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Abstract: Antimicrobial resistance (AMR) is the major issue posing a serious global health threat.
Low- and middle-income countries are likely to be the most affected, both in terms of impact on
public health and economic burden. Recent studies highlighted the role of resistance networks on the
transmission of AMR organisms, with this network being driven by complex interactions between
clinical (e.g., human health, animal husbandry and veterinary medicine) and other components,
including environmental factors (e.g., persistence of AMR in wastewater). Many studies have
highlighted the role of wastewater as a significant environmental reservoir of AMR as it represents
an ideal environment for AMR bacteria (ARB) and antimicrobial resistant genes (ARGs) to persist.
Although the treatment process can help in removing or reducing the ARB load, it has limited impact
on ARGs. ARGs are not degradable; therefore, they can be spread among microbial communities
in the environment through horizontal gene transfer, which is the main resistance mechanism in
most Gram-negative bacteria. Here we analysed the recent literature to highlight the contribution
of wastewater to the emergence, persistence and transmission of AMR under different settings,
particularly those associated with mass gathering events (e.g., Hajj and Kumbh Mela).
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1. Introduction

1.1. The Current Status of AMR as a Major Global Health Challenge

Antibiotics are one of the greatest tools of medicine. However, since the development of
fluoroquinolones in early 1970, no new major groups of antibacterial drugs have been developed [1].
This paucity in development is accompanied by an increasing threat of antimicrobial resistant (AMR)
organisms [1,2]. AMR is the major issue posing a threat to public health, with many reports warning of
the significant risk of a post-antimicrobial era in which common infections can kill [1,3–5]. Recently,
the World Health Organization (WHO) Global Antimicrobial Surveillance System (GLASS) reported
increased levels of resistance in a number of serious and common bacterial infections in many regions
of the world [6]. Currently, resistant infections result in 700,000 deaths every year, but the global
resistance-associated mortality is estimated to top 10 million lives per year in 2050 [2]. The European
Center for Disease Prevention and Control (ECDC) and the US Centers for Disease Control and
Prevention (CDC) have reported that AMR infections resulted in 25,000 and 23,000 deaths every year in
high-income countries in Europe and the USA, respectively [7]. In low- and middle-income countries,
AMR infections have been responsible for the deaths of 58,000 children and 38,000 adults in India and
Thailand, respectively [7].

1.2. WHO AMR Priority Pathogens List

Recently, the WHO identified 12 bacterial species and their accompanying AMR profiles that
pose the greatest threat to human health [8]. This list mainly includes Gram-negative bacteria and the
most common etiologic agents associated with hospital- and/or community-acquired infections. These
AMR bacteria have been divided into three categories: critical, high and medium priority, according
to their impact on human health and the urgency for the development of new antimicrobial drugs to
treat resistant infections. The critical category includes Acinetobacter baumannii (carbapenem-resistant),
Pseudomonas aeruginosa (carbapenem-resistant) and various Enterobacteriaceae members, including Klebsiella
spp., Escherichia coli, Serratia spp., and Proteus spp. (carbapenem-resistant and extended-spectrum
ß-lactamase (ESBL)-producing), which are associated with severe and, often deadly, infections,
including bloodstream infections and pneumonia. The high-priority category includes Enterococcus
faecium (vancomycin-resistant); Staphylococcus aureus (methicillin-resistant, vancomycin-intermediate and
resistant); Helicobacter pylori (clarithromycin-resistant); Campylobacter spp. (fluoroquinolone-resistant);
Salmonella spp. (fluoroquinolone-resistant) and Neisseria gonorrhoeae (cephalosporin-resistant and
fluoroquinolone-resistant), which are causative agents associated with more common infections, such as
general infections, gastroenteritis and gonorrhoea. The medium-priority category includes Streptococcus
pneumoniae (penicillin-non-susceptible), Haemophilus influenzae (ampicillin-resistant) and Shigella spp.
(fluoroquinolone-resistant).

1.3. The Main Drivers of AMR Transmission

AMR is driven by complex interacting factors that could be described as a resistance network [9].
This network forms links between clinical factors (e.g., human health, animal husbandry and veterinary
medicine) and other components, including human activities (e.g., travel [10,11], human displacement
and over and misuse of antimicrobial drugs [12–14]) and environmental factors (e.g., persistence of
antimicrobial drugs and AMR organisms in soil and water). For example, the variations in AMR
patterns among different regions of the world have been associated with differing rates of consumption
of, and exposure to, antimicrobial drugs [2]. This is alarming, with the data available on AMR
transmission suggesting increasing consumption of antibiotics in humans during the past two decades,
primarily in low- and middle-income countries [15]. The selective pressure associated with the exposure
to antimicrobials in healthcare, agriculture and the environment enhances the development of new
AMR variants and novel resistance mechanisms [16]. Other factors, including lack of access to clean
water sanitation and healthcare service, poor personal hygiene, failure of AMR detection and treatment
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and poor vaccination coverage [17] in the community, have been shown to also contribute to the global
transmission of AMR [18].

1.4. The Environmental Reservoir of AMR from Water and Sewage

Transmission of AMR can spread between people, animals and the environment via a number of
different routes [19]. The environment acts as a bridge for different compartments, between animals to
compost to soil to water to sediments to sewage [20]. While the environment acts as the reservoir, it
also works simultaneously to mix mobile genetic elements (MGEs) that interact and diffuse into other
parts or into human and animal hosts [19,21,22].

Many studies have highlighted the impact of the diverse nature of the reservoirs of AMR genes
(ARGs) on promoting the emergence and transmission of AMR organisms [23]. AMR is ancient and
ubiquitous in the environment, with many lines of evidence suggesting that transfer of ARGs occurs
among different environments (e.g., from environmental to pathogenic bacteria) [24,25]. Although it
has been well-established that the genetic transfer of ARGs is likely to occur between closely-related
species, recent studies have suggested that this transfer can also occur among phylogenetically distant
species and even among organisms belonging to distinct phyla [26], adding further challenges in the
continuous evolution of new variants of AMR organisms. High concentrations of antibiotic residues,
ARGs and AMR organisms have been reported from environmental samples recovered from hospital
and urban and treated wastewaters and soils treated with animal manure [27–29].

