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Background: Gut microbiota holds a key-role in numerous biological functions and has emerged as a
driving force for the development of diabetes. Diet contributes to gut microbiota diversity and func-
tionality providing a tool for the prevention and management of the disease. The study aimed to
investigate the effect of a dietary intervention with pistachio nuts, a rich source of monounsaturated fatty
acids, dietary fibers and phytochemicals on gut microbiota composition in the rat model of Type 1
Diabetes.
Methods: Male Wistar rats were randomly assigned into four groups: healthy animals which received
control diet (CD) or pistachio diet (PD), and diabetic animals which received control diet (DCD) or pis-
tachio diet (DPD) for 4 weeks. Plasma biochemical parameters were determined and histological ex-
amination of liver and pancreas was performed at the end of the dietary intervention. Adherent intestinal
microbiota populations in jejunum, ileum, caecum and colon were analyzed. Fecal microbiota pop-
ulations at the beginning and the end of the study were determined by microbiological analysis and 16S
rRNA sequencing.
Results: Diabetic animals of both groups exhibited high plasma glucose and low insulin concentrations,
as well as characteristic pancreatic lesions. Pistachio supplementation significantly increased lactobacilli
and bifidobacteria populations in jejunum, ileum and caecum (p < 0.05) and normalized microbial flora
in all examined intestinal regions of diabetic animals. After 4 weeks of supplementation, populations of
bifidobacteria and lactobacilli were increased in feces of both healthy and diabetic animals, while
enterococci levels were decreased (p < 0.05). Next Generation Sequencing of fecal samples revealed
increased and decreased counts of Firmicutes and Bacteroidetes, respectively, in healthy animals that
received the pistachio diet. Actinobacteria OTUs were higher in diabetic animals and increased over time
in the pistachio treated groups, along with increased abundance of Bifidobacterium. Lactobacillus, Turi-
cibacter and Romboutsia populations were elevated in healthy animals administered the pistachio nuts.
Of note, relative abundance of Bacteroides was higher in healthy than in diabetic rats (p < 0.05).
Conclusion: Dietary pistachio restored normal flora and enhanced the presence of beneficial microbes in
the rat model of streptozotocin-induced diabetes.
© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Type 1 diabetes (T1D) is characterized by a series of events
resulting in autoimmune destruction of insulin-secreting pancreatic
b-cells and inability of the body to regulate and use blood glucose.
C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Nutrient composition (g in 100 g per diet) and energy content (kcal/100 g) of control
and pistachio diet administered to the animals.

Control Pistachio

Protein 18.73 19.50
Carbohydrate 39.82 38.41
Fat 10.00 10.00
Fiber 4.05 4.98
Starch 37.18 35.59
Sucrose 2.64 2.55
Corn oil 4.09 0.00
Pistachios 0.00 8.05
Energy

430.0 427.1
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During the last decades, the incidence of T1D has dramatically
increased in developed countries, suggesting that beyond the ge-
netic component, environmental factors, such as diet, intestinal
microbiota, increased pharmaceutical use and chemical exposure
contribute to the onset and the development of the disease [1].

The gastrointestinal (GI) tract constitutes the most important
site of interaction between the host immune system and microor-
ganisms. Gut microbes exert both anti- and pro-inflammatory ac-
tions, since normal flora community includes members that are
capable to induce inflammatory responses [2]. Thus, the composi-
tion of microbiota might disturb the normal interaction with the
immune system and contribute to altered immune responses
having an impact on the development of T1D [1,3]. The intestinal
microbiota is amajor contributor towards the onset of T1D and/or is
also modified as a result of T1D disease progression [4]. The
involvement of the intestinal microbiota in the pathophysiology of
T1D has been highlighted by several human studies that reported
an increased ratio of duodenal Bacteroidetes/Firmicutes [5], a
decreased microbial diversity [6] and an overgrowth of opportu-
nistic pathogens [7]. The restoration of normal composition of
microbiota populations constitutes a new target for the prevention
and treatment of the disease [8,9].

Diet is a major environmental factor contributing to gut micro-
biota diversity and functionality, as different dietary compositions
have diverse effects on bacterial shifts [10e14]. Nuts and seeds are
considered important components of healthy dietary patterns. Pis-
tacia vera L., is a dioecious deciduous tree member of the Anacardia-
ceae family originating in Central and West Asia, which has been
distributed throughout the Mediterranean countries. It has been
cultivated for centuries due to its fruit, pistachio, and is considered a
delicacy. Iran has the highest production worldwide (52%) followed
by the United States (24%), Syria (9%), Turkey (7%) and Greece (2%),
which is the largestproducing country inEurope.Greekpistachios are
famous since one of the best varieties in theworld is cultivated in the
island of Aegina. However, pistachios are also produced in the area of
Lamia, as well as in other regions of Central Greece. The Aegina pis-
tachio has been nominated by the European Commission as a Pro-
tectedDesignationofOrigin (PDO)product [15], due to its exceptional
flavor, shapely form, and full kernel.

Pistachios are rich source of monounsaturated fatty acids
(MUFA), dietary fibers and phytochemicals, which are known for
their beneficial health effects [16]. Specifically, they contain high
amounts of oleic acid, while phenolic compounds like trans-
resveratrol, proanthocyanidins, isoflavones daidzein and genistein,
as well as catechin and epicatechin have been reported as con-
stituents of pistachio nuts [17e19]. Metabolites of phenolic com-
pounds influence the growth of certain microbial species [20], and
a diet high in MUFA has been reported to increase the fecal bifi-
dobacteria in volunteers at Metabolic Syndrome (MetS) risk [21,22].
Fibers form a substrate for microbial fermentation in the gut,
facilitating the maintenance and/or selection of a healthy micro-
biota composition. Pistachio could be suggested as a food with
prebiotic properties with significant potential for maintaining
health via microbiota regulation [16,23].

