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Abstract

The ability of cells to invade into the dermis is a critical event in the development of cutaneous 

melanoma and ultimately an indicator of poor prognosis. However, the molecular events 

surrounding the acquisition of this invasive phenotype remain incompletely understood. Mutations 

in B-RAF are frequent in melanoma and are known to regulate the invasive phenotype. In this 

study, we sought to determine the molecular mechanisms controlling melanoma invasion. We 

found that mutant B-RAF signaling regulates a cadherin switch. In melanoma cells expressing 

mutant B-RAF we observed high levels of N-cadherin and low levels of E-cadherin. Depletion of 

mutant B-RAF, by siRNA, caused a decrease in the levels of N-cadherin and an increase in the 

levels of E-cadherin. Mechanistically, we found that this cadherin switch required the activity of 

Rac1 and its GEF, Tiam1, both of which show suppressed activity in the presence of mutant B-

RAF. Consistent with the work of others, we found that depletion of mutant B-RAF decreased the 

invasive capacity of the melanoma cells. However, simultaneous depletion of B-RAF and Rac or 

Tiam1 resulted in invasive capacity similar to that of control cells. Taken together, our results 

suggest that mutant B-RAF signaling downregulates Tiam1/Rac activity resulting in an increase in 

N-cadherin levels and a decrease in E-cadherin levels and ultimately enhanced invasion.
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Introduction

Melanoma is the deadliest form of skin cancer and its incidence rate has been rising rapidly 

(1). Cutaneous melanomas arise from transformations in the epidermal melanocytes, the 

pigment producing cells of the skin. A key event in melanoma progression is the transition 
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from the radial growth phase, where cells grow only within the epidermis, to the vertical 

growth phase, where cells invade and grow into the dermis (2). The molecular mechanisms 

underlying the invasive phenotype acquired during the vertical growth phase remain poorly 

understood.

The serine/threonine kinase B-RAF is mutated in ∼60% of melanomas (3). The most 

common mutation encodes for a valine to glutamic acid substitution (V600E) within the 

activation loop of B-RAF, resulting in the constitutive activation of B-RAF and 

subsequently the downstream MEK/ERK pathway (3). Although a B-RAF v600E mutation 

is not sufficient to cause melanoma progression (4), B-RAF mutations do correlate with 

melanoma progression as they have been detected in 75% of vertical growth phase tumors 

and only 10% of radial growth phase tumors (5). Mutant B-RAF and its downstream 

activation of the MEK/ERK pathway have been implicated in regulating melanoma 

proliferation, migration and invasion (6), (7).

The acquisition of invasive ability is caused, in part, by the loss of cell-cell adhesion. 

Cadherins are a family of cell-surface glycoproteins that promote calcium-dependent 

homotypic and heterotypic cell-cell adhesion and serve as key components of adherens 

junctions (8). Cadherins are expressed in a cell-type specific manner. E-cadherin is present 

in polarized epithelial cells while N-cadherin is present in several cell types including, 

neurons, endothelial cells and fibroblasts. During melanoma progression there is a 

progressive loss of E-cadherin (9), (10). Although there is a loss in the expression of E-

cadherin many melanoma cells express high levels of N-cadherin (11), (9). The switch from 

E-cadherin to N-cadherin allows communication of melanoma cells with fibroblast and 

endothelial cells (12), (13) and promotes both the survival and migration of the melanoma 

cells (14).

Rac1 is an important regulator of both the migratory and invasive phenotype of cells. Rac1 

activity is required for both the formation and maintenance of adherens junctions in 

epithelial cells (15), (16) and is essential for the recruitment of cadherins to sites of cell-cell 

contact (17). Although rarely mutated, changes in the expression or activity of Rac1 are 

associated with changes in tumor progression. Rac1 has been well-established to induce 

invasion and metastasis in a number of cancers (18), (19). However, Rac1 is also known to 

inhibit the invasion and migration of renal cell carcinomas (20). This is due to the ability of 

Rac1 to upregulate cadherin-dependent adhesion.

