type and
basal-like type.

&e classification results by SVM are shown in Table 8 as
well as the performance evaluation on each molecular
subtype. &e data in the table show that SVM has better
classification effect of luminal A type, HER-2 expression
type, and basal-like type of breast cancer. &e luminal B type
classification ability is weaker than the remaining three
kinds.

&e classification results by RF are shown in Table 9 as
well as the performance evaluation on each molecular
subtype. &e data in the table show that RF has better
classification effect of luminal A type, luminal B type, and
HER-2 expression type of breast cancer. &e basal-like type
classification ability is weaker than the remaining three
kinds.

&e classification results by GBDTare shown in Table 10
as well as the performance evaluation on each molecular

Table 3: Patient cohort collection with pathological and molecular subtypes.

Pathology Luminal A Luminal B HER-2 Basal-like Total
Intracatheter cancer 6 16 8 4 34
Invasive ductal carcinoma 171 209 131 60 571
Invasive micropapillary carcinoma 0 6 2 0 8
Mucous carcinoma 0 2 0 0 2
Invasive lobular carcinoma 2 4 2 2 10
Medullary carcinoma 0 0 0 2 2
Solid papillary carcinoma 2 0 0 0 2
Ductal carcinoma in situ 0 2 0 2 4
Extensive ductal carcinoma 2 0 0 0 2
Extensive ductal carcinoma in situ 0 2 0 0 2
Total 183 241 143 70 637
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subtype. &e data in the table show that GBDT has better
classification effect on all types of breast cancers better than
the above three classifiers.

From the results of each experiment, we can see that the
identification ability of four classification models for the
molecular classification of breast cancer is not identical and
the three classification models LR, SVM, and RF cannot
recognize the four molecular types of breast cancer very well
that they are obviously weak for one or two subtypes of
identification ability in molecular classification. GBDT is
best suited as the selected classification model.

&e four classification models are trained based on
features selected by mmRFE, and classification results of
each model are shown in Table 11. &e performance of four
classifiers is all good at stability especially for LR which
behaves worst on feature selected by traditional RFE algo-
rithm. In another words, the features selected by mmRFE
algorithm are more optimal for molecular subtypes recog-
nition task. &e GBDTmodel obtains the best performance

Table 4: Summary of features selected by traditional RFE
algorithm.

No. Model Features selected (sorted by
importance descent) Size

1 LR

C10, C7, T13, T11, C14, F18243, F18245, F18249,
F167, F17247, F177, F1615, F17249, F5, F11, F15,
C4, T9, F9, F1611, T7, F16254, F164, T5, F16248,

F18244, F16249, F16251, F182, F161, F187,
F17240, F1810, F18254, F1610, F1815, F18250,
F189, F17245, F1812, F17253, F176, F17248,
F181, F18252, F175, F16247, F17246, F17242,
F16245, F16246, F1814, F8, F13, F168, F171,
F174, F17241, F17254, F1811, F2, F16243,

F18253, F1712, F1710, F186, F17250, F16240, F1,
F3, C2, F17255, F185, F14, F163, T6, T12, F16250,

M4, M2

80

2 SVM

F18245, F1615, F17247, F18243, F167, F177, T13,
T11, C14, T7, T9, C16, C4, F5, C7, F1712, T5,

F18248, F17248, F1611, F16248, F14, F11, F161,
F18244, F17240, F1810, F15, F187, M1, M2,

F163, F164, F182, F17243, F176, F18249, F16245,
F1715, F1813, C11, C12, F18252, F1814, F175,

F18251, F174, F17245, F1812, F189, F1815,
F18254, F8, F16254, F183, F18250, F18255,
F17242, F166, F173, F1710, F179, F17241,

F16246, C2, F3, F2, F12, F16251, C1, F17244,
F18240, F188, F171, F17246, F16242, F17249

77

3 RF

F1, C11, T7, F7, F17247, F13, C1, F8, F2, C2, C17,
F1615, T9, F6, C14, C12, T6, C13, C4, F5, C5, T12,
F178, M3, F1611, F11, C10, F12, T11, C18, T5,

F16248, F4, C8, F18243, M4, F16250, T13, M1,
M2, T8, F1812, F186, C6, T10, F3, F165, F17242,
F18246, F177, F1712, F1710, F18250, F18245, C16

55

4 GBDT

F1, T7, C14, F3, F8, M1, C17, T6, C12, M3, F13,
F167, F10, F2, T11, T9, F16250, C2, C5, C16, M2,
F1614, T12, F177, F172, F7, C6, T10, F17242, C18,
C1, C11, F5, F18243, F17244, F16245, T5, M4,

F1713, F12, F181, F14, F6, F17252, F1812,
F17241, C8, F11, F17246, C10, F1712, C13, F164,

F162, F1615, F17247, F176, F15, T8, F16252,
F1815, C7, F189, F184, F18246, F16248

66

Table 5: Performance evaluation of each model on its respective
optimal feature subset.