The aim of the study was to investigate the effect of dietary
supplementation with pistachios on gut microbiota of diabetic
animal models that could provide a potential future benefit for T1D
patients.

2. Materials and methods

2.1. Animals and induction of diabetes

Eighteen-week old male Wistar rats (bw~350 g) were intra-
peritoneally injected with a freshly prepared solution of
streptozotocin (STZ) (Sigma-Aldrich, Germany) in citrate buffer
(0.1 M, pH 4.5) in a dose of 40mg/kg. The injection was performed
early in the morning and animals were in non-fasting state. Seven
days after the injection, blood glucose concentrationwasmeasured.
Animals exhibiting levels above 250 mg/dL [24] accompanied by
signs of polyurea and polydipsia were considered diabetic and
included in the study. Animal experimentation was reviewed and
approved by the Veterinary Directorate of the Athens Prefecture
(Ref. Number 2057/05-04-2017) and conducted in compliance with
the European Directive 2010/63.

2.2. Dietary treatment

Twenty-four animals were studied. Rats were individually
housed in a temperature controlled environment (21 ± 2 �C with
50 ± 5% relative humidity) with a 12-h light/dark cycle (light period
between 6:00 and 18:00) in single polypropylene cages in the
Laboratory Animal Facility of the Biomedical Research Foundation
of the Academy of Athens. Before experimentation, animals were
allowed to acclimate for one week and had free access to standard
rat chow (Mucedola, Italy, type 4RF22) and tap water.

Rats were randomized into four groups based on dietary treat-
ment: Healthy animals which received the control diet (n ¼ 6, CD)
or the pistachio diet (n ¼ 6, PD), and diabetic animals which
received the control diet (n ¼ 6, DCD) or the pistachio diet (n ¼ 6,
DPD). The number of animals was chosen according to a power
analysis (F-test ANOVA) performed by G*Power 3 software [25],
using data regarding bifidobacteria counts derived from a pilot
study. Diets contained 10% fat and were isocaloric. Control diet
included standard rat chow supplemented with corn oil instead of
pistachio, in order to equalize the amount of fat and caloric content.
Τhe pistachio diet was prepared using whole fresh pistachio ker-
nels (kindly provided by the Agricultural Pistachios Cooperation of
Molos-Thermopyles, Greece), including skin but not the shell.
Nutrient composition of the diets is presented on Table 1. The
feeding duration lasted 4 weeks. Rats received daily a fixed amount
of the appropriate dietary treatment during the entire experi-
mental period. Fresh food was provided to the animals every
morning, and if any chow remained from the previous day, it was
removed from the cages. Health and general condition of the rats
were monitored throughout the study by an expert veterinarian.

Blood samples were collected at the beginning and the end of
the dietary intervention from the lateral tail vein after 6 h of fasting.
Heparinized plasmawas stored at �80 �C until analysis. Fresh feces
were also collected and stored at�20 �C. Every week, animals were
weighted and blood glucose was measured by a glucose meter, in
order to ensure that they remained diabetic. At the end of the
experimental period, animals were euthanized, in random order, by
an overdose of isofluorane. The right liver lobe and pancreatic tis-
sue were excised, rinsed with saline and fixed in 10% neutral
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buffered formalin. The intestinal segments of the animals in the four
groups were dissected, rinsed with saline and samples were taken
from jejunum, ileum, caecum, and colon and processed for micro-
biological examination.

2.3. Blood analyses

Plasma glucose, total cholesterol (TC), high density lipoproteins’
cholesterol (HDL-C) and triacylglycerols (TAG) were determined on
an automated biochemical analyzer (Cobas 8000, Roche) using
commercially available kits (Roche). Plasma insulin levels in the
beginning and the end of dietary intervention were measured by a
sandwich ELISA method using a commercially available rat insulin
ELISA kit (EZRMI-13K, Merck Millipore, Germany).

2.4. Analysis of fecal microbiota

Feces (700e1200 mg) were homogenized with sterilized buff-
ered peptonewater 0.1% (LaB M, Heywood, UK) and were subjected
to serial dilutions using ¼ strength Ringer’s solution (LaB M). The
following tests on microbiological analysis were performed: (i)
total aerobic counts on plate count agar (LaBM) at 30 �C for 48 h, (ii)
staphylococci on Baird Parker (LaB M) enriched with egg yolk tel-
lurite (LaBM) at 37 �C for 24 h, (iii) coliforms on Violet Red Bile agar
(LaB M) at 37 �C for 24 h, (iv) Enterobactariaceae on Violet Red Bile
Glucose agar (LaB M) at 37 �C for 24 h, (v) streptococci and
enterococci on Bile Aesculin agar (LaB M) at 37 �C for 24 h (white or
grey colonies were considered streptococci, whereas round black
colonies as enterococci), (vi) lactobacilli (Gram positive) on acidi-
fied MRS agar (LaB M) at 30 �C for 24 h anaerobically (Merck Mil-
lipore Anaerobic Jar 2.5L, Oxoid AnaeroGen 2.5L Sachets), (vii)
yeasts/molds on Malt Extract (LaB M) at 30οC for 48 h, (viii)
Escherichia coli on MacConkey agar (LaB M) at 37 �C for 24 h (flat,
circular, moist, smooth, non-mucoid and of entire margin red and
pink colonies, with pink bile precipitation were considered as
E. coli), (ix) bifidobacteria on Bifidobacteria agar (22 g/L bacterio-
logical peptone, 5 g/L NaCl, 5 g/L dextrose, 1 g/L starch, 0.3 g L-
cysteine HCl, 15 g/L agar) at 37 �C for 24 h anaerobically (Merck
Millipore Anaerobic Jar 2.5L, Oxoid AnaeroGen 2.5L Sachets). All
incubations were further extended up to 120 h, but no extra col-
onies were observed. Gram staining and catalase tests were per-
formed for lactobacilli confirmation. Results are presented as log of
mean colony-forming units on solid media culture plates contain-
ing 30 to 300 colonies per gram of fecal samples.