Many studies have highlighted the role of sewage as a major environmental reservoir of AMR, as
it represents an ideal environment for AMR microorganisms and ARGs to persist [30–32]. The situation
of ARGs is more complex, because they are not degradable and can be spread among microbial
communities in the environment through horizontal gene transfer, which is the main resistance
mechanism in Enterobacteriaceae [33,34].

In this study, we aimed to systematically review the literature to identify the role of wastewater in
promoting the transmission of AMR and to characterise the key factors implicated in the persistence
of ARB and ARGs in this environmental component. We extended the analysis to characterise AMR
transmission in environmental samples associated with key religious mass gathering events—Kumbh
Mela and Hajj in India and Saudi Arabia, respectively.

2. Materials and Methods

2.1. Search Strategy

Searches were systematically carried out in four databases: Embase, Medline, PubMed and Web
of Science Core Collection to obtain all articles that reported AMR in sewage samples. The key terms
“antimicrobial resistance” OR “AMR” in combination with “sewage” were used to obtain the articles
available between 2009–2019, with the search conducted on 21st June 2019. EndNote X7.5 (Thomson
Reuters) was used for bibliography management. The duplicates were removed, and initial screening
was performed by assessing titles, abstracts and keywords with an explicit focus on the use of molecular
approaches, including whole genome sequencing and metagenomics, in detecting AMR. The search
was extended to include special settings, such as mass gatherings at Hajj and Kumbh Mela.

2.2. Selection Criteria

Articles were included if they were written in English and included an observational study design
where sewage samples were investigated molecularly for the detection of AMR. We excluded articles if
they were written in languages other than English, reviews, opinion articles and editorials. Potential
articles were evaluated on the inclusion criteria by retrieving the full text and were subsequently
included in the analysis (Figure 1).
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Figure 1. Flow-chart of literature search.

2.3. Data Analysis

1461 articles were obtained in the initial literature search and five articles found by hand searches,
which included 809 duplicates. After removing the duplicates, the first screening removed non-English
records and irrelevant abstracts, resulting in 251 remaining articles. Full-text was retrieved to screen
the articles on the selection criteria, and a total of 63 papers were eligible for inclusion in the analysis
(Figure 1). All papers were dissected to summarise the key information and findings, including year
of publication, country study site, source and type of wastewater, abundance of ARGs and AMR
microbial communities and methods used for AMR detection.

3. Results

3.1. Dissemination of Antimicrobial Resistance in Wastewater

From the 1466 articles that were identified, 63 studies conducted on wastewater samples between
2004 and 2018 (published in the period 2009–2019) were included in the data analysis. The analysed
studies documenting the detection of ARBs and/or ARGs in different types of wastewaters are listed in
Table 1. The source and type of wastewater samples investigated and the key findings highlighted by
these studies are summarised (Table 1). Detailed information on location and time of sample collection,
structure of ARBs populations and/or ARGs detected and the technology used in AMR characterisation
are provided in Table S1.
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Table 1. Overview of the studies included in this systematic review. AMR: antimicrobial resistant, ARG: antimicrobial resistant genes, ARB: antimicrobial resistant
bacteria and MGE: mobile genetic elements.

No. References Source of Samples Types of Investigated Samples Key Findings

1 Nahar et al., 2019 [35] Sewage and
environmental water

Sewage, river, pond and
swimming pool water

AMR bacteria of E. coli and Salmonella spp. were detected in all
environmental samples.

2 Qin et al., 2019 [36] Sewage Hospital sewage
Novel species (Acinetobacter cumulans) containing ARGs
conferring resistance to carbapenems, cephalosporin or
aminoglycoside were identified.

3 Haberecht et al., 2019 [37] Sewage and
environmental waters

Sewage water, wastewater
treatment plant (WWTP)
(influent and effluent) and
surface water (ambient water)

Increased abundance of ARB and multidrug resistant (MDR)
strains were detected in influent compared to effluent
wastewater.
Extended-spectrum β-lactamases (ESBL)-producing E. coli
strains have been identified in environmental surface water.

4 Sekizuka et al., 2018 [38] Sewage WWTP effluent
Carbapenem-producing strain of K. pneumonia carrying blaKPC-2
was detected. This novel resistant strain rarely detected in
clinical settings in Japan.

5 Cahill et al., 2019 [39]
Sewage and
environmental
wastewater

Hospital and municipal
wastewater (pre- and
post-hospital)

Higher rates of carbapenemase-producing Enterobacteriaceae
(CPE) have been detected in hospital effluent.

6 Niestepski et al., 2019 [40]
Sewage,
environmental water
and human faeces

Hospital wastewater, WWTP
(influent and effluent) and
human faeces

The highest drug-resistance levels were observed in the strains
isolated from influent and effluent WWTP water.
Bacteria of Bacteroides fragilis group (BFG) isolated from the
WWTPs characterised by higher resistant profiles than those that
have been recovered from human and rat faeces.

7 Hendrieksen et al., 2019 [41] Sewage Domestic sewage

Clinically relevant ARGs associated with resistance to
macrolides, tetracycline, aminoglycoside, beta-lactams and
sulfonamides were identified.
The abundance of ARGs were higher in samples collected from
low-income compared to high-income countries.

8 Khan et al., 2019 [42] Sewage and
environmental waters

Hospital wastewater, WWTP
samples and downstream water

β-lactamase genes, including blaIMP−1, blaIMP−2 and blaOXA−23,
were detected only in hospital sewage, while blaOXA−48,
blaCTX−M−8 and blaSFC−1, blaVIM−1 and blaVIM−13 were only
detected in downstream river water but not in the WWTP.
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Table 1. Cont.

No. References Source of Samples Types of Investigated Samples Key Findings

9 Tokajian et al., 2018 [43] Sewage and
environmental waters

Refugee camp sewage water
and rivers effluent

Higher rates of AMR E. coli isolates, including ESBL-producing
strains, and those which showed resistance to different
antimicrobial drugs, including aminoglycosides,
fluoroquinolones and trimethoprim/sulfamethosazole, were
detected in samples from refugee camps.

10 Parnanen et al., 2019 [44] Sewage Influent and effluent WWTPs
samples from different countries

Significantly higher rates of ARGs were identified in effluent
samples from low-income compared to high-income countries.

