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Abstract. A point mutation in a highly conserved re- 
gion of the/3~ subunit, Asp ~3~ to Ala (D130A) substitu- 
tion, abrogates the Arg-Gly-Asp (RGD)-dependent bind- 
ing of ot5/3~ to fibronectin (FN) without disrupting gross 
structure or heterodimer assembly. The D130A muta- 
tion also interferes with binding to invasin, a ligand 
that lacks RGD sequence. In spite of the lack of detec- 

table FN binding by cts/3~(D130A), it was recruited to 
adhesion plaques formed on FN by endogenous hamster 
receptors. Thus, intact ligand binding function is not 
required for recruitment of c~5/3~ to adhesion plaques. 
Overexpression of/3~(D130A) partially interfered with 
endogenous tXsl3~ function, thus defining a dominant 
negative/3~ integrin mutation. 

T 
HE integrins comprise a family of at least six het- 
erodimers of cell surface receptors which share com- 
mon/3t subunits but have distinct o~ subunits. They 

recognize multiple ligands (for review see Hemler, 1990) in- 
cluding fibronectin (FN) ~, laminin, collagen, epiligrin 
(Carter et al., 1991), invasin (Isberg and Leong, 1990), and 
vascular cell adhesion molecule-1 (Elices et al., 1990), and 
mediate cell-cell and cell-extracellular matrix interactions. 
The identification of the ligand binding domain of/3~ inte- 
grins is important for understanding their functions. Chemi- 
cal cross-linking studies of Arg-Gly-Asp (RGD)-containing 
peptides to the RGD-dependent t33 integrins, platelet ~r0~33 
(GPIlb-llIa) and o~vt33 (vitronectin receptor), have shown 
that RGD-containing peptide cross-links to residues 109-171 
of/33 of Ot~ro/33 (D'Souza et al., 1988), and to an overlapping 
region (residues 61-203) of the/33 of o~v/33 (Smith and Cher- 
esh, 1988). In addition,/33 of C~ro/33 from a thrombasthenic 
patient has a point substitution at Asp u9 to Tyr, which inac- 
tivates ot~rd3~ binding to fibrinogen (Loftus et al., 1990), un- 
derscoring the importance of this region in ligand-/33 inte- 
grin interaction. 

Based on the high similarity of this region (residues 
109-171 of/3t) among integrin 13 subunits, especially the 
smaller region consisting of residues 108-127 (76 and 81%, 
respectively), compared to overall similarity (•45%), we 
hypothesized that the corresponding region in/3~ is also in- 
volved in the ligand-/3~ integrin interaction. To address this 
hypothesis, we examined the effects of the substitution of 
Asp ~3~ of/3~ (which corresponds to the Asp H9 in/33) to Ala 
(D130A substitution) on t~5/3t functions, ots/3~ binds to the 
110K cell binding domain of FN in an RGD-dependent man- 
ner (Pytela et al., 1985), as well as to invasin, a protein in- 

1. Abbreviations used in this paper: DHFR, dihydrofolate reductase; FN, 
fibronectin; MBP-Inv479, maltose binding protein-invasin fusion protein. 

volved in the entry of the bacterial cells into eukaryotic cells 
(Isberg and Leong, 1990). The affinity of ot5/3~ for invasin is 
two orders of magnitude higher than for FN (Isberg, 1991; 
Nrhieu and Isberg, 1991). In addition, the COOH-terminal 
192 amino acid residues of invasin, which contain the inte- 
grin binding region, do not contain RGD sequence. 

We report here that the D130A substitution in the /3~ 
subunit blocks the binding of c~513~ both to the FN ll0K 
cell binding fragment and to invasin. Overexpression of 
/31(D130A) interfered with the endogenous ot5/31 function. 
Furthermore, ligand-binding defective /3~(D130A) was as- 
sembled into the adhesion plaques formed in transfected 
cells cultured on Fn, suggesting that intact ligand binding is 
not essential for the recruitment of this receptor to existing 
adhesion plaques. 

Materials and Methods 

Materials 
FN was purified from fresh human plasma by using gelatin Sepharose (Eng- 
val and Ruoslahti, 1977; Plow et al., 1979). FN I10K fragment was ob- 
tained by chymotryptic digestion of FN and subsequent gelatin-Sepharose 
and Sephacryl S-200 gel filtration chromatographies (Pierschbacher et al., 
1982). MBP-Inv479 was prepared by using pJL309 plasmid in Escherichia 
coli MC1000 which was provided by R. Isberg (Tufts University, Boston, 
MA) (Leong et a l ,  1990). FN IlOK fragment and MBP-Inv479 was cou- 
pled to CNBr-activated Sepharose (Pharmacia LKB Biotechnology Inc., 
Piscataway, NJ) at 2.4 and 2.0 mg/ml packed volume, respectively, accord- 
ing to the manufacturer's instructions. PMSF and octyl-/3-D-glucopyrano- 
side were purchased from Caibiochem Corp. (La Jolla, CA). N-Ethylmalei- 
mide was purchased from Sigma Chem. Co. (St. Louis, MO), and Na125I 
from Amersham Corp. (Arlington Heights, IL). 