2.5. Analysis of intestinal tissue adherent microbiota

The small and large intestines were removed aseptically and 3-
cm long individual sections were cut longitudinally. After removal
of the intestinal fluids, the tissue samples were washed with ster-
ilized buffered peptone water (LaВ M) mixed with 20% glycerol
(Merck Millipore) and then vortex mixed to break down bacterial
clumps and to remove loosely attached bacteria. Samples were
stored in 20% glycerol in sterilized buffered peptone water (LaB M)
at �20 �C until microbiological analysis was performed [26,27].

Intestinal tissues were homogenized with sterilized buffered
peptone water (LaB M) and were subjected to serial dilutions using
¼ strength Ringer’s solution (LaB M). The microbiological tests to
evaluate the different microbial populations were performed as
described in section 2.4.

2.6. DNA extraction, PCR amplification and 16S rRNA sequencing

Duplicate fecal samples from 0 (considered as baseline) and 4th
week of every diet group (CD, PD, DCD and DPD) were subjected to
DNA isolation and Next-Generation Sequencing (NGS). Total DNA
was extracted using the NucleoSpin®Stool Mini Kit (MACHEREY-
NAGEL GmbH & Co. KG, Germany), following manufacturer’s
instructions.

NGS was performed using MiSeq sequencing byMR DNA (www.
mrdnalab.com, Shallowater, TX, USA). The V4 region of the bacterial
16S rRNA gene was amplified from fecal genomic DNA with 27F/
519R primers (AGRGTTTGATCMTGGCTCAG/GTNTTACNGCGG
CKGCTG). Polymerase Chain Reaction (PCR) amplification was
performed using the HotStarTaq Plus Master Mix Kit (Qiagen,
Germantown, MD, USA), consisting of 30 cycles with the following
steps: 94 �C for 3min, 30 cycles of 94 �C for 30 s, 53 �C for 40 s, 72 �C
for 1 min, and the final elongation step at 72 �C for 5 min. PCR
products were then subjected to electrophoresis in 2% agarose gel
to confirm the amplification and to determine the relative intensity
of bands. The amplicons were then purified using Ampure XP beads
(Beckman Coulter, Brea, California, USA). Samples were subse-
quently prepared for the illumina DNA library using MiSeq
sequencing, following the manufacturer’s guidelines. Procession of
the sequencing data was held using a proprietary analysis pipeline
by MR DNA. Operational taxonomic units (OTUs) were defined by
clustering at 3% divergence (97% similarity) and the final OTUswere
taxonomically classified using BLASTn against a curated database
derived from RDPII and NCBI (www.ncbi.nlm.nih.gov, http://rdp.
cme.msu.edu) and compiled into each taxonomic level into both
“counts” and “percentage” files. The analysis of raw data in OTUs
level and the calculation of a- and b-diversity were performed
using Rhea platform [28]. A phylogenetic tree of representative
OTUs was constructed with Maximum Likelihood approach and
100 bootstraps, using MEGAX platform [29].

2.7. Histochemistry and microscopic examination

After fixation, liver and pancreatic tissue samples were
embedded in paraffin, cut into sections of 3 mm thickness and
stained with hematoxylin and eosin for microscopic examination.

Liver sections were examined as previously described [30,31].
Histological features were grouped into five broad categories:
steatosis, ballooning, portal inflammation, lobular activity and focal
necrosis. For pancreatic lesions, histological features were grouped
into six categories [32]: b-cell distortion, nuclei uniformity,
vacuolization, necrosis, pycnotic nuclei and fatty infiltration. A
score from 0 (absence) to 3 (severe lesion) was assigned to each
parameter.

2.8. Statistical analysis

Data are expressed as mean ± SEM. Statistical analysis was
performed using SPSS 21.0 statistical software. Variables were
tested for normal distribution with the Kolmogorov-Smirnov test.
One-way analysis of variance (ANOVA) coupled with the Bonferroni
post-hoc test was used to compare microbiota populations in seg-
ments of intestinal tissue, as well as scores for pancreatic tissue
samples. ANOVA for repeated measures coupled with the Bonfer-
roni post-hoc test was employed to compare microbiota pop-
ulations of fecal samples, blood parameters and body weight in the
four groups of animals. The level of statistical significancewas set at
p < 0.05.

3. Results

3.1. Effect of pistachios on body weight

At the end of dietary intervention, body weight of diabetic an-
imals of both DCD and DPD groups was significantly decreased

http://www.mrdnalab.com
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compared to healthy animals (p < 0.05, Table 2), but no differences
between healthy or diabetic groups were noticed (p > 0.05). Dietary
pistachios did not affect body weight in PD animals and no differ-
ences were observed between PD and CD groups (Table 2).
3.2. Biochemical parameters and insulin

In the beginning of the dietary intervention, plasma glucose
concentrations were higher in both DCD and DPD groups compared
to CD and PD (p < 0.05), butno differences between healthy or
diabetic groups were observed (p > 0.05). Similarly, there were no
significant differences in plasma glucose concentrations between
DCD and DPD (p > 0.05), as well as between CD and PD groups
(p > 0.05) at the end of the dietary intervention.