11 Bougnom et al., 2019 [45] Sewage
Urban wastewater for
agriculture (three canals with
different settings)

Higher rates of ARG that confer resistance to 11 major
antimicrobial drug groups, including aminoglycoside,
tetracycline, beta-lactams and macrolides, were detected in
urban wastewater.
There was difference in the composition of ARGs associated with
ESBL within city water from three canals that received water
from different environments, including hospitals.

12 Gouliouris et al., 2019 [46] Sewage
Municipal wastewater
(untreated and treated) and
hospital sewage

Higher rates of vancomycin and ampicillin-resistant E. faecium
closely related to hospital isolates have been detected in
untreated wastewater plants receiving directly from hospital
sewage.

13 Iweriebor et al., 2015 [47] Sewage Municipal and hospital
wastewater

Ninety-one percent and 100% of the Enterococcus spp. (E. faecalis
and E. durans) isolated from the hospital wastewater and final
effluent wastewater, respectively, were resistant to vancomycin
and erythromycin.

14 Guo et al., 2017 [48] Sewage
Aerobic-activated sludge (AAS)
and an aerobically digested
sludge (ADS)

Although MGEs, including plasmids; transposons; integrons
(e.g., intI1) and insertion sequences (e.g., ISSsp4, ISMsa21 and
ISMba16) were abundant in both the activated and digested
sludge. However, distinct microbial populations were associated
with the two sledge samples.

15 Wang JL, et al., 2015 [49] Sewage Pharmaceutical WTP (all stages
of processing)

The abundance of clinically relevant ARGs, including sul1, sul2,
tetO, tetT, tetW and tetM, remained consistently higher
throughout the processing stages and discharged into the
environment.
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Table 1. Cont.

No. References Source of Samples Types of Investigated Samples Key Findings

16 Conte D et al., 2017 [50] Sewage and
environmental waters

Hospital effluent, sanitary
effluent, different sites within
WWTP and upstream and
downstream river water

ESBL-producing K. pneumonia and E. coli isolates were higher in
hospital effluent and WWTP and river samples, respectively.
Quinolone-resistant isolates were identified in hospital effluent,
sanitary effluent, outflow sewage and surface water samples.
MDR bacteria were detected in the hospital effluent and river
waters.

17 Baumlisberger et al., 2015 [51] Sewage Up- and downstream
wastewater from nursing home

No obvious difference in ARG and MGE abundances were
detected between up- and downstream samples.

18 Adefisoye et al., 2016 [52] Sewage Final effluents of WWTP

MDR E coli isolates associated with neonatal meningitis;
intestinal (enterotoxigenic E. coli (ETEC), enteropathogenic E. coli
(EPEC) and enteroaggregative E. coli (EAEC)) and ex-intestinal
(UPEC) were identified.

19 Suzuki et al., 2015 [53] Sewage and
environmental waters

Effluents of WWTP and surface
water

High levels of ARGs associated with resistance to
sulfamethosazole and oxytetracycline were detected in
environmental surface water.

20 Froes AM et al., 2016 [54] Sewage Hospital’s wastewater
Diverse ARGs of serine β-lactamases, including uncommon β

lactamase genes blaPER, blaVEB and blaGES, were detected in
hospital’s wastewater.

21 Laht M et al., 2014 [55] Sewage WWTP

High levels of ARGs associated with resistance to tetracycline,
sulfonamide and β-lactam were detected in all stages in WWTP
wastewater.
No difference in ARGs abundance was identified after the
purification process.

22 Walsh et al., 2011 [56] Sewage and
environmental water

Seepage water, public tap water
and control samples: sewage
effluent samples from Wales

blaNDM-1-producing bacteria were isolated from 17% (12 out 171)
and 4% (2 out 50) of seepage and tap water samples, respectively.
The detected strains included 11 species in which blaNDM-1 had
not previously been reported (e.g., Shigella boydii and Vibrio
cholerae).

23 Zhang T et al., 2011 [57] Sewage Activated sludge of WWTP

Novel plasmids carrying ARGs associated with tetracycline,
aminoglycoside and β-lactam resistance were identified.
ARGs associated with resistance to tetracycline, macrolide and
MDR were highly enriched in the activated sludge.
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Table 1. Cont.

No. References Source of Samples Types of Investigated Samples Key Findings

24 Chagas TP et al., 2011 [58] Sewage

Influent, clarifier tank effluent
and chlorine tank effluent from
hospital STP (sewage treatment
plant)

Multiresistant and ESBL-producing bacteria (high resistant rates
to amikacin, trimethoprim/sulphametoxazole and cefalothin)
were identified in the chlorine contact tank effluent.

25 Szczepanowski et al., 2009 [59] Sewage Activated sludge samples and
final effluent of WWTP

Clinically relevant ARGs associated with resistance to several
antimicrobial drugs, including aminoglycoside and β-lactam,
were identified in activated sludge and effluent wastewater.

26 Li D et al., 2010 [60]
Sewage and
environmental waste
water

Wastewater, river water-up
(RWU) and -downstream (RWD)
associated with oxytetracycline
production WWTP

High concentrations of oxytetracycline were identified in
wastewater and in river water downstream but not in upstream
waters.
MDR phenotypes isolates were identified in the WW and RWD
and less frequent in RWU.

27 Zhang H et al., 2019 [61] Sewage Samples from 18 WWTPs
Activated sludge was the main reservoir of ARGs associated
with resistance to sulfonamide (sul1 and sul2) and tetracycline
(tetW, tetX and tetQ).

28 Li, B et al., 2015 [62]
Sewage,
environmental water
and faecal samples

Samples from AAS and ADS
and different environmental
waters and faecal samples
(human, chicken and pig)

High level of ARGs, including those associated with MDR, and
resistance to bacitracin; tetracycline; β-lactam; macrolide,
lincosamide and streptogramin (MLS); aminoglycoside;
quinolone and sulphonamide were detected in all samples.

29 Hembach et al., 2017 [63] Sewage Influent and effluent water from
seven WWTPs

mcr-1 (associated with resistance to colistin) was detected in
influent samples of all seven WWTPs and some of effluent
waters (i.e., it was not eliminated during wastewater treatment
reaching the aquatic environment).
AMR strains of A. baumannii, E. coli and K. pneumonia were
detected in both influent and effluents samples.