mAb 7E2 (to hamster/30 and PB1 (to hamster cts) (Brown and Juliano, 
1985, 1988) were from R. L. Juliano (University of North Carolina, Chapel 
Hill, NC). mAbs to human ~i were obtained from the following sources: 
AlAS from M. E. Hemler (Dana-Farber Cancer Institute, Boston, MA); 
mAbl3 (Akiyama et al., 1989) from K. Yamada (NIH, Washington, DC); 
LM534 (Cheresh et al., 1989) from D. Cheresh (The Scripps Research In- 
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stitute), and QE.2E5 (Faull, 1991) from R. Faull (The Scripps Research In- 
stitute). 102DF5 was prepared as described (Yliinne and Virtanen, 1989). 
Goat anti-human ~1 antiserum (antibody 172) was prepared by immuniz- 
ing a goat with purified human a4/~l preparation, and recognizes human 
but not hamster #1. Anti-denatured ~1 antiserum (cross-reactive to both 
human and hamster/~t) was prepared by immunizing rabbits with the SDS- 
denatured at/31 preparation purified from human placenta (Takada et al., 
1987). The serum recognizes human al  and/31, and mouse and hamster 
fit. Anti-a3 cytoplasmic peptide antibody (reactive to human, mouse, and 
chicken a3 [Solowska et al., 1989; Takada et al., 1991]) and anti-as cyto- 
plasmic peptide antibody were obtained from E. Mareantonio (Mas- 
sachusetts Institute of Technology, Cambridge, MA). The anti-denatured 
human a4 antibody (reactive to human and mouse a4 [Holzman et al., 
1989]), was prepared as described (Hemler et al., 1987; Takada et al., 
1989). The anti-c~2 cytoplasmic peptide antibody was prepared as de- 
scribed (Takada and Hemler, 1989). 

Construction of ~l cDNA Expression Vector 
and Mutagenesis 
The human ~1 cDNA clone (B-3) was cloned from human endothelial 
Xgtll library (obtained from T. Collins, Brigham and Women's Hospital, 
Boston, MA) with partial/31 cDNA (obtained from E. Ruoslahti, La Jolla 
Cancer Research Foundation, La Jolla, CA) as probe. The clone B-3 (•3.55 
kb) includes a 2,334-bp complete coding region, and 58-bp 5'-noneoding 
and 1,100-bp 3'-noncoding regions. The amino acid sequence deduced from 
the nucleotide sequence of the clone B-3 was the same as the published se- 
quence (Argraves et al., 1987) except that His 92 was Thr and Thr 19s was 
Ser in clone B-3. Oligonucleotide-direeted mutagenesis of/~1 eDNA clone 
B-3 in pBluescript KS+ was carded out using a combination of the primer 
extension method (Zoller and Smith, 1982), and the method of Kunkel et 
ai. (1987) with synthetic oligonucleotide, 5'-ACTACCTTATGGCCCTGT- 
CTTATTC-3' (YLMALSYS) based on the published/~1 sequence 5'-ACT- 
ACCTTATGGACCTGTCTTATTC-3' (YLMDLSYS) as primer. The whole 
coding region of the mutagenized eDNA was sequenced and the absence 
of other mutations was confirmed. The wild-type/~1 or mutagenized #~ 
(D130A) eDNA in pBluescript was digested with XbaI (XbaI site is in the 
vector) and NheI (NheI site is in a 3' noneoding region in eDNA). After 
gel purification, the 2.9-kb XbaI/NheI fragment containing whole coding 
region was ligated to XbaI-digested/caif intestinal phosphatase-treated 
pCDneo vector (Aruffo and Seed, 1987). 

Transfection and Amplification of the 
Transfected Gene 
DG44 cells, a dihydrofolate reductase (DHFR)-deficient mutant of CHO 
cell line (Urlaub and Chasin, 1980) (obtained from L. A. Chasin, Columbia 
University, NY), were maintained in the a-modified minimal essential 
medium (a-minus MEM, Sigma Chem. Co.) supplemented with 10% heat- 
inactivated FCS, hypoxanthine, and thymidine in a 5 % CO2 incubator at 
37~ ~1 or /31(D130A) cDNA in pCDneo vector (10 /~g) and 1 /~g of 
pLTRdhfr26 plasmid (Subramani et ai., 1981) (obtained from Amer. Type 
Culture Collection, Rockville, MD) were cotransfected into DG44 cells 
(107 cells) by electroporation. Transfected cells were maintained for 3 d in 
the above medium, and then transferred to a-minus MEM supplemented 
with 10% dialyzed FCS and 700/~g/ml G418 (Gibco Laboratories, Grand 
Island, NY). After 10-14 d, resulting colonies were harvested and cells ex- 
pressing human/3x were collected by sorting with mAb A1A5 in FACStar 
(Becton Dickinson Immunocytometry Sys., Mountain View, CA). mAb 
AlAS reacts with both human/31 and/31(D130A) (Fig. 1, e and f ) .  The 
transfected genes were then amplified in a-minus MEM supplemented with 
10% dialyzed FCS, 700 #g/ml G418, and the increasing concentration (up to 
100 nM) of the DHFR inhibitor methotrexate (Kaufman and Sharp, 1982). 