Dietary pistachio supplementation did not affect plasma lipid
profiles of the animals in both PD and DPD groups. TC and HDLC
remained within the normal range in the four groups of animals,
while TAG levels were increased in diabetic animals, but no sig-
nificant difference was observed when compared to healthy rats
(p > 0.05 compared to baseline values (day 0) and p > 0.05 between
groups).

Plasma insulin concentrations were lower in animals of DCD and
DPD groups (p < 0.05 compared to CD and PD) in the beginning of
the studywithout difference between them (p > 0.05). At the end of
the dietary intervention, insulin levels remained at low levels in
both groups of diabetic rats.
3.3. Analysis of the fecal microbiota

Total aerobic counts (TAC) did not differ between groups (Fig. 1).
Staphylococci, streptococci and fungi counts ranged at similar
levels in all groups. Coliforms, Enterobacteriacae and E. coli levels
were significantly increased in DCD compared to CD group in week
0 (p < 0.05), but the differences were diminished in week 4
(p > 0.05). Pistachio supplementation had a significant impact on
population of E. coli in DPD animals at the 4th week, as it was
decreased compared to baseline values (p< 0.01), and to DCD group
(p < 0.01). A significant reduction in enterococci counts was
observed at the 4th week in both PD and DPD compared to the
control groups CD (p < 0.01) and DCD (p < 0.01) respectively, and to
week 0 (p < 0.01 for PD and p < 0.01 for DPD). Bifidobacteria
population in PD group was significantly increased over time
(p < 0.01 vs. week 0) and vs. CD group (p< 0.01), whereas it was also
higher in DPD group vs. DCD group (p < 0.01). Finally, pistachio diet
significantly increased the level of lactobacilli in PD compared to CD
group (p < 0.01) at the end of the dietary intervention and in DPD
animals compared to baseline and control group (p < 0.01 vs. DPD
week 0 and p < 0.05 vs DCD week 4, Fig. 1).
Table 2
Body weight and biochemical parameters of the 4 groups of animals in the beginning an

CD PD

Baseline end baseline end

Body weight (g) 412.3 ± 12.2 410.8 ± 11.5 412.0 ± 10.3 409.5 ± 8.7
Glucose (mg/dL) 124.50 ± 5.35 106.67 ± 2.56 123.67 ± 8.48 112.84 ± 4.17
Insulin (ng/mL) 4.63 ± 0.23 3.60 ± 0.49 3.85 ± 0.20 2.63 ± 0.48
TC (mg/dL) 90.17 ± 4.32 102.00 ± 4.35 93.5 ± 1.88 89.50 ± 2.26
HDLC (mg/dL) 71.40 ± 1.89 80.84 ± 2.94 69.84 ± 4.29 74.00 ± 1.57
TAG (mg/dL) 103.40 ± 13.08 120.00 ± 6.71 109.67 ± 14.72 118.67 ± 9.34

Values are expressed as mean ± SEM. CD: healthy animals that received the control die
received the control diet, DPD: diabetic animals that received the pistachio diet.

a p < 0.05 compared to CD values.
b p < 0.05 compared to PD values.
3.4. Analysis of the intestinal tissue microbiota

3.4.1. Jejunum microbiota
Enterococci, coliforms, Enterobacteriacae, E. coli and streptococci

counts were significantly higher in diabetic animals receiving the
control diet compared to healthy rats (p < 0.05 between DCD and
CD groups, Fig. 2a). Bifidobacteria counts were lower in diabetic
animals receiving the control diet, while dietary pistachio signifi-
cantly increased their levels in both healthy (p < 0.05 vs. CD group)
and diabetic rats (p < 0.05 vs. DCD group). Pistachio supplemen-
tation caused a significant decrease in enterococci and E. coli pop-
ulations, as well as in staphylococci counts in both PD and DPD
groups (p < 0.05 between DCD and DPD groups). Coliforms and
Enterobacteriacae counts were increased in DCD group (p < 0.05 vs.
CD and PD) and pistachio treatment decreased the populations to
levels similar to those of healthy animals (p < 0.05 vs DCD). Lac-
tobacilli counts were significantly higher in DPD group compared to
the other three groups (p < 0.05 vs. CD, PD and DCD groups, Fig. 2a).

3.4.2. Ileum microbiota
Coliforms and Enterobacteriacae levels were higher in DCD

compared to CD group (p < 0.05) No differences in lactobacilli and
bifidobacteria counts were noted in CD and DCD groups. Pistachio
supplementation resulted in a significant reduction of coliforms
and Enterobacteriacae levels in both diabetic and healthy animals
(p < 0.05). A significant increase in lactobacilli and bifidobacteria
counts was observed in both healthy and diabetic rats receiving the
pistachio nuts (p < 0.05 between CD and PD groups, as well as
between DCD and DPD groups, Fig. 2b).

3.4.3. Caecum microbiota
Coliforms, E. coli and bifidobacteria counts were lower in dia-

betic compared to healthy animals (p < 0.05, Fig. 2c). No differences
were observed in lactobacilli population between healthy and
diabetic animals, which received the control diet, but pistachio
administration increased their levels (p < 0.05 between CD and PD,
p < 0.05 between DCD and DPD). Pistachio diet also increased
bifidobacteria levels in both healthy and diabetic rats (p < 0.05
between CD and PD, p < 0.05 between DCD and DPD). Counts of
enterococci, E. coli and Enterobacteriacaewere significantly reduced
in PD and DPD groups (p < 0.05 between CD and PD, p < 0.05 be-
tween DCD and DPD). Staphylococci population was also signifi-
cantly lower in DPD compared to DCD group (p < 0.05, Fig. 2c).