30 Igbinosa IH et al., 2012 [64] Sewage WWTP

AMR Aeromonas spp. isolates resistant to penicillin, oxacillin,
ampicillin and vancomycin were identified.
Class A pse1 β-lactamase, class 1 integron and the blaTEM gene
were detected in 20.8%, 20.8% and 8.3% of the identified isolates,
respectively.
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Table 1. Cont.

No. References Source of Samples Types of Investigated Samples Key Findings

31 Igbinosa EO et al., 2011 [65] Sewage Final effluents WWTP

Vibrio spp. strains (including V. parahaemolyticus, V. fluvialis and
V. vulnificus) resistant to erythromycin, chloramphenicol,
nitrofurantoin, cefuroxime and cephalothin were detected.
SXT antibiotic resistance gene cluster (floR, strB, sul2, dfrA18 and
dfrA1) were also identified in % of these strains.

32 Johnning A, et. Al 2015 [66] Sewage and
environmental water

Up and downstream WWTP
and from industrially polluted
sites and sediment samples
from a pristine lake

Mutations in chromosomal genes gyrA and parC, associated with
resistance to fluoroquinolone, were detected in E. coli
communities.
High abundance of mutations was correlated with the
concentration of fluoroquinolones in investigated samples (i.e.,
samples polluted with high concentrations of fluoroquinolone).

33 Sahlström L et al., 2009 [67] Sewage and clinical
samples

WWTP and isolates from
humans and chickens

Vancomycin-resistant isolates of Enterococcus spp., including E.
faecium, E. hirae and E. durans, were detected.

34 Araújo C et al., 2010 [68] Sewage
Sludge and sewage of urban
and poultry slaughter house
WWTP

Vancomycin-resistant isolates of Enterococcus spp., including E.
faecium, E. gallinarum and E. casseliflavus, which were also
resistant to varied groups of antimicrobial drugs (kanamycin,
tetracycline, erythromycin, ciprofloxacin, ampicillin,
streptomycin and gentamicin), were detected.

35 Soge O et al., 2009 [69] Sewage and
environmental water Water, soil and sewage

The majority of Clostridium perfringens strains recovered from
water samples were found to carry more than one ARG encoding
resistance to tetracycline and erythromycin.

36 Zhang X et al., 2009 [70] Sewage WWTP
Enterobacteriaceae strains carrying class 1 integrons and ARGs
associated with resistance to trimethoprim (dfr17) and
streptomycin (aadA5) were detected.

37 Odjadjare EO et al., 2010 [71] Sewage

WWTP final effluent, discharge
point and upstream and
downstream of the discharge
point

Most of the Listeria spp. isolates recovered from final effluents
were MDR strains.

38 Okoh AI et al., 2010 [72] Sewage WWTP final effluents

MDR Vibrio spp. strains that showed resistance to varied
antimicrobial drugs (including sulfamethoxazole, trimethoprim,
cotrimoxazole, chloramphenicol, streptomycin, ampicillin,
tetracycline, nalidixic acid and gentamicin) were detected.
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Table 1. Cont.

No. References Source of Samples Types of Investigated Samples Key Findings

39 Yang H et al., 2010 [73] Sewage and
environmental waters Soil, water and faecal samples

Higher copies of tetracycline ARGs and higher abundance of
tetracycline-resistant bacteria were identified in farm (cattle),
compared to nonfarm, wastewater samples.

40 Garcia-Armisen T et al., 2011
[74] Environmental water Sewage-contaminated rivers

Most of the ARB detected in the Zenne river, downstream of
Brussels, were MDR strains.
The abundance of AMR communities (heterotrophic and faecal
bacteria) was not correlated with the level of contamination of
river water with sewage.

41 Colomer-Lluch M et al., 2011
[75]

Sewage and
environmental water Urban sewage and river water

β-lactamase genes (blaTEM and blaCTX-M9) and one encoding
penicillin-binding protein (mecA) were detected in the DNA
phages recovered from all the samples.

42 Fuentefria DB et al., 2011 [76] Sewage and
environmental water

Hospital wastewater and
superficial water

Genetically distinct populations of AMR Pseudomonas aeruginosa
were detected in these different environments (hospital
wastewater and superficial water that received this wastewater
discharge).

43 Gaze WH et al., 2011 [77] Sewage Industrial waste, sewage sludge
and pig slurry

Higher prevalence of class 1 integrons was detected in bacteria
recovered from sewage sludge and pig slurry (exposed to
antibiotic residues and detergents) compared to agricultural soils
to which these waste products are amended.
It has been estimated that ~1019 bacteria carrying class 1
integrons enter the United Kingdom environment by disposal of
sewage sludge each year.

44 Ma L et al., 2011 [78] Sewage WWTP

The abundance of bacteria (E. coli, Klebsiella spp. and Aeromonas
veronii) carrying class I integronase gene intI1 were higher in
effluent compared to influent wastewater.
intI1 was detected in 20.4%, 30.9% and 38.9% of bacteria
recovered from influent, activated sludge and effluent
wastewater, respectively.
This study suggested a role of activated sludge (characterized by
high biomass and biodiversity) in developing AMR through the
dissemination of integrons.
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Table 1. Cont.

No. References Source of Samples Types of Investigated Samples Key Findings

45 Mokracka J et al., 2011 [79] Sewage WWTP

Quinolone- and fluoroquinolone-resistant strains constituted
56% and 50.4% of recovered integron-bearing E. coli strains
(including diarrheagenic and extraintestinal strains carrying
virulence traits), respectively.
Virulent extraintestinal strains constituted ~50% of all isolates
and were detected in samples recovered from all wastewater
treatment stages, including final effluent.

46 Amaya E et al., 2012 [80]
Sewage and
environmental waste
water

Hospital wastewater and well
waters

High levels of MDR E. coli isolates were recovered from samples
collected from both hospital wastewaters and environmental
well water.
E. coli strains harbouring blaCTX-M1 and blaCTX-M9 were
predominated in samples collected from wells and hospital
wastewater, respectively.