FN IIOK Fragment-Sepharose 
Affinity Chromatography 
Cells were harvested by washing the attached cells with PBS (0.15 M NaC1, 
10 mM potassium phosphate, pH 7.4) twice and incubating in 3.5 mM 
EDTA in PBS at room temperature for 3 rain, and washed twice with PBS. 
Cells ("~ • 106) were then surface labeled with t25I by using iodogen 
(Pierce Chem., Rockford, IL) (Braciale et ai., 1986), washed three times 
with PBS, and solubilized in 0.4 ml of 100 mM octyl-/3-D-glucopyranoside 
in 10 mM Tris-HCl/0.15 M NaC1 (TBS), 1 mM MnC12, 1 mM PMSE 1 
mM N-ethylmaleimide, pH 7.4, at 4~ for 1 h. The insoluble materials were 
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Figure 1. The expression of human ~1 or/3~(D130A) in CHO cells. 
The/3~-,/31(D130A)-, or parent CHO cells were harvested and in- 
cubated with the first antibodies (a-c, control purified mouse IgG 
[10 #g/ml]; d-f, A1A5 [anti-human ~];  g-i, 7E2 [anti-hamster 
/3~]; or j-l, PB1 [anti-hamster as]), and then with the FITC-labeled 
goat anti-mouse IgG. Ascites A1A5, 7E2, and PB1 were diluted 
500-fold and used. The stained cells were analyzed by FACStar 
(Becton Dickinson Inununocytometry Sys.) The mean fluorescent 
intensities were (a) 4.1, (b) 14.2, (c) 15.1, (d) 5.2, (e) 168, (f)  174, 
Q) 221, (h) 210, (i) 98.4, (j)  170, (k) 174, and (l) 168. 

removed by centrifugation at 15,000 g for 10 min. The supernatant was then 
incubated with a small amount of underivatized Sepharose 4B at 4~ for 
1 h to remove nonspecific binding material. The supernatant was incubated 
with 1 ml of packed FN l l0K fragment-Sepharose at 4~ overnight, which 
had been equilibrated with TBS containing 1 mM MnCI2, i mM PMSF, 
1 mM N-ethylmaleimide, 25 mM octyl-~-D-glucopyranoside, pH 7.4 (wash- 
ing buffer). The unbound materials were washed with 20 ml of washing 
buffer and the bound materials were eluted with 20 mM EDTA instead of 
1 mM MnC12 in washing buffer, and 2.5-ml fractions were collected. 0.25- 
ml aliquots of the peak fraction (2.5 ml) of the eluted radioactivity were 
used for immunoprecipitation. The samples were precleared by incubating 
with protein G-Sepharose and immunoprecipitated as described below. 

Maltose Binding Protein-Invasin 
Fusion Protein (MBP-Inv479)-Sepharose 
Affinity Chromatography 
The MBP-Inv479-Sepharose affinity chromatography was carried out as de- 
scribed above for FN ll0K-Sepharose chromatography except that (a) 50 
/~1 packed volume of MBP-Inv479-Sepharose was used, (b) unbound 
materials were removed by washing three times in 1 ml of washing buffer, 
and (c) 500/~1 of 20 mM EDTA in washing buffer was used for elution. 

Immunoprecipitation of CeU Extracts 
Cells were 12sI surface-labeled, and washed as described above and solubi- 
lized in 1 ml of 20 mM Tris, 0.15 M NaCI, 1% Triton X-100, 0.05% Tween 
20, pH 7.4, containing 2 mM PMSF, 10 mM benzamidine HC1, 5 U/ml 
trasylol, and 0.02 % NaN3 (IPB), and incubated on ice for 1 h and cen- 
trifuged at 15,000 g for 10 min. The supernatant was precleared by incubat- 
ing with protein G-Sepharose (Pharmacia LKB Biotechnology Inc.) for 30 
min at 4~ and incubated with antibody for 1 h at room temperature. The 
immune complex was recovered by incubating with protein G-Sepharose 
for 30 min at 4~ washed three times with 1 ml IPB, boiled for 5 min in 
50 #1 of SDS-PAGE sample buffer, and analyzed by SDS-PAGE (7% gel) 
(Laemmli, 1970) under nonreducing conditions. 