No. Classifier Accuracy Precision Recall F1-score
1 LR 0.79 0.79 0.79 0.78
2 SVM 0.86 0.88 0.85 0.86
3 RF 0.82 0.83 0.83 0.83
4 GBDT 0.88 0.89 0.87 0.88

Table 6: Accuracy of three feature subsets in each classification
model.

No. LR SVM RF GBDT Average Feature size
1 0.8006 0.8105 0.8291 0.8559 0.8240 69
2 0.8005 0.7987 0.7864 0.8348 0.8051 77
3 0.8096 0.8087 0.7814 0.8479 0.8119 86

Table 7: Classification of molecular of LR.

Molecular subtype Precision Recall F1-score
Luminal A 0.95 0.88 0.91
Luminal B 0.70 0.73 0.71
HER-2 0.67 0.79 0.73
Basal-like 0.94 0.84 0.89

Table 8: Classification of molecular of SVM.

Molecular subtype Precision Recall F1-score
Luminal A 0.97 0.93 0.95
Luminal B 0.74 0.63 0.68
HER-2 0.80 0.87 0.83
Basal-like 0.85 0.97 0.91

Table 9: Classification of molecular of RF.

Molecular subtype Precision Recall F1-score
Luminal A 0.94 0.91 0.92
Luminal B 0.86 0.93 0.89
HER-2 0.85 0.89 0.87
Basal-like 0.72 0.61 0.66

Table 10: Classification of molecular of GBDT.

Molecular subtype Precision Recall F1-score
Luminal A 0.91 0.90 0.90
Luminal B 0.89 0.91 0.90
HER-2 0.83 0.82 0.82
Basal-like 0.87 0.83 0.85

Table 11: Comparison of classification results of each model on
features selected by mmRFE.

Classifier Accuracy Precision Recall F1-score
LR 0.80 0.82 0.81 0.81
SVM 0.85 0.84 0.85 0.84
RF 0.83 0.84 0.84 0.84
GBDT 0.87 0.88 0.87 0.87
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as well as good performance on the imbalance problem of
molecular subtypes.

&e results with different features and classier models are
summarized in Table 12. From the experimental results, we
can see that the experimental effect of the ensemble model
classification using the features selected from multimodel
RFE is better than that of each model using the features
selected from the single model RFE method. &us, it is
proved that themultimodel feature selectionmethod and the
ensemble classifier are reasonable.

5. Conclusion

Breast cancer is a disease with high heterogeneity, and there
are obvious differences in the response of different molecular
subtypes to treatment. &erefore, recognizing molecular
markers from DCE-MRI images directly to distinguish the
four molecular subtypes without invasive biopsy is helpful
for guiding treatment plans for breast cancer in early time. It
will effectively improve the accuracy of breast cancer di-
agnosis and treatment from the breast DCE-MRI imaging
phenotype, which reveals the quantitative imaging charac-
terization mechanism of breast cancer molecular subtypes
diagnosis, and improve the patient’s five-year survival rate
for grasping the treatment time. &e current surgical biopsy
is a pioneering, local tissue sampling. However, the use of
DCE-MRI imaging that determines the molecular subtypes
directly is noninvasive. &is method can support compre-
hensive evaluation of heterogenecity of the lesions and
predict the prognosis in advance.

&is paper introduces an approach for molecular sub-
types recognition and mainly focuses on the feature ex-
traction and selection. In order to capture the precise feature
description, the paper proposes an improved region growth
algorithm to extract the precise edge of lesion based on
radiologists’ annotations. &en the various types of features
of breast cancer phenotypes are extracted including texture,
morphology, kinetic, and statistics features on different time
phases of DCE-MRI. &ese features are not all useful for
molecular subtypes recognition task. &erefore, the paper
pays more attention to finding the best features. An mmRFE
algorithm is proposed to select the feature subset, which is
better than the traditional RFE algorithm based on the
experimental results. Finally, we use the feature filtered by
mmRFE algorithm to validate the performance of different

classifier models as well as the imbalance performance of
molecular subtypes on each model respectively. &e GBDT
obtains the best result on both classification and imbalance
performance.

&e future work will focus on extracting more features
such as clinical features and the boost classification model.
&e problem should be discussed deeply in further work that
strong model can find good features but bad for boost while
weak models may be good in boost but cannot find useful
features. &e approach validated in treatment process will be
another problem that should be also considered in the next
work.
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