47 Mokracka J et al., 2012 [81] Sewage Municipal WWTP

MDR Enterobacteriaceae strains carrying class 1 and class 2
integrons (12.1%; 221 out of 1832) were identified in different
stages of a municipal wastewater treatment plant (61.5%, 12.7%
and 25.8% of ARB were originated from raw sewage, aeration
tank and final effluent, respectively).
The abundance of ARGs and MDR bacteria, particularly the level
of ARG diversity and B-lactamase-producers, were higher in
final effluent samples.

48 Splindler A et al., 2012 [82] Sewage Untreated hospital effluents
Half of Pseudomonas spp. isolates recovered from untreated
hospital effluent wastewater were MDR strains, while 41.9% (52
out of 124) of the isolates were found to carry intlI.

49 Gundogdu, A. et al., 2012 [83] Sewage Untreated hospital wastewaters
and WWTP

High level of ESBL-producing E. coli isolates were detected in
untreated hospital wastewaters (blaSHV), with distinct genotypes
(blaCTX-M) associated with the samples recovered from WWTP.

50 Zarfel, G et al., 2013 [84] Sewage and clinical
samples

Sewage and human urinary
tract infection samples

ESBL-producing bacteria carrying blaCTX-M were predominated
in both sewage sludge (blaCTX-M-15) and UTI (blaCTX-M-1)
samples.
The study suggested the occurrence of a genetic exchange
between the ESBL-resistant E. coli populations from human
infections and those present in sewage sludge.
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Table 1. Cont.

No. References Source of Samples Types of Investigated Samples Key Findings

51 Colomer-Lluch M et al., 2013
[85]

Sewage and
environmental water Sewage and river water samples

Quinolone-resistant E. coli strains of clinically relevant ST69 and
ST131 (carrying virulence traits) predominated in samples
recovered from urban wastewater and both river and
wastewaters, respectively.
Similar virulence and macro-restriction profiles were identified
in environmental and human isolates of ST131.

52 Sadowy E et al., 2014 [86] Sewage and
environmental water

Wastewater, riverine estuary
and anthropogenically impacted
marine catchment basin

AMR isolates of Enterococcus spp., especially fluoroquinolone-
and aminoglycoside-resistant E. faecium that shared virulence
determinants and ST similar to nosocomial high-risk
enterococcal clonal complexes (HiRECC), were detected.

53 Gao P et al., 2015 [87] Sewage WWTP

Positive correlations were observed between the occurrence of
heavy metals (e.g., zinc and lead and ereB, mefA&E and ermB)
and antibacterial residues (e.g., triclosan with ereA, ereB, mefA&E
and ermB) in urban wastewaters and the abundance of
erythromycin-resistant genes.

54 Nishiyama M et al., 2015 [88] Sewage and
environmental water

Sewage and urban river water
samples

vanC-type vancomycin-resistant E. faecium and E. faecalis, which
are the major types of enterococci in humans, were detected in
both sewage and urban river water samples.

55 Zhang S et al., 2015 [89] Sewage WWTP

Gram-negative and -positive isolates dominated WWTP influent
and effluent samples, respectively.
The frequency of detection of tetracycline-, sulphonamide-,
streptomycin- and β-lactam-resistance genes (except sulA and
blaCTX-M) were higher in ARB from influent compared to effluent
samples.
The abundances of ARGs in activated sludge were higher in
aerobic compartments than in anoxic ones.

56 Simo Tchuinte PL et al., [90] Sewage Hospital effluent and sludge

Novel class 3 integrons with oxacillinase gene cassette, including
aminoglycoside and β-lactam-resistant genes (blaOXA-10,
blaOXA-368 or blaOXA-2), were identified in Acinetobacter johnsonii,
Aeromonas allosaccharophila and Citrobacter freundii, which were
recovered from hospital effluent samples.
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Table 1. Cont.

No. References Source of Samples Types of Investigated
Samples Key Findings

57 Young S et al., 2016 [91] Sewage and
environment water

Water and sediment
samples from sewage
spill site

Nosocomial pathogen; vancomycin-resistant E. faecium (harbouring vanA associated
with a high resistance level) were isolated from water and sediment for up to 3 days
after a sewage spill. vanA gene were found to persist for an additional week within
these environments.
Culturable levels of enterococci in water exceeded recreational water guidelines for
2 weeks following the spill, declining about five orders of magnitude in sediments and
two orders of magnitude in the water column over 6 weeks.

58 Lee J et al., 2017 [92] Sewage

Food waste-recycling
wastewater (FRW),
manure and sewage
sludge

The abundance of ARGs was greatest in manure, followed by sewage sludge and FRW.
However, different patterns in the diversity and mechanisms of ARGs were identified.
ARG associated with β-lactam resistance were higher in the FRW, and
sulfonamides-resistant genes are higher in sludge. Total ARGs is associated with class 1
integron only in manure and sludge.

59 An XL et al., 2018 [93] Sewage
Influent, activated
sludge and effluents of
urban WWTP

High concentration of class 1 integron gene cassette (including trimethoprim,
aminoglycoside and beta-lactam resistance genes) were identified in activated sludge.

60 Haller L et al., 2018 [94] Sewage Hospital effluents MDR bacteria belonging to Enterobacteriaceae and other species, including ESBL- and
carbapenemase-producers, were identified.

61 Galler H et al.,2018 [95] Sewage Activated sludge

Clinically relevant ARBs, including ESBL-Enterobacteriaceae, MRSA and
vancomycin-resistant Enterococcus spp., were detected.
ARG associated with resistance to β-lactam, vancomycin (vanA) and methicilin (mecA)
were identified.

62 Quach-Cu J et al., 2018 [96] Sewage

Raw wastewater,
activated sludge and
secondary and tertiary
WWTP effluent

The abundance of blaSHV, blaTEM and sul1 were higher in raw wastewater than other
samples.

