organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*S*)-1,2-Dimethyl-1,1,2-triphenyl-2-(4piperidiniomethyl)disilane chloride

Christian Däschlein, Viktoria H. Gessner and Carsten Strohmann*

Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany Correspondence e-mail: mail@carsten-strohmann.de

Received 18 August 2008; accepted 8 September 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; R factor = 0.056; wR factor = 0.150; data-to-parameter ratio = 17.7.

The title compound, $C_{26}H_{34}NSi_2^+\cdot Cl^-$, shows chirality at silicon. Because of its highly selective synthesis with an e.r. of >99:1 by means of a racemic resolution with mandelic acid, the free disilane is of great importance to the chemistry of highly enantiomerically enriched lithiosilanes and their trapping products. $N-H\cdots Cl$ hydrogen bonding is present between the protonated nitrogen atom of the piperidino group and the chloride counter-anion. The silicon–silicon distance as well as silicon–carbon and carbon–nitrogen bond lengths are in the same ranges as in other quaternary, functionalized diand tetrasilanes.

Related literature

For details of lithiosilanes, see: Lickiss & Smith (1995); Sekiguchi *et al.* (2000); Strohmann *et al.* (2001, 2006); Strohmann & Däschlein (2008*a,b*); Tamao & Kawachi (1995). For enantiomerically enriched lithiosilanes, see: Colomer & Corriu (1976); Oestreich *et al.* (2005); Omote *et al.* (2000); Sommer & Mason (1965); Strohmann *et al.* (2007). For the determination of the absolute configuration of the disilane as the mandelic acid adduct, see: Strohmann *et al.* (2002). For related literature on hydrochlorides of amines, see: Farrugia *et al.* (2001).

Experimental

Crystal data

 $\begin{array}{l} C_{26}H_{34}NSi_{2}^{+}\cdot Cl^{-}\\ M_{r}=452.19\\ Orthorhombic, P2_{1}2_{1}2_{1}\\ a=10.120 \ (2) \ \text{\AA}\\ b=13.289 \ (3) \ \text{\AA}\\ c=18.598 \ (4) \ \text{\AA} \end{array}$

 $V = 2501.3 \text{ (9) } \text{\AA}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 173 (2) K 0.30 \times 0.30 \times 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{min} = 0.926, T_{max} = 0.950$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.055 & \text{ (I)}\\ wR(F^2) &= 0.149 & \text{ (I)}\\ S &= 1.05 & \text{ (I)}\\ 4911 \text{ reflections} & \text{ (I)}\\ 277 \text{ parameters} & \text{ (I)}\\ H \text{ atoms treated by a mixture of independent and constrained refinement} & \text{ (I)}\\ \end{split}$$

45451 measured reflections 4911 independent reflections 4808 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.077$

 $\begin{array}{l} \Delta \rho_{max} = 0.41 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.34 \ e \ \mathring{A}^{-3} \\ Absolute structure: Flack (1983), \\ 2128 \ Friedel pairs \\ Flack parameter: 0.08 (10) \end{array}$

Table 1	
Hydrogen-bond geometry (Å	., °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H100···Cl	1.00 (5)	2.05 (5)	3.031 (3)	166 (4)

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Deutsche Forschungsgemeinschaft. CS and VHG also acknowledge the Fonds der Chemischen Industrie and CD thanks the Studienstiftung des Deutschen Volkes for a doctoral scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2191).

References

- Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Colomer, E. & Corriu, R. J. P. (1976). J. Chem. Soc. Chem Commun. 5, 176– 177.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, 0992– 0993.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lickiss, P. D. & Smith, C. M. (1995). Coord. Chem. Rev. 145, 75-124.
- Oestreich, M., Auer, G. & Keller, M. (2005). *Eur. J. Inorg. Chem.* 1, 184–195.
 Omote, M., Tokita, T., Shimizu, Y., Imae, I., Shirakawa, E. & Kawakami, Y. (2000). *J. Organomet. Chem.* 611, 20–25.