Adhesion of CeUs to FN-coated Plates 
Wells of the Immulon 2 removable 96-well plates (Dynatech Labs., Inc., 
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Chantilly, VA) were incubated with 100 #1 of PBS containing different con- 
centrations of FN overnight at 4~ The other protein binding sites were 
blocked by incubating with 100 #1 of 1% BSA for 30 min at room tempera- 
ture, and wells were washed twice with PBS. Cells were harvested with 
TPCK trypsin (Worthington Biochem. Corp., Freehold, NJ), 3.5 mM 
EDTA in PBS, washed once with 0.5 mg/ml soybean trypsin inhibitor 
(Sigma Chem. Co.), and washed twice with incubation buffer (137.5 mM 
NaCl, 12 mM NaHCO3, 2.6 mM KC1, 5 mM Hepes, 5 mM glucose, 2 
mM CaC12, 0.1% BSA). 3 x 106 cells in 200/zl incubation buffer were in- 
cubated with 50 #Ci NaStCr (12.5-25 Ci/mmol, Amersham Corp.) for 1 h 
at 37~ and washed three times with incubation buffer. 4 x 104 cells (100 
/xl) were added to each well and incubated for 1 h at 37~ The wells were 
washed three times with incubation buffer and then bound radioactivity was 
counted in a ~/counter. 

Indirect  Immunof luorescence  Microscopy 

Cells were harvested with 0.05 % trypsin, 0.5 mM EDTA (Irvine Scientific, 
Santa Ana, CA); washed once with tx-minus MEM supplemented with 10% 
FCS, hypoxanthine, and thymidine; and then twice with the medium minus 
serum. Round glass coverslips were coated overnight at 4"C with 20/zg/ml 
of FN in PBS; then the other protein binding sites were blocked by incubat- 
ing with 1% BSA for 30 rain at room temperature. The harvested cells were 
plated onto the coverslips in the medium minus serum, incubated for 4 h 
at 37~ and then fixed with methanol for 10 min in -20~ The number 
of spreading cells were counted from three high power microscopic fields 
(28-144 cells were counted in each field). The fixed cells were incubated 

with the primary antibodies, and then with FITC-coupled goat anti-mouse 
IgG ('lhgo, Inc., Budingame, CA), for 30 min at room temperature. The 
stained cells were observed in an Axiophot fluorescent microscope (Carl 
Zeiss, Inc., Oberkochen, Germany). 

Results 

Expression and  Characterizat ion o f  H u m a n  131 or 
131(D13OA) in C H O  Cells 

The  /3~ or  /3~(D130A) c D N A  was transfected into C H O  
cells. Af te r  select ion by resis tance to G418 and D H F R  § 
phenotype,  human/3t  or/3~(D130A) expression was fur ther  
amplif ied by using increasing methotrexate,  a D H F R  inhibi-  
tor, concentra t ion in the medium.  Human/3~ or/3~(D130A) 
was expressed at levels approximately  equal  to that of  endog-  
enous hamster  /3~ in C H O  cells (Fig. 1). Both /31 and 
/3~(D130A) were  recognized by four other  an t i -human  /31 
mAbs,  in addit ion to A 1 A 5 - m A b l 3 ,  LM534 ,  QE.2E5 ,  and 
1 0 2 D F 5 - b u t  none of  these m A b s  recognized  the endoge-  
nous hamster/31 (data not  shown). 

Immunoprec ip i ta t ions  of  the ~25I surface-labeled cell  ex- 
tracts (Fig. 2) showed that the human/31 or /3t(D130A) (Mr 

Figure 2. Immunoprecipitation of hu- 
man/31- or/31(D130A)-CHO ceils. The 
detergent extracts of the ~25I surface- 
labeled CHO cells (lanes 1-6), 131- 
(lanes 7-12), or /31(DI30A)- (lanes 
13-18) CHO cells were immunoprecipi- 
tated with mAb PB1 (anti-hamster c~5) 
(lanes 1, 7, 13), mAb 7E2 (anti-hamster 
/3~ (lanes 2, 8, 14), mAb A1A5 (lanes 3, 
9, 15), anti-denatured /31 (nonspecies 
specific (lanes 4, 10, 16), antibody 172 
(anti-human /31) (lanes 5, 11, 17), or 
rabbit preimmune serum (lanes 6, 12, 
18). The immunoprecipitated materials 
were analyzed by SDS-PAGE (7 % gel) 
under nonreducing conditions. 
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Figure 3. Human B~ or/3~(D130A) is associated with endogenous 
as in CHO cells. A detergent extract of ~ I  surface-labeled/35- or 
/3~(D130A)-CHO cells was first immunopurified with human 
~3~-specific AIA5-Sepharose overnight at 4~ After washing the 
A1A5-Sepharose, the bound materials were recovered by boiling in 
SDS-PAGE sample buffer containing 1% (wt/vol) SDS for 5 rain. 
The recovered material was diluted fivehold with IPB (see Mate- 
rials and Methods), and again immunoprecipitated with anti-c~5 
cytoplasmic peptide antibody (lanes 1 and 5), anti-denatured aa 
polyclonal antibody (lanes 2 and 6), anti-c~3 cytoplasmic antibody 
(lanes 3 and 7), or anti-denatured/3~ polyclonal antibody (lanes 4 
and 8). The immunoprecipitated materials were analyzed as de- 
scribed in the legend of Fig. 1. 