63 Yousfi K et al., 2019 [97] Sewage Hospital effluents

Enterobacteriaceae isolates (including E. coli and K. pneumoniae) and non-Enterobacteriaceae
Gram-negative bacterial isolates (including A. baumannii and A. hydrophila) showed high
levels of resistance to β-lactam and non-β-lactam-antibiotics, and most of them are
multidrug-resistant. This study is the first study that found genes encoding
carbapenemases, including blaOXA-23 and blaOXA-48, like in A. baumannii, K. oxytoca and
S. xiamenensis in Algerian hospital effluents.
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These studies highlight the role of aquatic ecosystems, particularly wastewater, as a key reservoir
of AMR bacteria and ARGs in the environment. High levels of both ARBs and/or ARGs were detected
in samples collected from different types of wastewater, including municipal sewage [39,46,47,54,81]
and influent and effluent samples from wastewater treatment plants (WWTPs) [37,42,44,55,63,64,
70–72,78,79]. Similarly, high levels of AMR were identified in industrial [66,77,92] and agricultural
wastewater and samples recovered from pharmaceutical treatment plants [49,66]. High levels of
clinically relevant ARBs and/or ARGs were identified in influent and effluent samples from hospital
wastewater [36,39,40,42,50,54,58,76,80,82,83,90,94,97].

A number of studies have also demonstrated elevated levels of AMR detected in samples that
have been collected from downstream water [36,44]; the surface water of rivers [35,37,53,75,86,88]
and tap water [56]. Few studies have detected ARBs and clinically relevant ARGs in environmental
samples that have been exposed to/contaminated with sewage [62,91].

3.2. ARB Populations Associated with Wastewaters

The majority of the studies have used integrated molecular and phenotypic approaches to
characterise the resistance profiles and virulence contents associated with AMR bacteria. Many studies
(n = 47) have used advanced molecular approaches, including polymerase chain reaction (PCR)
followed by Sanger sequencing and/or quantitative PCR, to characterise the AMR genotypes. Recent
studies (n = 16) have used whole-genome sequencing and metagenomic analyses to comprehensively
detect the microbial and AMR determinants in wastewater samples. The latter aimed to assess the
abundance and distribution of microbes and associated AMR agents (mobile genetic elements (MGE),
including plasmids, transposons, integrons and insertion sequences) and to identify the factors that
determine the persistence of AMR bacteria and ARGs in wastewater.

Phenotypic characterisation demonstrated that Enterobacteriaceae members, including Escherichia
coli, Klebsiella spp., Shigella spp., Salmonella spp., Vibrio spp., Acinetobacter spp. and Enterococcus spp.,
were among the most common AMR bacteria identified in the wastewater samples investigated
in the analysed studies (Table 1). Additionally, high levels of MDR bacteria and ARGs conferring
resistance to varied classes of antimicrobial drugs, including beta-lactams, carbapenems, tetracyclines,
aminoglycosides, fluoroquinolones, sulphonamides, macrolides, vancomycin and erythromycin, were
documented in the analysed articles (Table 1).

3.3. Selective Pressure within Wastewater Environments Promote the Emergence of Novel Variants of ARGs
and ARBs

Generally, high levels of ARB, including MDR strains and diverse ARGs, have been detected in
influent wastewater (untreated) collected from various sources, particularly low-income settings [41,44];
hospitals [36,39,40,42,46,47] and pharmaceutical waste [49,60]. However, many studies demonstrated
that effluent samples collected from urban, hospital and pharmaceutical-treated wastewater still
contain elevated levels of diverse ARGs, ARB and antimicrobial drugs [49,58,60,63]. For instance, a
recent study demonstrated that the abundance of ARGs was significantly higher in effluent wastewater
samples collected from low-income compared to high-income countries [41,44]. High rates of ARGs
have been identified in pharmaceutical wastewater treatment plants, with the rate of those associated
with clinically important antimicrobial drugs (e.g., sul1, sul2 and tet) being found to remain high
throughout the different stages of the treatment process and, therefore, were subsequently discharged
into the environment [49].

NDM-1 producing strains, including V. cholerae, Shigella boydii and Aeromonas caviae, which had not
been previously reported to carry blaNDM-1, have been isolated for the first time from drinking water
(4%; 2 out of 50) and seepage samples (17%; 12 out of 171) from New Delhi [56]. This is in addition to the
previously reported NDM-1-producing species, including E. coli and K. pneumoniae [56]. The carriages of
blaNDM-1-bearing plasmids by enterobacteria, aeromonads and V. cholerae have been shown to be stable,
transmissible and exhibit the typical resistance pattern of NDM-1 [56]. Although the majority of strains
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have previously carried blaNDM-1 on plasmids, blaNDM-1-bearing chromosomes have been first identified
in environmental isolates of Aeromonas caviae and V. cholerae [56]. Another study has documented
the isolation of novel species of Acinetobacter cumulans from hospital wastewater [36]. These strains
have been found to contain ARGs associated with resistance to clinically important drugs, including
carbapenems, cephalosporines and aminoglycoside [36]. Additionally, a carbapenemase-producing K.
pneumoniae strain carrying blaKPC-2, which is rarely detected in clinical settings, has been identified in
WWTP effluent wastewater in Japan [38].

Additionally, many studies have detected high levels of integrons [77–79,81], including novel
classes associated with oxacillinase gene cassette (blaOXA-109, blaOXA-368 and blaOXA-2) in varied bacterial
species recovered from wastewater samples [90]. Higher prevalence of class 1 integrons was detected in
bacteria recovered from sewage sludge and pig slurry (environments that contain high concentrations
of antibiotic residues and detergents) compared to agricultural soils to which these waste products
are amended [77]. It has been estimated that ~1019 bacteria carrying class 1 integrons enter the
United Kingdom’s environment by the disposal of sewage sludge each year [77]. In another study,
the investigated β–lactamase genes (blaTEM and blaCTX-M9) and mecA encoding for penicillin-binding
protein were detected in all DNA phages that have been recovered from urban sewage and river water
samples [75].

Collectively, the analysed studies demonstrate the potential role of wastewater (particularly
untreated-, hospital- and pharmaceutical wastewaters) as an environmental reservoir that assists in the
emergence and dissemination of novel variants of AMR bacteria. This is mainly promoted through
the coexistence of diverse species of bacteria and high levels of ARGs in these environments, which
increases the probability of the transfer of ARGs carried on mobile elements among closely related
species. The untreated wastewaters also contain high levels of antimicrobial drugs, which pose an
important selective pressure for the emergence and dissemination of AMR bacteria [98]. Recently,
positive correlations were observed between the occurrence of heavy metals (e.g., zinc and lead and
ereB, mefA&E and ermB) and antibacterial residues (e.g., triclosan with ereA, ereB, mefA&E and ermB)
in urban wastewaters and the presence of erythromycin resistant genes [87]. However, the dynamic
of the selective pressure and the emergence of novel variants of ARBs remain poorly documented
and understood.