3.4.4. Colon microbiota
Enterococci, coliforms, staphylococci and E. coli levels were

significantly lower in DCD compared to CD group (p < 0.05, Fig. 2d).
Supplementationwith pistachio nuts reduced enterococci counts in
both healthy and diabetic animals (p < 0.05 between CD and PD,
d the end of the dietary intervention.

DCD DPD

baseline end baseline end

357.2 ± 15.4 333.5 ± 16.5a,b 377.0 ± 17.2 326.0 ± 8.9a,b

352.17 ± 39.18a,b 345.67 ± 75.54a,b 403.17 ± 39.23a,b 503.00 ± 60.31a,b

1.81 ± 0.79a,b 0.82 ± 0.30a,b 2.07 ± 0.08a,b 1.72 ± 0.27a

99.17 ± 5.99 117.34 ± 7.89 91.67 ± 1.93 115.34 ± 8.52
68.17 ± 3.96 84.67 ± 4.94 73.17 ± 4.36 87.20 ± 5.11
230.4 ± 93.28 148.20 ± 40.50 210.83 ± 47.74 167.67 ± 49.81

t, PD: healthy animals that received the pistachio diet, DCD: diabetic animals that



Fig. 1. Effect of pistachio diet on fecal microbiota population in healthy and diabetic animals at 0 and 4th week of pistachio supplementation. Data are expressed as mean ± SEM.
Data with different superscript letters are significantly different p < 0.05, according to the post hoc ANOVA statistical analysis. TAC: total aerobic counts, CD: healthy animals that
received the control diet, PD: healthy animals that received the pistachio diet, DCD: diabetic animals that received the control diet, DPD: diabetic animals that received the pistachio
diet. ap < 0.05 vs timepoint 0 of the same sample, bp < 0.05 PD vs CD, cp < 0.05 DPD vs DCD, dp < 0.05 CD vs DCD.
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p < 0.05 between DCD and DPD), as well as levels of coliforms and
E. coli in healthy animals (p < 0.05 between CD and PD). E. coli
counts were increased in DPD compared to DCD group, but yet
remained in lower (p < 0.05) levels than in CD animals. Coliforms
counts ranged at similar levels in DPD and DCD groups (p > 0.05).
Lactobacilli population was lower in DPD vs. DCD group (p < 0.05),
but in similar levels to PD rats (which were higher than the CD
group, p < 0.05). Pistachio supplementation increased bifidobac-
teria counts in PD compared to CD animals (p < 0.05). However,
they were significantly lower in DPD compared to PD group (p
<0.05), but no significant differences between DCD and DPD groups
(p > 0.05, Fig. 2d) were recorded.

3.5. Fecal microbiota determined by next generation DNA
sequencing

At phyla level, an increased percentage of Actinobacteria in
diabetic compared to healthy animals was observed, but yet no
significant differences (p > 0.05) in Firmicutes and Bacteroidetes
levels between CD and DCD or PD and DPD groups were recorded.
At the 4th week of the dietary intervention, a significantly
increased population of Firmicuteswas observed in healthy animals
(PD group) compared to the baseline (p < 0.05, Fig. 3) and to CD
group (p < 0.05). Furthermore, Bacteroidetes levels were decreased
in PD group at week 4, compared to baseline (p < 0.05) and CD
(p < 0.05) group at the same time point. An increased percentage of
Actinobacteriawas recorded in DPD animals over time (p < 0.01 vs.
baseline DPD values). Proteobacteria population, which is the less
represented phylum (< 1% abundance), showed no significant
differences among the samples (Fig. 3).
The phylogenetic tree showing the evolutionary relationships

between the different genera and their distributions among the
samples based on the phylogenetic analysis of the representative
OTUs is presented in Fig. 4.

At genera level, Bacteroides OTUs were more abundant in
healthy compared to diabetic animals (p < 0.05 between CD and
DCD at week 0, Fig. 4). The 4-week pistachio supplementation
resulted in a higher percentage of Turicibacter in PD compared to
CD animals (p < 0.05) and Romboutsia levels were raised in PD
group compared to CD (p < 0.01), DPD (p < 0.01) and PD groups at
baseline (p < 0.05). Pistachio diet had also a significant impact on
the presence of Lactobacillus genus in healthy animals (PD), which
was higher at the end of the study compared to CD (p < 0.01) and
samples of week 0 (p < 0.05). In STZ-induced diabetic rats, the
population of Bifidobacterium was increased in DPD compared to
DCD group (p < 0.01) and baseline values (p < 0.01, Fig. 4).

Shannon and Simpson indices were calculated to measure di-
versity, which reflects the different observed microbiota (Fig. 5),
taking into account the number of species present, as well as the
relative abundance of each species. Diversity indices provide
important information about rarity and commonness of species in a
community [22]. The Shannon index assumes all species are rep-
resented in a sample and that they are randomly distributed.
Increased Shannon indicates increased diversity [33,34]. The
Simpson index is based upon the probability that two specimens
belong to the same species, and is not affected by rare species [35].
Shannon’s index was decreased in DCD compared to CD group
(p < 0.05) at week 4 and Simpson’s index was increased in DCD
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compared to CD animals (p < 0.01) at week 0. After 4 weeks of
dietary supplementation, in PD group, Shannon’s index was
significantly decreased compared to baseline (p < 0.01) and to CD
group (p < 0.05), and Simpson’s index was increased in both the
above mentioned cases (p < 0.01 vs. PD at week 0 and p < 0.01 vs.
CD at week 4, Fig. 5).
3.6. Histochemistry