Sekiguchi, A., Lee, V. Y. & Nanjo, M. (2000). Coord. Chem. Rev. 210, 11–45. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Sommer, L. H. & Mason, R. J. (1965). J. Am. Chem. Soc. 87, 1619-1620.
- Strohmann, C. & Däschlein, C. (2008a). Chem. Commun. pp. 2791-2793.
- Strohmann, C. & Däschlein, C. (2008b). Organometallics, 27, 2499-2504.
- Strohmann, C., Däschlein, C. & Auer, D. (2006). J. Am. Chem. Soc. 128, 704– 705.
- Strohmann, C., Däschlein, C., Kellert, M. & Auer, D. (2007). Angew. Chem. Int. Ed. 46, 4780–4782.

Strohmann, C., Hörnig, J. & Auer, D. (2002). Chem. Commun. pp. 766–767.
Strohmann, C., Ulbrich, O. & Auer, D. (2001). Eur. J. Inorg. Chem. pp. 1013– 1018

Tamao, K. & Kawachi, A. (1995). Adv. Organomet. Chem. 38, 1-58.

supplementary materials

Acta Cryst. (2008). E64, o1950 [doi:10.1107/S1600536808028808]

(S)-1,2-Dimethyl-1,1,2-triphenyl-2-(4-piperidiniomethyl)disilane chloride

C. Däschlein, V. H. Gessner and C. Strohmann

Comment

Functionalized lithiosilanes (Strohmann *et al.*, 2001; Strohmann *et al.*, 2006; Strohmann & Däschlein, 2008a,b) are versatile reagents in organic and organometallic chemistry, e.g. for the nucleophilic introduction of protecting groups, the synthesis of silyl-substituted transition metal complexes or for silicon-based polymers (Lickiss & Smith, 1995; Sekiguchi *et al.*, 2000; Tamao & Kawachi, 1995). Especially highly enantiomerically enriched lithiosilanes are of great interest due to the increased stability of configuration at the stereogenic silicon center compared to the labile alkyllithium compounds. Yet, as the synthetic pathways to functionalized lithiosilanes are extremly limited, only six highly enantiomerically enriched systems are known until today (Colomer & Corriu, 1976; Oestreich *et al.*, 2005; Omote *et al.*, 2000; Sommer & Mason, 1965; Strohmann *et al.*, 2002; Strohmann *et al.*, 2007). Thereby the Si-Si bond cleavage of aryl substituted disilanes with lithium proved to be a potential method for the preparation of these useful compounds.

(*S*)-1,2-Dimethyl-1,1,2-triphenyl-1-(piperidinomethyl)disilane, (I), is an excellent starting system for the praparation of highly enantiomerically enriched lithiosilanes as it can be synthesised in an e.r. of > 99:1 by means of a racemic resolution with mandelic acid (Strohmann *et al.*, 2002). The reaction with lithium metal results in the selective Si-Si bond cleavage and thus offers a synthetic pathway to highly enantiomerically enriched silicon-chiral di-, tri- and tetrasilanes (Strohmann *et al.*, 2007) and -germanes (Strohmann & Däschlein, 2008b).

Treatment of (I) with HCl yields the title compound, (II), (S)-1,2-Dimethyl-1,1,2-triphenyl-1-(piperidiniummethyl)disilane chloride, as a crystalline solid. The determination of the absolute configuration of the stereogenic silicon center gave the same absolute configuration as the mandelic acid adduct published previously (Strohmann *et al.*, 2002).

The asymmetric unit of (II) contains one molecule of the silicon-chiral disilane. Furthermore, hydrogen bonding between the hydrogen atom of the protonated nitrogen of the piperidino group and the chloride counteranion can be found (Fig. 1). The H···Cl distance (2.05 Å) and the N-H-Cl angle (166.1 °) are in the typical ranges of such hydrogen bonds (Farrugia *et al.*, 2001). With a value of 2.3672 (13) Å, the Si-Si bond length is comparable to other known systems and is slightly larger than the sum of the covalent radii of two silicon atoms (2.33 Å). The silicon-carbon and carbon-nitrogen distances, respectively, are also in the same ranges as in previously published systems. Thereby, the longest silicon-carbon distance can be found between Si1 and C1. Due to the positive charge at the nitrogen in beta-position to Si1, the bond length to C1 is increased to 1.910 (3) Å. The other five Si-C(X) bonds (X = 7, 8, 14, 15, 21) have values between 1.873 (4) and 1.884 (4) Å (average: 1.881 Å) and thus are significantly smaller than the Si1-C1 distance but in very good agreement with the sum of the covalent radii of silicon and carbon (1.88 Å). Considering the Si1-Si2-axis, it is noteworthy to mention that the substituents at the silicon atoms do possess an almost ecliptical arrangement and therefore do not adopt the sterically less hindered staggered conformation.