3.4. Hospital Wastewater and the Dissemination of Clinically Relevant ARGs and ARBs Populations

Recent studies have reported the detection of elevated levels of clinically important AMR
bacteria and ARGs in hospital effluent wastewater and environmental water sources that receive
untreated hospital waste [39,46,47,50,58]. Clinically important AMR bacteria, including MDR
(e.g., carbapenemase-producing Enterobacteriaceae) and ESBL-producing bacteria (e.g., ESBL-producing
K. pneumoniae) [39,50,58] and vancomycin and ampicillin-resistant Enterococcus spp., have been
identified in hospital wastewater-associated samples [46,47].

3.5. Impact of Wastewater Treatment Processes on AMR Dissemination

Conventional and advanced WWTPs have employed different biological, physical and chemical
process to clean wastewater from pollutants and contaminants so that they can be reused and/or
returned back to the environment. The efficiency of removal of AMR bacteria from effluent wastewater
(treated) varies according to the treatment procedure employed [99]. Therefore, it is not surprising
that high levels of clinically important AMR bacteria, including MDR and ESBL-producing strains
of K. pneumoniae, Enterobacter cloacae and E. coli [58]; MDR Listeria spp. [71] and MDR Vibrio spp. [72],
have been detected in effluent samples. Another study demonstrated the detection of MDR E. coli
strains associated with neonatal meningitis, intestinal and extraintestinal serotypes in final effluents of
WWTPs [52]. High levels of resistance were identified in BFG bacteria isolated from WWTPs compared
to those that have been recovered from human faeces investigated [40].
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Importantly, there is growing evidence that wastewater treatment does not have a profound
impact on eliminating the ARGs present in hospital wastewater, with no significant difference in
ARG abundance between influent and effluent hospital wastewater samples [54]. Another study
demonstrated the high abundance of ARGs and MGEs, including plasmids, transposons, integrons
and insertion sequences among samples collected during different treatment processes using aerobic
activation (aerobic-activated sludge (AAS)) or anaerobic digestion (anaerobically digested sludge
(ADS)) [48]. However, a distinct microbial population has been identified in AAS compared to
ADS samples, which suggests a role for the treatment process in promoting the dissemination of
particular resistance patterns [48]. A number of recent studies have also demonstrated that novel
ARG-bearing plasmids and ARGs that confer resistance to multiple clinically relevant antimicrobial
drugs, including aminoglycoside and β-lactams, were highly enriched in activated sludge and effluent
wastewater [57,59,61,89,92]. Additionally, activated sludge investigated in one study was found to
contain varied ARBs, including ESBL-Enterobacteriaceae, MRSA and VRE, and several ARGs associated
with resistance to β-lactam, vancomycin (vanA) and methicilin (mecA) [95].

Consistently, Gram-negative and -positive isolates dominated in WWTP influent and effluent
samples, respectively, with the frequency of detection of tetracycline-, sulphonamide-, streptomycin-
and β-lactam-resistance genes (except sulA and blaCTX-M) being higher in ARB from influent compared
to effluent samples [89]. The abundance of intI1-bearing bacteria (including E. coli, Klebsiella spp.
and Aeromonas veronii) were higher in effluent compared to influent wastewater, with intI1 being
detected in 20.4%, 30.9% and 38.9% of bacteria recovered from influent, activated sludge and effluent
wastewater, respectively [78]. In another study, MDR Enterobacteriaceae strains carrying class 1 and
class 2 integrons (12.1%; 221 out of 1832) were identified in different stages of a municipal wastewater
treatment plant (61.5%, 12.7% and 25.8% of ARB originated from raw sewage, aeration tank and final
effluent, respectively) [81]. However, the abundance of ARGs and MDR bacteria, particularly the levels
of ARG diversity and β-lactamase-producers, were higher in the final effluent samples [81].

Collectively, these studies demonstrated WWTPs as hotspots for the emergence of ARBs and
highlighted the impact of the treatment technology employed and potential roles of specific stages of
treatment processes, particularly those characterised by high biomass and biodiversity (e.g., activated
sludge), in maintaining diverse ARGs and promoting particular populations of ARBs. Advanced
treatment processes, including membrane filtration, ozonation and UV-irradiation, are highly efficient
in reducing the abundance of AMR in effluent wastewater to levels observed in low-impacted surface
water [99].

3.6. AMR Dissemination in Wastewater Associated with Mass Gathering Settings

Most of the studies that reported AMR in wastewater have been conducted within one or a few
countries. The majority of the studies were conducted in Asia (n = 22), followed by Europe (n = 23),
Africa (n = 10), South America (n = 9), North America (n = 7), Central America (n = 1) and Oceania
(n = 2).

No studies have been conducted to investigate the transmission of AMR bacteria and ARGs
in environmental samples associated with key religious mass gatherings (Kumbh Mela and Hajj)
occurring in low-income settings. Kumbh Mela and Hajj are the largest and most diverse mass
gathering events that have been associated with an increased risk of infectious disease emergence and
transmission [100,101].

Kumbh Mela, the world’s largest religious gathering that attracts millions of Hindu pilgrims,
is celebrated at four riverbank pilgrimage sites, including Ganges-Yamuna-mythical Saraswati rivers
confluence, Ganges, Godavari and Shipra [101]. The bathing of the pilgrims in these rivers is one of
the key rituals, as they believe that it cleanses them of their sins. This raises serious public health
issues with regards to the dissemination of waterborne diseases in a setting known to be endemic for
cholera [102,103]. Recently a number of studies using metagenomic approaches have detected high levels
of ARB, ARGs and antimicrobial residues in water and sediment samples collected from the Ganges
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River [104]. In addition, ARGs related to different classes of clinically relevant antimicrobial drugs,
including ß–lactams, aminoglycosides, fluoroquinolones, macrolides-lincosamide-streptogramins (MLS),
rifampicin and sulphonamides, have been identified in samples collected from the confluence of the river
Ganges with Yamuna [105].