Liver lesions were not observed in any group of animals.
Pancreatic lesions were apparent in diabetic animals of both
groups, while tissues of CD and PD groups were healthy, as
confirmed by the histological examination. Pancreatic lesions were
Fig. 2. Effect of pistachio diet on gut microbiota population of healthy and diabetic animals in
with different superscript letters are significantly different p < 0.05, according to the post hoc
the control diet, PD: healthy animals that received the pistachio diet, DCD: diabetic animal
ap < 0.05 vs CD, bp < 0.05 vs PD, cp < 0.05 vs DCD, dp < 0.05 vs DPD.
expressed as mean score ± SEM. The scores for b-cell distortion,
nuclei uniformity and pycnotic nuclei are presented on Table 3.
Vacuolization, necrosis and fatty infiltration were not detected.
There were no statistically significant differences between the DCD
and DPD groups in any of the measured parameters (p > 0.05 be-
tween groups). Photomicrographs of representative liver and
pancreatic sections of healthy and diabetic rats are depicted on
Fig. 6.
4. Discussion

Gut microbiota has been recognized as a key environmental
factor which contributes to the development of T1D, while the
: (a) jejunum, (b) ileum, (c) caecum, (d) colon. Data are expressed as mean ± SEM. Data
ANOVA statistical analysis. TAC: total aerobic counts, CD: healthy animals that received

s that received the control diet, DPD: diabetic animals that received the pistachio diet.



Fig. 2. (continued).
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restoration of normal composition of microbial population consti-
tutes a new target for the prevention and treatment of the disease
[8,9]. In our study, T1D was induced by intraperitoneal injection of
STZ and the effects of a dietary intervention with pistachio nuts on
intestinal microbiota composition were determined. The alter-
ations in plasma glucose, serum insulin, body weight, as well as the
histopathological examination of pancreas indicated that the T1D
model was successful.

STZ is a widely used chemical for the induction of experimental
Τ1D in rodents, a disease that does not occur naturally. Its diabe-
togenic action is primarily caused by the highly specific cytotoxic
action on the b-cells of the islets of Langerhans with rapid and



Fig. 3. Taxonomic-binning in phyla level with normalized relative abundances, CD: healthy animals that received the control diet, PD: healthy animals that received the pistachio
diet, DCD: diabetic animals that received the control diet, DPD: diabetic animals that received the pistachio diet. Parenthesis indicating the timepoint of the diet, 0: baseline week
and 4: after 4 weeks of dietary intervention with pistachio nuts.
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irreversible necrosis [36]. The toxicity of STZ to b-cells is observed
for a short-time period since it is excreted and further impairment
of the surviving b-cells’ function is due to hyperglycemic toxicity
[37]. It is currently unclear what the direct effect of STZ-induced
T1D development and progression is on the intestinal composi-
tion of the host [4]. Although the mechanisms implicated in the
onset of T1D in rats may be different than in humans, the events
following the b-cell destruction are similar. Therefore, the observed
changes in microbial shifts are likely due to the induced diabetes
and not to STZ administration.

In STZ-induced diabetic animals, fecal coliforms were signifi-
cantly higher at baseline, in line with the results of other re-
searchers [38], reporting that fecal coliform counts were increased
in the alloxan-induced diabetic rats compared to the control group.
E. coli fecal counts were also higher in diabetic rats compared to
healthy animals at week 0. Likewise, Ma et al. [39] demonstrated
that in STZ-diabetic rats, the E. coli- Shigella genera were increased
in fecal samples compared to healthy animals. The results of the
present study revealed a functional modulation of gut microbiota
by pistachio supplementation. At the end of the 4-week dietary
intervention with pistachio nuts, enhancement of beneficial bac-
teria populations in feces was noticed, such as bifidobacteria and
lactobacilli, in both diabetic and healthy animals. In addition, a
reduction in enterococci population was observed and E. coli levels
were also decreased in diabetic animals. Of note, higher levels of
bifidobacteria and lactobacilli have been previously reported in
genetically diabetes-resistant rats [40]. Other studies indicated that
an increase of lactobacilli levels promotes gut barrier function [41],
can reduce body glucose amounts andmay be a key-microorganism
in the prevention and treatment of T1D. However, a crossover
feeding trial [16] with pistachio supplementation in healthy sub-
jects for 18 days showed that although it caused an increase in
potentially beneficial butyrate-producing species, it led to
decreased levels of lactobacilli. Oleic acid, the monounsaturated
fatty acid, which is present in high amounts in pistachio kernels,
has been shown to increase fecal bifidobacteria when supple-
mented in female mice treated with high fat diet [42]. Accordingly,
a diet rich in MUFA has been reported to increase the fecal bifi-
dobacteria in volunteers at MetS risk [21,22].

Fecal microbiota reflects the microbiology of the colon,



Fig. 4. (a) Phylogenetic tree of representative OTUs, which are represented with different colors, from 16S rRNA analysis constructed using Maximum-Likelihood algorithm in
MEGAX-program, different colors represent the variant genera, (b) Taxonomic-binning in genus level with normalized relative abundances, CD: healthy animals that received the
control diet, PD: healthy animals that received the pistachio diet, DCD: diabetic animals that received the control diet, DPD: diabetic animals that received the pistachio diet,
parenthesis indicating the timepoint of the diet, 0:baseline week and 4: after 4 weeks of dietary intervention with pistachio nuts. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 5. Diversity indices (a) Simpson’s and (b) Shannon’s expressed as mean ± SEM. Data with different superscript letters are significantly different p < 0.05, according to the post
hoc ANOVA statistical analysis. ap < 0.05 vs timepoint 0 of the same sample, bp < 0.05 PD vs CD, cp < 0.05 DPD vs PD, dp < 0.05 DCD vs CD.