Experimental

To the enantiomerically pure (*S*)-1,2-Dimethyl-1,2,2-triphenyldisilan-1-(piperidinomethyl)disilane, (I), dissolved in Et_2O , one equivalent of etherical HCl solution was added and stored at room temperature for 24 h. After removal of the solvent, a colourless crystalline solid of (II) remained, suitable for single crystal *x*-ray studies.

¹**H-NMR** (500.1 MHz, CDCl₃): δ = -4.92 (s, 3H; NCSiSiCH₃), -4.80 (s, 3H; NCSiCH₃), 0.95–1.05, 1.55–1.60 (m, 1H each; NCCCH₂), 1.40–1.50 (m, 2H; NCCH₂), 1.95–2.05, 2.05–2.15 (m, 1H each; NCCH₂), 2.22–2.28, 2.30–2.37 (m, 1H each; NCH₂C), 2.70–2.75, 2.80–2.85 (m, 1H each; SiCH₂), 3.03–3.07, 3.12–3.18 (m, 1H each; NCH₂C), 7.15–7.35 (m, 15H; aromat. H).

{¹H}¹³C-NMR (125.8 MHz, CDCl₃): δ = -4.9 (1 C) (NCSiCH₃), -4.8 (1 C) (NCSiSiCH₃), 21.3 (1 C) (NCCCH₂), 22.5, 22.6 (1 C each) (NCCH₂), 49.4 (1 C) (SiCH₂), 55.2, 57.4 (1 C each) (NCH₂C), 128.06, 128.17, 128.37 (2 C each) (all *C*-m), 129.36, 129.50,129.78 (1 C each) (all *C*-p), 134.06, 134.64,134.77 (2 C each) (all *C*-o), 133.74, 133.99,134.46 (1 C each) (all *C*-i).

{¹H}²⁹Si-NMR (99.4 MHz, CDCl₃): δ = -25.3 (1Si) (NCS*i*), -23.5 (1Si) (NCSiS*i*).

Refinement

The H atoms were refined in their ideal geometric positions using the riding model approximation with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and of $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H atoms except atom H100 (bonded to the N atom of the piperidino group) which was refined freely.

Figures

Fig. 1. *ORTEP* plot of the asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the hydrogen bond.

(S)-1,2-Dimethyl-1,1,2-triphenyl-2-(4-piperidiniomethyl)disilane chloride

Crystal data

 $C_{26}H_{34}NSi_2^+ \cdot CI^ M_r = 452.19$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 10.120 (2) Å $F_{000} = 968$ $D_x = 1.201 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 999 reflections $\theta = 1.9-26.0^{\circ}$

b = 13.289 (3) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 18.598 (4) Å	T = 173 (2) K
$V = 2501.3 (9) \text{ Å}^3$	Block, colourless
Z = 4	$0.30 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEX CCD diffractometer	4911 independent reflections
Radiation source: fine-focus sealed tube	4808 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.077$
T = 173(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ω–scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -12 \rightarrow 12$
$T_{\min} = 0.926, \ T_{\max} = 0.950$	$k = -16 \rightarrow 16$
45451 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.0402P)^2 + 1.4067P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.149$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
4911 reflections	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
277 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2128 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.08 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|--|