l l 0K,  nonreduced) associated with endogenous hamster ct 
subunits (Mr 150K, nonreduced) in both B~-CHO (lanes 9 
and 1/) and t3~(D130A)-CHO (lanes 15 and 17). Anti- 
denatured /3~ recognized both hamster Bt and human 
t3t//Jt(D130A) (lanes 4, 10, and 16). Antibody 172 recog- 
nized human/3J/3ffD130A) but not hamster B~ (lanes 5, 11, 
and 17). 

We undertook studies to identify the ot subunit associated 
with the recombinant human /3~//3~(D130A). CHO ceils 
contain aSBl as the major/31 integrin species with a small 
amount of ot3/3t (Giancotti and Ruoslahti, 1990). o~5-defi- 
cient CHO cells lose ,~80% of /3t integrin expression 
(Schreiner et al., 1989), and CHO cells express similar 
quantities of ot~ and/~  (Fig. 1). Consistent with these, c~ or 
a2 (which are larger in size than other a subunits) was not 
detected in CHO cells by immunoprecipitation with anti431 
(Fig. 2) or anti-c~2 cytoplasmic peptide antibody (Takada 
and Hemler, 1989) (Fig. 4, lanes 15 and 21). To determine 
whether the transfected human /31 or B~(D130A) is as- 
sociated with a5 and/or c~3, extracts of surface ~2SI-labeled 
transfected cells were immunopurified with human 
/3~-specific mAb A1A5 immobilized to Sepharose. The re- 
covered recombinant/Jr integrins were solubilized and then 
reimmunoprecipitated with antibodies that react with multi- 
ple species ~ subunits. The anti-as cytoplasmic domain an- 
tibody precipitated the ot subunit associated with human/3t 

Figure 4. Ors[31 but not ~5/3~(D130A) binds to cell-binding domain of FN. Detergent extracts of t251 surface-labeled CHO cells bearing c~s/3~ 
or c~5/~(D130A) were passed through immobilized FN l l0K (central cell-binding domain) affinity columns as described in Materials 
and Methods. 250-/~1 aliquots of the peak EDTA-eluted fraction (2.5 ml) from the FN ll0K Sepharose column with/3~ (lanes 1-7) or 
B~(D130A) (lanes 8-14) CHO extract, or the peak pass-through fraction (2.5 ml) with/31 (lanes 15-20) or/31(D130A) (lanes 21-26) CHO 
extract were analyzed by immunoprecipitation with anti-human/3~ polyclonal (172) (lanes 3, 10, 16 and 22) or monoclonal A1A5 (lanes 
4, 11, 17 and 23) antibodies; anti-hamster t~5 monoclonal (PB1) (lanes 5 and 12); anti-hamster/31 monoclonal (7E2) (lanes 6, 13, 18 and 
24); anti-denatured/3~ (nonspecies-specific) polyclonal (lanes 7, 14, 19 and 25); or irrelevant polyclonal antibody (antiintegrin ct2 cyto- 
plasmic domain) (lanes 2, 9, 15 and 21). The EDTA-eluted material (20 #1 each) from the FN ll0K-Sepharose with/Jr- or/31(D130A)- 
CHO extract were also analyzed without immunoprecipitation (lanes 1 and 20, and 8 and 26, respectively). The samples were analyzed 
by SDS-PAGE (7% gel) under nonreducing conditions. (Lanes 1-14) The EDTA eluate from/31-CHO contained hamster c~5 and O~, and 
human/3~. The eluate from the/3,(DI30A)-CHO contained hamster or5 and/3~, but no human/31(D130A). (Lanes 15-26) The human ~3t 
and B~(D130A) were present in the unbound fractions. 
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while the anti-~ and anti-o~4 antibodies did not produce de- 
tectable immunoprecipitates (Fig. 3). Thus, the recombinant 
human ~, or ~(D130A) was associated with endogenous 
hamster o~s. 