Hajj has already been associated with an increased risk of airborne, foodborne and zoonotic
infections [100]. Recent studies have demonstrated that pilgrims are at high potential risk of acquiring
and transmitting AMR enteric bacteria, [106–109] including carbapenemase-producing E. coli [110]
and extended-spectrum cephalosporin- and colistin-resistant non-typhoidal Salmonella [111], as well as
MDR Acinetobacter spp. [110].

4. Discussion

The release of antimicrobial drugs, ARBs and ARGs originating from human and animal waste
to the environment is a global problem that has serious implications on public health. Therefore,
strengthening knowledge on the spread of AMR through surveillance and research was one of
the key strategic objectives of the WHO global action plan that was launched in 2015 [112]. Here,
we systematically analysed the recent literature to highlight the contribution of different types of
wastewaters from various sources (e.g., low- and high-income countries and mass gathering settings)
to the emergence, persistence and transmission of AMR in environments and their potential impacts
on public health.

The analysed studies highlighted the role of wastewaters as major sources of antimicrobial agents,
ARBs and ARGs in the environment. Particular types of wastewaters (e.g., untreated municipal-,
hospital- and pharmaceutical wastewaters) have been characterised by high levels of clinically relevant
ARBs and ARGs. These environments can provide an ideal platform allowing the transfer of ARGs
among the bacterial populations either before or after being discharged into the environment. This is
alarming considering that many clinically relevant bacterial species, including enterotoxigenic E. coli
and typhoidal and non-typhoidal serotypes of Salmonella, have been shown to be able to persist in the
environmental water for relatively long times [113–115].

Wastewater treatments have been shown to be effective in reducing the ARB loads in effluent
samples. However, there is increasing evidence that effluent samples from wastewater treatment
plants, wastewater discharges of pharmaceutical production facilities, hospitals and other healthcare
facilities are hotspots (ideal platforms) for selective pressure processes that promote the emergence
and dissemination of novel AMR mechanisms and new variants of ARBs and ARGs. However, it
is noted that the positive selection process and the dynamics of the emergence of novel variants
of ARGs and ARBs within WWTPs and their associated impacts on human health remain poorly
documented and characterised. The WHO has highlighted the need for greater attention and action to
develop quantitative microbial risk assessments and supporting guidance to address human health
risks associated with environmental exposures to antimicrobial agents, their metabolites, ARBs and
ARGs [32].

Interestingly, a recent pioneer study has proposed a culture-independent metagenomic analysis of
untreated wastewater as an effective approach to track and predict the dissemination of AMR bacteria
and ARGs globally [41]. The authors of this study have used a standardised metagenomic protocol to
characterise the bacterial resistome content and to detect variations in the abundance and diversity
of ARBs and ARGs in a global collection of untreated wastewater samples (collected from 79 sites in
60 countries). This study demonstrated that clinically relevant ARGs were more abundant in samples
collected from low- and middle-income settings in Africa, Asia and South America, compared to
those that have been collected from high-income settings in Europe, North America and Oceania.
The variations in AMR gene abundance were found to strongly correlate with socioeconomic, health
and environmental factors [41].

This approach can be applied in challenging settings (e.g., such as low-income countries and
complicated mass gathering settings) to study the paradigm of AMR dynamics and epidemiology and
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inform on the processes leading to the emergence and the dissemination of AMR infectious agents and,
therefore, help in developing management strategies.

We conducted a research study that uses the opportunity presented each year by the Hajj pilgrimage
and advanced shotgun-based metagenomic approaches to characterise the global population of enteric
microorganisms circulating in environmental Hajj settings. This will provide an annual snapshot of
the AMR bacteria and MGEs associated with each global locality and help in identifying the dynamics
of emergence and dissemination of AMR in the environment.

Hajj is a unique mass gathering event that has been associated with an increased potential for
the emergence and dissemination of AMR infections, raising major public health concerns within the
host country and globally. The enormously diverse population of 3 million pilgrims, originating from
190 countries all over the world come together to perform the same activities within a relatively short
period of time and over a limited area of land. Importantly, the pilgrims are required to stay in tents
in Mina (a nonpopulated valley covering approximately 20 km2 of land, of which only 4 km2 can be
occupied by pilgrims) for at least 3–5 days. The pilgrims are distributed in campaigns across Mina
according to their geographical origin (i.e., country of origin). The wastewater is disposed of through
septic tanks (onsite sewage facilities) that are associated with the pilgrims’ campaign. We conducted the
first study to use shotgun-based metagenomic analysis to characterise the abundance and distribution
of microbial communities and resistance determinants in wastewater samples from septic tanks in
Mina representing different campaigns (European, Middle East and North African (MENA) and East
and Southeast Asian countries). The results indicated that high levels of ARGs, including ESBL and
aminoglycoside markers, were detected in all sites tested. However, significant variations in the
distribution of the bacterial species and the abundance of ARGs were identified.

Similarly, Kumbh Mela in India represents the world’s largest periodic mass gathering event that
involving bathing in small-specified rivers sites. Recent studies have highlighted the striking impact
of mass bathing on river ecosystems, including the AMR microbial contents and dissemination of
human infectious agents [105,116,117]. A recent study found a nearly 130-fold increase in bacterial
load of human origin during the event. Moreover, metagenomic analyses demonstrated an increase in
virulence and ARG loads during the MGEs [118].

Many studies have highlighted the roles of surface fresh and aquatic water, rural groundwater
and sewage in the dissemination of AMR pathogens. The emergence of AMRs is part of a complicated
ecological and evolutionary network, with the use of antimicrobial drugs anywhere within the system
potentially selecting for resistance to that drug elsewhere in the network [23]. Gram-negative bacterial
resistance, in particular, is promoted through horizontal gene transfer by the acquisition of mobile
elements [119–121]. There is also increasing evidence that ARGs found in human microbial communities
are likely to have been acquired from an environmental source [122,123]. The processing of human,
farm and industrial waste together has a significant impact on the emergence of AMR to a wide range of
the most clinically effective antibiotics [124,125]. In addition, even treated sewage samples discharged
into rivers or lakes from treatment plants may contain significant concentrations of ARGs that enhance
the development of AMR bacteria and raise major public health concerns [24,126–128].
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