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl	-0.09614 (10)	0.04149 (6)	0.25243 (5)	0.0361 (2)
Sil	0.28622 (9)	0.21087 (7)	0.20801 (5)	0.0249 (2)
Si2	0.40619 (9)	0.23973 (7)	0.10071 (5)	0.0276 (2)
N1	0.0148 (3)	0.2532 (2)	0.25691 (15)	0.0246 (5)
C3	-0.2128 (4)	0.2953 (3)	0.2978 (2)	0.0346 (8)
H3B	-0.2411	0.2241	0.2961	0.042*
НЗА	-0.2909	0.3378	0.2876	0.042*
C17	0.4393 (5)	0.0299 (3)	-0.0646 (2)	0.0433 (10)
H17	0.5060	0.0075	-0.0968	0.052*
C8	0.3754 (3)	0.2680 (3)	0.28642 (17)	0.0271 (7)
C2	-0.1098 (3)	0.3132 (3)	0.24077 (19)	0.0309 (7)
H2A	-0.0881	0.3858	0.2387	0.037*
H2B	-0.1452	0.2930	0.1933	0.037*
C16	0.4683 (4)	0.1011 (3)	-0.0121 (2)	0.0374 (9)
H16	0.5559	0.1262	-0.0082	0.045*
C6	0.0655 (3)	0.2780 (3)	0.32978 (17)	0.0297 (7)
H6A	0.0922	0.3496	0.3312	0.036*
H6B	0.1446	0.2366	0.3400	0.036*
C1	0.1159 (3)	0.2715 (2)	0.19928 (16)	0.0273 (7)
H1A	0.1290	0.3452	0.1956	0.033*
H1B	0.0773	0.2489	0.1531	0.033*
C11	0.4933 (4)	0.3529 (4)	0.4090 (2)	0.0456 (10)
H11	0.5315	0.3812	0.4510	0.055*
C18	0.3126 (5)	-0.0077 (3)	-0.0696 (2)	0.0435 (10)
H18	0.2926	-0.0565	-0.1054	0.052*
C19	0.2150 (5)	0.0243 (3)	-0.0237 (2)	0.0466 (10)
H19	0.1282	-0.0025	-0.0273	0.056*
C10	0.4387 (4)	0.4145 (3)	0.3574 (2)	0.0386 (9)
H10	0.4416	0.4855	0.3630	0.046*
C21	0.3634 (3)	0.3622 (3)	0.05534 (19)	0.0302 (7)
C24	0.3080 (4)	0.5453 (3)	-0.0126 (2)	0.0411 (9)
H24	0.2899	0.6077	-0.0355	0.049*
C26	0.3724 (4)	0.3723 (3)	-0.0189 (2)	0.0366 (8)
H26	0.3978	0.3157	-0.0469	0.044*
C23	0.2970 (4)	0.5373 (3)	0.0615 (2)	0.0420 (9)
H23	0.2708	0.5938	0.0894	0.050*
C9	0.3793 (4)	0.3723 (3)	0.29742 (19)	0.0314 (7)
H9	0.3400	0.4154	0.2627	0.038*
C14	0.5853 (4)	0.2419 (3)	0.1259 (2)	0.0397 (8)
H14C	0.6392	0.2482	0.0823	0.060*
H14B	0.6081	0.1794	0.1509	0.060*
H14A	0.6024	0.2994	0.1576	0.060*
C7	0.2688 (4)	0.0726 (3)	0.2230 (2)	0.0357 (8)
H7B	0.3567	0.0420	0.2266	0.054*
H7C	0.2209	0.0426	0.1825	0.054*