a~[3~(DI3OA ) Does Not Bind to FN IIOK Fragment 

The previous experiments established that both human/~ 
and/3~(D130A) were expressed as heterodimers with ham- 

ster o~. Since FN is a major ligand for ot~#~, we assessed 
the binding of these recombinants to the immobilized cell 
binding domain of FN. When extracts of surface ~2~I- 
labeled CHO cells bearing recombinant/31 integrins were 
subjected to FN ll0K affinity chromatography, the bound 
fraction (EDTA eluate) contained only two ~2~I-labeled pro- 
tein bands corresponding to c~ and 151 subunits in size (Mr 
150K and ll0K, nonreduced) (Fig. 4, lanes 1 and 8, for 
~t-CHO and ~(D130A)-CHO cells, respectively). Immu- 
noprecipitation of the EDTA eluate (Fig. 4) showed that the 
eluate from ~:CHO contained hamster o~ (lane 5) and ham- 
ster (lane 6) and human (lanes 3 and 4) ~ .  The eluate from 
the ~(D130A)-CHO contained hamster o~ (lane 12) and ~ 
Oane 13), but no human/3~(D130A) (lanes 10 and 11). The 
human ~ and /3~(D130A) were detected in the unbound 
fractions by immunoprecipitation (Fig. 4, lanes 16 and 17; 
22 and 23, respectively). Thus, c~B~(D130A) had no detect- 
able affinity for the FN ll0K fragment. 

~d3~(D13OA) Does Not Bind to Invasin 

FN binding to otsfll depends on the RGD sequence in the 
10th type HI repeat (Pytela et al., 1985; Pierschbacher et al., 
1982; Obara et al., 1988). To determine whether the D130A 
substitution abolished binding to a ligand that lacks RGD, we 
assessed the binding of ots~(D130A) to invasin. The ~25I 
surface-labeled cell extracts were incubated with MBP- 
Inv479-Sepharose in the presence of Mn :+. SDS-PAGE 
analysis of the EDTA eluted materials detected two bands 
corresponding to c~ and ~ in size (Fig. 5). The EDTA elu- 
ates were analyzed by immunoprecipitation (Fig. 5, bottom). 
Both human and hamster ~ (lanes 3 and 4, respectively) 
were detected with wild-type ~t-CHO cells, while hamster 
~ (lane 9), but no human ~t(D130A), was detected (lane 8) 
with the B~(D130A)-CHO cells. These findings show that 
D130A substitution of/~ subunit blocks the binding of ~s/3t 
to invasin. 

Figure 5. ots[3~ but not cts~(D13OA) binds to MBP-Inv479-Sepha- 
rose. (Top) Immunoprecipitation of 200 #1 of the same detergent 
extract of/$1- (lane 1) or ~(D13OA)-CHO (lane 2) cells as in Fig. 
2 by AIA5 (human-specific anti-B0. The detergent extracts were 
incubated with 50 #1 of MBP-Inv479-Sepharose in the presence of 
1 mM Mn 2+, and washed; and the bound material was eluted with 
20 mM EDTA in the column buffer (lanes 3 and 4). Samples were 
analyzed by SDS-PAGE (7% gel) under nonreducing conditions. 
The density of two bands of Mr '~110 kD and 150 kD was lower 
with ~ffD130A)-CHO ceils in four separate experiments (lane 4). 
(Bottom) The bound fraction (Fig. 5, top) from ~ (lanes 1-5) or 
Bt(D130A) (lanes 6-10) immunoprecipitated with preimmune rab- 
bit serum (lanes 2 and 7); antibody 172 (lanes 3 and 8); mAb 7E2 
(lanes 4 and 9); and anti-denatured/3t (lanes 5 and 10). 20 #1 each 
of the EDTA fraction from/3,- or B~(D130A)-CHO ceils was ana- 
lyzed without immunoprecipitation in lanes 1 and 6, respectively. 
Samples were analyzed by SDS-PAGE (7% gel) under nonreducing 
conditions. 

Overexpression of ~z(D130A ) Produces Dominant 
Negative Effects 

~(D130A) forms a binding-defective heterodimer with en- 
dogenous or5 and may, therefore, block cell functions de- 
pendent on ots/~. To test this possibility, the adhesion of/~I- 
CHO or/~(D130A)-CHO cells to FN was examined (Fig. 
6). The ~(D130A)-CHO cells were less adherent to FN 
than the ~-CHO or parent CHO cells (the amount of FN 
required for 50% of cells to adhere was 0.2 #g/well for 
~(D130A)-CHO cells and 0.1 #g/well for the others), 
reflecting the decrease in functional as/~t on the surface. At 
higher FN concentration (2 #g/well), the difference in adhe- 
sion among parent, B~-CHO, and #t(D130A)-CHO cells is 
relatively small. However, only 7.4 + 1.5% of adhering 
/3~(DI30A)-CHO cells spread in contrast to 56 + 7.5 and 
46 5: 8.1% of adherent CHO and ~-CHO cells, respec- 
tively. Fig. 7 shows the striking difference in morphology be- 
tween human /~ and /3~(D130A) CHO cells on FN (2 
#g/well). Thus, overexpression of ~(D130A) reduces the 
function of endogenous as/~. The ratio of expression of 
B1(D130A) mutant to endogenous wild-type ~ integrin in 
/$~130A)-CHO cells was ",,2:1 based on the mean fluores- 
cent intensity (Fig. 1). 
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Figure 6. ~t(D130A)-CHO cells were less adherent to FN than 
CHO or B~-CHO cells. Wells of the removable 96-well plates were 
coated with varying concentrations of FN. 4 x 104 5'Cr-labeled 
ceils (100/~1) were added to each well and incubated for 1 h at 37~ 
The wells were washed three times with incubation buffer and then 
bound radioactivity was counted. Data are shown as means of tripli- 
cate experiments + SD. CHO (o), /31-CHO (e), ~I(D130A)- 
CHO (A). 