Table 3
Histological features of pancreas in the animals of the four groups. Values are
expressed as mean ± SEM.a p < 0.05 compared to CD, bp < 0.05 compared to PD.

CD PD DCD DPD

b-cell distortion 0.34 ± 0.21 0.34 ± 0.21 2.17 ± 0.31a,b 1.84 ± 0.17a,b

Nuclei uniformity 0.00 ± 0.00 0.00 ± 0.00 1.67 ± 0.21a,b 1.84 ± 0.17a,b

Vacuolization 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Necrosis 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Pycnotic nuclei 0.34 ± 0.21 0.34 ± 0.21 2.00 ± 0.26a,b 1.84 ± 0.31a,b

Fatty infiltration 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
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particularly the descending colon and rectum [43], but not all mi-
crobes thriving in the gut are equally represented in the feces.
However, their extensive use relies on the simple sampling method
and the non-invasive nature of this approach. Hence, microbio-
logical analysis of the various intestinal segments was performed in
order to investigate potential microbial associations of adherent
species to the fecal microbiota. Microbial communities’ composi-
tion along the GI tract is determined by gut-segment-specific pa-
rameters like pH, oxygen, nutrients availability, etc. Rat intestinal
segments, i.e. small intestine and large intestine, constitute
different microenvironments and harbor variant microbial genera,



Fig. 6. Representative sections from pancreas and liver of healthy and STZ-induced diabetic rats. Eosin-hematoxylin stain, 200x. A. Pancreatic section of healthy animal shows a
well-preserved cellular architecture. The islets of Langerhans exert a homogenous morphology of b-cells (arrow). B. Pancreatic section of STZ-induced diabetic rat shows
degranulation and vacuolation of b-cells (arrow). C, D. Liver sections from healthy (C) and diabetic (D) animals demonstrate normal architecture of the liver parenchyma without
evidence of portal inflammation or necrosis.
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as diverse genera respond differently in the complex GI environ-
ment [44]. Our study revealed distinct alterations in adherent
microbiota composition in the different intestinal segments in both
diabetic and healthy animals. Importantly, in jejunum and ileum,
STZ-induced diabetes caused a significant increase in Enter-
obacteriacae and coliforms levels. Colon microbiota analysis
revealed that enterococci population was significantly lower in
diabetic group compared to healthy animals receiving the control
diet. Cecal and colonic coliforms and E. coli counts were lower in
STZ-induced diabetic rats (DCD group) compared to the control
group (CD), a finding that is not consistent with the results of the
fecal microbiota and the small intestine. Li et al. [27] reported that
despite the large number of overlapping OTUs, the luminal and
mucosal microbial communities present notably radial segregation,
specifically in the rat lower GI tract. In ileum and jejunum, pistachio
supplementation reduced the populations of Enterobacteriacae and
coliforms to almost normal levels and resulted in higher counts of
bifidobacteria and lactobacilli. In caecum, the dietary intervention
with pistachio led to a decrease in the levels of enterococci, co-
liforms and E. coli, both in diabetic and healthy animals. Reaching
the colon of diabetic rats, no significant effects of pistachio treat-
ment were recorded, whereas in healthy animals, increased levels
of bifidobacteria and lactobacilli along with reduced counts of
enterococci, coliforms, E. coli and staphylococci were observed. In
another study [45], similar levels of E. coli and enterococci were
reported in ileum, and colon in diabetic prone mice administered
with human milk, compared to the control group, while in caecum,
E. coli numbers were decreased, proposing the differential behavior
of the different intestinal segments to the same treatment. More-
over, fecal bifidobacteria levels were increased in diabetic mice
supplemented with human milk, in line with the results of the
present study, recording higher numbers of fecal bifidobacteria in
DPD rats.

Stool samples are often used to investigate the intestinal
microbiota, since they are easily collected. Nevertheless, the degree
to which the composition and function of the fecal differ from
mucosal microflora remains unclear. In the present study, fecal
microbial populations were in agreement with the attached mi-
crobial associations at the small intestine (jejunum and ileum), in
contrast to the microbiota of the colon. Similar findings were pre-
viously published by Kohl et al. [46], suggesting that fecal bacterial
communities were significantly different by colonic communities,
but were most similar to the small intestine community structure.
The colon consists of several distinct parts (proximal, mid and
distal) and the term “intestinal microbiota” is used to refer to the
different microbial populations, both the luminal and the mucosa-
associated microbiota. The mucus varies throughout the colon and
consists of variant microenvironments that can host diverse mi-
crobial species [47], while fecal microbiota represents a combina-
tion of mucosal bacteria and a separate non adherent luminal
population [48]. Thus, differences among the fecal microbiota and
the microbial populations attached and/or colonized in the intes-
tinal tissues are fully justified [27,46].

Considering the limitations of the culture-based methods, mo-
lecular analysis on fecal samples was also carried out, in order to
further validate our results. 16S rRNA sequencing of fecal samples
revealed that Actinobacteria levels were increased in diabetic ani-
mals compared to the control group, in line with other studies
[4,39,49], documenting an increased presence of Actinobacteria in
STZ-induced T1D rat fecal microbiota. Ma et al. [39], reported that
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Firmicutes and Bacteroidetes were the main phyla consisting the
microbiome of healthy, as long as diabetic rats, but no significant
differences between the two groups were noted, in agreement with
our results. In contrast, according to Patterson et al. [4], diabetic
disease state leads to microbial shifts and STZ-induced T1D is
linked with a reduction of Firmicutes and an increase of Bacter-
oidetes levels accompanied by a diminished diversity. In this vein,
pistachio diet had an impact on the main phyla of the microbiome.
In healthy animals, after 4 weeks of dietary supplementation, Fir-
micutes population was increased, while Bacteroidetes levels were
decreased. In vitro assays have shown a favorable effect of catechins
and epicatechins on the Firmicutes/Bacteroidetes ratio [20,50]. Ex-
periments in the intestinal microbiome of naked-mole rats [51],
which are well known for their long life expectancy and cancer
resistance, suggested that a diet rich in polyphenols is the principal
key factor for their longevity. The intestinal microflora consisted
mainly of Firmicutes and Bacteroidetes, but low amounts of Proteo-
bacteria and Actinobacteria were also identified.