H7A	0.2198	0.0607	0.2676	0.054*
C4	-0.1613 (4)	0.3193 (3)	0.3725 (2)	0.0394 (9)
H4A	-0.1416	0.3920	0.3762	0.047*
H4B	-0.2293	0.3024	0.4088	0.047*
C22	0.3244 (4)	0.4466 (3)	0.0945 (2)	0.0363 (8)
H22	0.3166	0.4415	0.1452	0.044*
C12	0.4926 (4)	0.2503 (4)	0.3995 (2)	0.0435 (9)
H12	0.5315	0.2080	0.4348	0.052*
C5	-0.0374 (4)	0.2590 (3)	0.38669 (18)	0.0334 (8)
H5A	-0.0012	0.2774	0.4344	0.040*
H5B	-0.0595	0.1864	0.3876	0.040*
C20	0.2446 (4)	0.0968 (3)	0.0282 (2)	0.0368 (9)
H20	0.1770	0.1196	0.0596	0.044*
C15	0.3720 (4)	0.1364 (3)	0.03482 (18)	0.0314 (8)
C13	0.4352 (4)	0.2081 (3)	0.33837 (18)	0.0338 (8)
H13	0.4369	0.1372	0.3321	0.041*
C25	0.3450 (4)	0.4636 (3)	-0.0533 (2)	0.0434 (9)
H25	0.3518	0.4690	-0.1041	0.052*
H100	-0.007 (5)	0.180 (4)	0.254 (3)	0.050 (12)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.0441 (5)	0.0229 (4)	0.0413 (5)	-0.0063 (4)	-0.0004 (4)	-0.0006 (3)
Si1	0.0270 (5)	0.0232 (4)	0.0246 (4)	-0.0006 (4)	0.0003 (4)	-0.0014 (3)
Si2	0.0272 (5)	0.0288 (4)	0.0269 (4)	0.0008 (4)	0.0010 (4)	-0.0027 (4)
N1	0.0219 (13)	0.0218 (13)	0.0300 (13)	-0.0003 (11)	-0.0012 (11)	-0.0007 (11)
C3	0.0275 (17)	0.0338 (18)	0.0425 (19)	0.0043 (15)	-0.0010 (16)	0.0033 (16)
C17	0.059 (3)	0.040 (2)	0.0312 (18)	0.018 (2)	0.0047 (17)	-0.0007 (16)
C8	0.0232 (16)	0.0319 (18)	0.0263 (14)	-0.0005 (13)	0.0004 (13)	-0.0045 (13)
C2	0.0268 (17)	0.0288 (16)	0.0370 (17)	0.0046 (14)	-0.0029 (15)	0.0047 (14)
C16	0.044 (2)	0.0319 (19)	0.036 (2)	0.0022 (16)	0.0021 (17)	0.0010 (15)
C6	0.0299 (18)	0.0297 (17)	0.0296 (15)	-0.0014 (14)	-0.0039 (13)	0.0027 (14)
C1	0.0310 (17)	0.0254 (16)	0.0254 (15)	-0.0010 (13)	0.0006 (13)	0.0002 (12)
C11	0.035 (2)	0.067 (3)	0.034 (2)	0.003 (2)	-0.0007 (17)	-0.0203 (19)
C18	0.066 (3)	0.037 (2)	0.0277 (17)	0.006 (2)	-0.0085 (19)	-0.0083 (15)
C19	0.046 (2)	0.048 (2)	0.046 (2)	0.000 (2)	-0.0119 (19)	-0.0086 (18)
C10	0.030 (2)	0.040 (2)	0.046 (2)	-0.0015 (16)	0.0077 (16)	-0.0142 (17)
C21	0.0263 (18)	0.0330 (17)	0.0314 (17)	-0.0021 (14)	0.0021 (14)	0.0005 (14)
C24	0.038 (2)	0.035 (2)	0.051 (2)	-0.0022 (17)	-0.0056 (17)	0.0141 (18)
C26	0.036 (2)	0.039 (2)	0.0353 (19)	-0.0011 (16)	-0.0011 (16)	-0.0027 (16)
C23	0.044 (2)	0.0252 (17)	0.057 (2)	-0.0022 (17)	0.0085 (19)	0.0011 (17)
C9	0.0306 (19)	0.0304 (17)	0.0333 (17)	-0.0031 (14)	-0.0030 (15)	0.0015 (15)
C14	0.0336 (19)	0.047 (2)	0.0386 (19)	0.0019 (18)	-0.0008 (16)	-0.0016 (17)
C7	0.046 (2)	0.0242 (16)	0.0369 (18)	-0.0006 (16)	0.0047 (16)	0.0003 (14)
C4	0.035 (2)	0.045 (2)	0.0382 (19)	0.0024 (17)	0.0073 (16)	-0.0065 (17)
C22	0.036 (2)	0.0367 (19)	0.0360 (18)	-0.0055 (16)	0.0053 (15)	0.0010 (16)
C12	0.038 (2)	0.061 (3)	0.0323 (18)	0.0150 (19)	-0.0073 (16)	0.0049 (19)