Binding-defective Human ~(DI3OA ) Is Assembled into 
Adhesion Plaques on F N  

As noted above, a small percentage of ~t(DI30A)-CHO 
cells spread on FN. To determine whether this ligand bind- 
ing-defective mutant could be recruited to adhesion plaques 
formed by endogenous hamster t~5~, we localized the hu- 
man/3~ or ~t(D130A) in the transfectants that spread on the 
FN-coated glass coverslips (Fig. 8). In/3~-CHO cells, ham- 
ster /~ (mAb 7E2, b) and human /3t (mAbs 102DF5, e; 
QE.2E5, h; A1A5, k; LM534, data not shown) were local- 
ized in the adhesion plaques. In the spreading/~(D130A)- 
CHO cells, human /3~(D130A) mutant was present in the 
adhesion plaques as detected by three antihuman/3~ mAbs 
(102DFS, f; QE.2E5, i; LM534, data not shown). This stain- 
ing was specific for human/31, since these three antibodies 
did not stain the hamster/3t-containing adhesion plaques 
formed by untransfected CHO cells (Fig. 8, d and g; data not 
shown for LM534). Surprisingly, the antihuman ~1, A1A5 
did not stain the plaques in the/3~(D130A)-CHO cells (Fig. 
8 l). Essentially, the same results were obtained also with 
CHO cells transiently expressing human/3~ or/3t(D130A) 
subunit on the surface after 48 h of transfection (data not 
shown). These findings indicate that/3~(D130A) mutant can 
be recruited to adhesion plaques formed by hamster c~5/3,. 

Discussion 

This paper establishes that a point mutation in a highly con- 
served region of the/~ subunit (Asp ~3~ to Ala substitution) 
abrogates the RGD-dependent binding of t~5/3~ to FN, and 
that the substitution also interferes with the recognition of in- 
vasin that lacks the RGD sequence, suggesting that the 

Asp 13~ is critical in multiple ligand-o~5/~ interactions. The 
Asp '3~ to Ala substitution of/3~ does not result in a major 
structural change in the whole ~ molecule because (a) 
~](D130A) was expressed on the surface of CHO cells in 
association with endogenous o~5 subunits, and (b) five mAbs 
against human ~l recognize ~(D130A). Thus, the D130A 
mutation in ~ abrogates a5/3~ ligand binding function with- 
out disrupting gross structure or heterodimer assembly. 

Asp ~3~ of/3~ corresponds to Asp ~'9 of ~3, a residue reported 
to be critical in ligand (fibrinogen) binding to ot~n,/3a (Loftus 
et al., 1990). Since the protein ligands of Ol~rd3a contain 
RGD sequences, it is noteworthy that u5~(D130A) failed to 
recognize invasin, a ligand which lacks the RGD sequence 
(Isberg and Leong, 1990). Nevertheless, the binding of in- 
vasin to ol5/3~ is inhibited by RGD peptide (Nhieu and Is- 
berg, 1991). Taken together, these data are consistent with 
a common ligand binding mechanism for integrins irrespec- 
tive of the presence of the RGD sequence in the ligand. The 
high degree of conservation of the sequence surrounding 
Asp ~3~ is consistent with such a mechanism (Loftus et al., 
1990). 