Levels of the bacterial genus Bacteroides, a producer of SCFAs
which offers a beneficial advantage in the host when present in the
gut [52], were increased in healthy compared to STZ-induced dia-
betic rats. However, in newly diagnosed T1D children, high levels of
Bacteroides have been reported [53]. After the 4 weeks of dietary
intervention, Turicibacter that is positively related to production of
butyric acid and potential probiotic properties [54], and Romboutsia
[55], a natural and abundant inhabitant of the rat small intestine,
were present in higher levels in healthy animals that received the
pistachio nuts compared to the animals of the control group. In a
previous dietary intervention study, the above mentioned genera
were higher in rats fed with barley malt and were also associated
with the production of butyric acid, which is related to improved
metabolic parameters [56]. Increase of Bacteroides population has
been observed in obese mice after administration of potential
prebiotic arabinoxylan from wheat [57]. However, pistachio nuts
did not enhance Bacteroides levels in T1D rats. Moreover, the per-
centage of the beneficial Lactobacillus and Bifidobacterium genera
were significantly enhanced in both healthy and STZ-induced dia-
betic rats receiving the pistachio diet. A positive association be-
tween the frequency of consumption of fruits and vegetables with
Lactobacillus, Clostridium coccoides and Prevotella populations has
been reported previously [20,58], while an increase in the Lacto-
bacillus/Enterococcus group has been observed with polyphenol-
rich grape seed extract [20,59]. Phenolic compounds are metabo-
lized by intestinal microbiota, affecting their absorption and
determine their functionality, but on the other hand, their metab-
olites influence the growth of certain bacterial species. In agree-
ment with our study, Liu et al. [60], witnessed a significant increase
in the populations of Bifidobacterium and Lactobacillus in fecal
samples, as a consequence of almond or almond skin supplemen-
tation in healthy humans.

In the present study, the Shannon and Simpson diversity indices
highlighted a significant reduction in diversity in diabetic animals,
which is in accordance with the results of other researchers [4,8],
reporting a reduced diversity in T1D rats compared to the healthy
animals [39]. Increased diversity is a characteristic of healthy in-
dividuals and low bacterial diversity has been linked to obesity and
inflammatory bowel disease [61]. According to our results, the 4-
week dietary intervention resulted also in a decrease in diversity.
Similarly, inulin-type fructans dietary intervention, considered as
prebiotic fibers, revealed a decreased alpha-diversity in both
healthy humans and in obese individuals [61,62]. Further research
is expected to provide more insights on the effect of dietary inter-
vations on fecal and intestinal microbiome diversity of STZ-induced
animal models.

It is well established that Bifidobacterium genus holds a key-role
in maintaining GI tract health through supplementation of
butyrate-producing species with lactate and acetate, as well as the
enhancement of intestinal epithelial barrier function [63,64]. A
significant reduction of Bifidobacterium species has been reported
for children with b-cell autoimmunity compared to autoantibody-
negative children [63]. In addition, in high fat-fed diabetic mice
treated with prebiotic oligofructose, Bifidobacterium spp. was
positively correlated with improved glucose tolerance, glucose-
induced insulin secretion and normalized inflammatory tone [65].

In our study, pistachio did not induce alterations in glucose or
insulin of diabetic animals, but it enhanced the presence of mi-
crobes that are involved in inflammatory responses. Bacterial me-
tabolites, such as the SCFAs, affect various systems, including gut
and immune homeostasis, immunological responses and T-lym-
phocytes, as well as the control of inflammation [66]. It is likely that
pistachio can serve as a potential prebiotic fiber that promotes the
balance of microbiota involved in pro- and anti-inflammatory re-
sponses implicated in T1D. The duration of the intervention and the
high levels of glucose caused by the STZ protocol are factors which
could probably be related to the results, indicating no effects on
biochemical parameters.

А limitation of the study was that parameters associated with
inflammatory or anti-inflammatory action were not determined.
Gut bacteria are an important source of polyamines, which exhibit
anti-inflammatory action, such as putrescine and spermine [67]. It
has been reported that the administration of Bifidobacteria LKM512
to elderly people increases intestinal polyamine concentrations
[68]. It has also been shown that the prevalence of Bacteroides spp.
within Finnish and Estonian infants is associated with early-onset
autoimmune disease through the production of a type of lipo-
polysaccharide that inhibits innate immune signaling and endo-
toxin tolerance [69].

Future studies, including the determination of inflammatory
factors, as well as gut microbiota metabolites are needed, in order
to clarify the underlying mechanisms. Regular consumption of
pistachios by T1D patients could possibly affect gut microbiota
composition, leading to beneficial changes for host metabolism
with a long-term impact. However, the complexity of gut micro-
biota, the heterogeneity of bioactive compounds of foods and the
fact that the effect of dietary components certainly depends on the
immune system of the host, makes the understanding of gut
microbiota-food interaction and their relation with the pathogen-
esis of the disease an intriguing issue.
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