supplementary materials

C5	0.0322 (18)	0.0378 (19)	0.0302 (17)	-0.0004(15)	0.0056 (14)	-0.0009(15)
C20	0.030(2)	0.039(2)	0.0333(19)	0.0032(10)	0.0010(10)	-0.0080(13)
C13	0.037(2)	0.0297(17)	0.0281(17)	0.0024(15)	-0.0028(14)	0.0009 (13)
C13	0.034(2)	0.0348(18)	0.0325(17)	0.0055(10)	-0.0001(14)	0.0002(13)
C25	0.049 (2)	0.044 (2)	0.0368 (19)	-0.0060 (19)	-0.0076 (18)	0.0085 (18)
Geometric param	neters (Å, °)					
Cl—H100		2.05 (5)	C18—H	H18	0.950	0
Si1—C7		1.867 (4)	C19—0	220	1.397	(6)
Si1—C8		1.876 (3)	C19—H	419	0.9500	
Si1—C1		1.910 (3)	C10—0	C9	1.386	(5)
Si1—Si2		2.3672 (13)	C10—H	410	0.950	0
Si2-C14		1.873 (4)	C21—C	226	1.390	(5)
Si2-C15		1.873 (4)	C21—C	222	1.393	(5)
Si2—C21		1.884 (4)	C24—C	225	1.375	(6)
N1—C6		1.486 (4)	C24—C	223	1.388	(6)
N1-C1		1.502 (4)	C24—H	124	0.950	0
N1—C2		1.521 (4)	C26—C	225	1.400	(6)
N1—H100		1.00 (5)	C26—H	126	0.950	0
C3—C2		1.506 (5)	C23—C	222	1.381	(6)
C3—C4		1.518 (5)	С23—Н	123	0.9500	
С3—Н3В		0.9900	С9—Н9		0.9500	
С3—НЗА		0.9900	C14—H14C		0.9800	
C17—C18		1.379 (7)	C14—H14B		0.980	0
C17—C16		1.392 (6)	C14—H	H14A	0.980	0
C17—H17		0.9500	С7—Н	7B	0.980	0
C8—C13		1.391 (5)	С7—Н	7C	0.980	0
С8—С9		1.402 (5)	С7—Н7А		0.980	0
C2—H2A		0.9900	C4—C5		1.511	(5)
C2—H2B		0.9900	C4—H4A		0.990	0
C16—C15		1.389 (5)	C4—H4B		0.9900	
C16—H16		0.9500	C22—H	122	0.950	0
C6—C5		1.506 (5)	C12—0	C13	1.395	(5)
С6—Н6А		0.9900	C12—H	412	0.950	0
С6—Н6В		0.9900	С5—Н	5A	0.990	0
C1—H1A		0.9900	С5—Н	5B	0.990	0
C1—H1B		0.9900	C20—0	C15	1.398	(5)
C11—C12		1.374 (7)	C20—H	120	0.950	0
C11-C10		1.377 (6)	C13—H	413	0.950	0
C11—H11		0.9500	C25—H25		0.9500	
C18—C19		1.374 (6)	N1—C	l	3.031	(3)
C7—Si1—C8		109.16 (17)	C11—0	С10—Н10	120.2	
C7—Si1—C1		110.05 (17)	С9—С	10—H10	120.2	
C8—Si1—C1		109.24 (14)	C26—0	C21—C22	117.4	(3)
C7—Si1—Si2		109.48 (13)	C26—0	C21—Si2	120.9	(3)
C8—Si1—Si2		110.06 (11)	C22—0	C21—Si2	121.7	(3)
C1—Si1—Si2		108.84 (10)	C25—C	C24—C23	120.5	(4)
C14—Si2—C15		110.72 (17)	C25—C	C24—H24	119.7	