Although a5/3~(D130A) was ligand binding defective, it 
was recruited into adhesion plaques on FN. This suggests 
that integrins can be recruited to adhesion plaques without 
binding ligands. Clustering of individual receptors and orga- 
nization thereafter occurred only when cells were exposed 
to the specific ligand and the clustering preceded the associa- 
tion of vinculin with adhesion plaques and stress fiber forma- 
tion (Dejana et al., 1988). Chicken B] lacking cytoplasmic 
domain does not enter adhesion plaques; however, it does 
bind to FN, suggesting that interaction with cytoskeletal 
components is necessary for the localization of the receptors 
to adhesion plaques (Solowska et al., 1989). Therefore, one 
possible sequence of events in the localization of receptor in 
adhesion plaques is (a) the interaction of the receptor with 
the specific matrix protein ligand, (b) clustering of the 
specific receptor species, and then (c) the interaction with 
cytoskeletal components. One possible explanation for the 
localization of binding-defective ots/3~(D130A) in adhesion 
plaques is that the initial interaction of intact hamster ~5/3~ 
with FN induces clustering of the receptors, including both 
as~] and oLs~(D130A), leading to the incorporation of the 
~L(D130A) into adhesion plaques. Consistent with this, 
LaFlamme et al. (1992) suggested that fl~ cytoplasmic do- 
main has enough information to target Otsfll to existing 
adhesion plaques, since IL-2 receptor with/3~ cytoplasmic 
domain was recruited to existing adhesion plaques on FN. 
However, we could not rule out the possibility that there 
could be some interaction of the asfl~(D130A) with FN, 
leading to FN-dependent conformational changes, which al- 
low for the recruitment of fl~(D130A) to focal adhesions. 
LaFlamme et al. (1992) also suggested that the ligand oc- 
cupancy regulates the redistribution of the receptor via con- 
formational change that unmasks the fl~ cytoplasmic do- 
main or regions of the cytoplasmic domain that interact with 
specific cytoskeletal proteins, since RGD peptide promoted 
the recruitment of o~sfl~ into adhesion plaques on laminin, 
an irrelevant ligand. Because ligand binding-defective c~fll- 
(D130A) was recruited to adhesion plaques, it might have a 
conformation similar to that of a ligand-occupied form. 

/3~(D130A) is detected in adhesion plaques of the trans- 
fected CHO cells cultured on FN with four different anti- 
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Figure 7. 13t-CliO cells spread on FN but t3t(DI30A) 
CHO cells do not. Wells of the 96-well plates were 
coated with 100/~1 of 20 ~g/ml FN in PBS. 4 • 
I04 unlabeled cells (100/~1) were added to each 
well and incubated for l h at 37~ Pictures were 
taken without washing the unbound cells. Details 
are described in Materials and Methods. (/bp) Hu- 
man wild-type /31-CHO cells. (Bottom) Human 
/3ffD130A) CHO cells. 

human/32 mAbs but, not with mAb A1A5. One possible ex- 
planation of this data is that A1A5 epitope in t31 is related to 
a site of receptor-receptor interaction during clustering and, 
therefore, its epitope is not accessible to antibody in adhe- 
sion plaques formed in 131(D130A)-CHO cells because 
recruitment of/31(D130A) to adhesion plaques is dependent 
on interactions that shield the epitope. In contrast, wild-type 
human i31 may also be recruited by ligand binding and may 
express accessible A1A5 epitopes. 

The ability to delete ~31 integrins would be very helpful 
for defining their roles in adhesion, migration, differentia- 
tion, metastasis, transformed phenotype, or signal transduc- 
tion. Almost all cell lines express/31 integrins in various 
combinations (for review see Hemler, 1990). While it is theo- 
retically possible to make such deletions of t32 in the germ- 
line of mice (Capecchi, 1989), deletion of/31 may be lethal 

as in Drosophila (Mackrell et al., 1989). It is clear that dom- 
inant negative receptor mutants can provide insights into re- 
ceptor function in vivo (Amaya et al., 1991; Ueno et al., 
1991)./31(D130A) is dominant negative since it forms non- 
functional heterodimers with endogenous a~, leading to sup- 
pression of the endogenous t3t integrin function. In the pres- 
ent study, the partial dominant-negative effects by the mutant 
131(D130A) was seen at the ratio of mutant-to-wild-type/31 
expression of ~ 2:1 based on the mean fluorescent intensity, 
suggesting that the level of/31 integrins expression is just 
enough to support adhesion and spreading on matrix protein 
in CHO cells. If the/3~(D130A) is overexpressed in cells 
with less endogenous t31 integrins (e.g., lymphocytic cells) 
instead of fibroblastic CHO cells, higher mutant-to-wild- 
type ratio and therefore more complete dominant negative 
effects may be obtained. This suggests that tissue-specific ex- 
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Figure 8. Immunohistochemieal localization of/31 or ~I(D130A) in adhesion plaques on FN. CHO (a, d, g, and j),/31-CHO (b, e, h, and 
k), or #I(D130A)-CHO (c, f, i, and/) ceils were plated on FN, incubated for 4 h at 37~ and then fixed with methanol as described in 
Materials and Methods. The fixed cells were incubated with primary antibodies (7E2, a-c; 102DF5, d-f; QE.2E5, g-i; A1A5,j-1), followed 
by incubation with FITC-labeled goat anti-mouse IgG, for 30 min at room temperature. Bar, 10 t~m. 

pression of  dominant-negative/~(D130A) in transgenic ani- 
mals will provide a powerful means to assess the role of/31 
integrins in the development and function of differentiated 
tissues. 
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