C14—Si2—C21	108.73 (17)	C23—C24—H24	119.7
C15—Si2—C21	107.34 (15)	C21—C26—C25	121.6 (4)
C14—Si2—Si1	106.77 (13)	C21—C26—H26	119.2
C15—Si2—Si1	109.76 (12)	С25—С26—Н26	119.2
C21—Si2—Si1	113.55 (12)	C22—C23—C24	119.4 (4)
C6—N1—C1	112.3 (2)	С22—С23—Н23	120.3
C6—N1—C2	110.5 (3)	С24—С23—Н23	120.3
C1—N1—C2	109.8 (2)	C10—C9—C8	122.0 (3)
C6—N1—H100	110 (3)	С10—С9—Н9	119.0
C1—N1—H100	105 (3)	С8—С9—Н9	119.0
C2—N1—H100	109 (3)	Si2—C14—H14C	109.5
C2—C3—C4	112.0 (3)	Si2—C14—H14B	109.5
С2—С3—Н3В	109.2	H14CC14H14B	109.5
С4—С3—Н3В	109.2	Si2—C14—H14A	109.5
С2—С3—НЗА	109.2	H14CC14H14A	109.5
С4—С3—НЗА	109.2	H14B—C14—H14A	109.5
НЗВ—СЗ—НЗА	107.9	Si1—C7—H7B	109.5
C18—C17—C16	119.4 (4)	Sil—C7—H7C	109.5
С18—С17—Н17	120.3	H7B—C7—H7C	109.5
С16—С17—Н17	120.3	Si1—C7—H7A	109.5
C13—C8—C9	116.9 (3)	Н7В—С7—Н7А	109.5
C13—C8—Si1	121.2 (3)	Н7С—С7—Н7А	109.5
C9—C8—Si1	121.8 (3)	C5—C4—C3	109.5 (3)
C3—C2—N1	110.6 (3)	С5—С4—Н4А	109.8
C3—C2—H2A	109.5	C3—C4—H4A	109.8
N1—C2—H2A	109.5	C5—C4—H4B	109.8
C3—C2—H2B	109.5	C3—C4—H4B	109.8
N1—C2—H2B	109.5	H4A—C4—H4B	108.2
H2A—C2—H2B	108.1	C23—C22—C21	121.9 (4)
C15-C16-C17	121.5 (4)	С23—С22—Н22	119.1
C15—C16—H16	119.3	C21—C22—H22	119.1
С17—С16—Н16	119.3	C11—C12—C13	120.4 (4)
N1—C6—C5	111.4 (3)	C11—C12—H12	119.8
N1—C6—H6A	109.3	C13—C12—H12	119.8
С5—С6—Н6А	109.3	C6—C5—C4	111.2 (3)
N1—C6—H6B	109.3	С6—С5—Н5А	109.4
С5—С6—Н6В	109.3	С4—С5—Н5А	109.4
H6A—C6—H6B	108.0	C6—C5—H5B	109.4
N1—C1—Si1	119.1 (2)	C4—C5—H5B	109.4
N1—C1—H1A	107.5	H5A—C5—H5B	108.0
Si1—C1—H1A	107.5	C19—C20—C15	121.2 (4)
N1—C1—H1B	107.5	С19—С20—Н20	119.4
Si1—C1—H1B	107.5	С15—С20—Н20	119.4
H1A—C1—H1B	107.0	C16—C15—C20	117.7 (3)
C12—C11—C10	119.9 (4)	C16—C15—Si2	121.9 (3)
C12—C11—H11	120.1	C20—C15—Si2	120.3 (3)
C10—C11—H11	120.1	C8—C13—C12	121.1 (4)
C19—C18—C17	121.0 (4)	C8—C13—H13	119.4
C19—C18—H18	119.5	C12-C13-H13	119.4

supplementary materials

C17—C18—H18 C18—C19—C20 C18—C19—H19 C20—C19—H19 C11—C10—C9	119.5 119.3 (4) 120.4 120.4 119.6 (4)	C24— C24— C26— N1—F	C25—C26 C25—H25 C25—H25 H100—C1		119.1 (4) 120.4 120.4 166.1 (41)
Hydrogen-bond geometry (Å, °)					
<i>D</i> —Н··· <i>A</i> N1—H100···Cl	D- 1.0	—H 00 (5)	H…A 2.05 (5)	<i>D</i> … <i>A</i> 3.031 (3)	<i>D</i> —Н··· <i>A</i> 166 (4)

Fig. 1