In this study we sought to determine if mutant B-RAF regulates the invasive capacity of 

melanoma cells by regulating Rac1 activity and the subsequent effects on cadherin 

expression. We demonstrate that knock down of mutant B-RAF or inhibition of MEK/ERK 

signaling results in an increase in Rac1 activity due to the activation of the Rac1 GEF 

Tiam1. This increase in Rac1 activity is then responsible for a switch in the expression of N-

cadherin to E-cadherin and a down regulation of the invasive capacity of melanoma cells.
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Results

To determine whether B-RAF had any effect on cadherin expression in WM793 cells, a 

human vertical growth phase melanoma harboring a constitutively active B-RAFV600E 

allele, we utilized RNA interference. Two siRNAs targeting different sequences in B-RAF 

were used: one targeted a sequence present in both mutant and wild type B-RAF (B-RAF 

siRNA) and the other targeted the region containing the V600E mutation (V600E siRNA) 

(21). Transfection with either B-RAF or V600E siRNA ablated B-RAF protein levels when 

compared with control transfected cells (Fig 1A). Concomitant with decreased B-RAF 

protein expression, phosphorylation of its downstream target, ERK1/2, was also attenuated. 

Cadherin expression was determined in control and B-RAF knockdown cells by Western 

blotting. In control WM793 cells N-cadherin was expressed while there was no detectable 

level of E-cadherin observed (Fig 1A). In contrast, B-RAF knockdown with either of the 

two B-RAF targeting siRNAs showed decreased levels of N-cadherin when compared to 

control cells. In addition, the B-RAF knockdown cells also showed detectable levels of E-

cadherin. PLX4032 is a potent and selective inhibitor of mutant B-RAF signaling (22). We 

analyzed cadherin expression following inhibition of mutant B-RAF signaling using 

PLX4720, the non-clinical equivalent of PLX4032. PLX4720 acts in a manner that is 

indistinguishable from PLX4032 (7), (22). When cells were treated with PLX4720 we 

observed a decrease in the expression of N-cadherin and an increase in the expression of E-

cadherin when compared to control cells (Fig 1B). B-RAF is a potent activator of the MEK/

ERK1/2 signaling pathway; therefore, we sought to determine if MEK activity was 

important for changes in cadherin expression in melanoma cells. WM793 cells were treated 

with or without the MEK inhibitor, U0126, and cadherin expression was examined by 

Western blotting. When cells were treated with U0126 we observed a decrease in the 

expression of N-cadherin and an increase in the expression of E-cadherin when compared to 

control cells (Fig 1C). To determine if the effects of B-RAF knockdown caused a cadherin 

switch in more than one cell line, we performed similar experiments in WM115 cells 

(another VGP cell line that expresses an activating mutation in B-RAF, V600D (3)). 

Importantly, we found that knockdown of B-RAF or inhibition of MEK with U0126 caused 

a decrease in N-cadherin expression and an increase in E-cadherin expression in the WM115 

cells as well (Fig 1D). Taken together, these results suggest that mutant B-RAF and its 

downstream MEK/ERK1/2 signaling regulates cadherin expression in WM793 and WM115 

melanoma cells.

Once we had observed that E-cadherin expression was upregulated upon B-RAF knockdown 

we investigated whether the E-cadherin was functional. We performed immunofluorescence 

on WM793 cells subjected to control siRNA or B-RAF siRNA treatment and looked at the 

localization of E-cadherin staining (Fig 2A). We found that in the control cells there was no 

detectable staining of E-cadherin, while in the B-RAF knockdown cells staining for E-

cadherin is visible at discrete areas of cell-cell contact. We next performed a co-

immunoprecipitation analysis to determine if E-cadherin was able to bind β-catenin, a 

known binding partner. As demonstrated in Fig 2B, under control conditions 

immunoprecipitating β-catenin brought down no E-cadherin (likely because there is no E-

cadherin present). However, upon B-RAF knockdown we find that E-cadherin does co-
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immunoprecipitate with β-catenin. While normal epidermal melanocytes form cell-cell 

adhesions to neighboring keratinocytes, melanoma cells do not and instead form interactions 

with neighboring fibroblasts or endothelial cells (12), (13). To analyze the effect of B-RAF 

knockdown on cell-cell adhesion partners a co-culture model was used. WM793 melanoma 

cells subjected to control siRNA treatment or B-RAF siRNA treatment were cultured with 

either fibroblasts (MRC5 cells) or keratinocytes (HaCat cells) and transepithelial electrical 

resistance (TER) was measured. We found that B-RAF knockdown in the melanoma cells 

decreases fibroblast/melanoma TER when compared to control melanoma cells (Fig 2C). 

Conversely, B-RAF knockdown in the melanoma cells increased keratinocyte/melanoma 

TER. Taken together with earlier data, these data suggest that B-RAF knockdown causes a 

functional switch in cadherins.

Rac1 activity is known to regulate key components within the adherens junction (15). To 

determine if mutant B-RAF expression has any effect on Rac1 activity, control and B-RAF 

knockdown WM793 cells were analyzed for Rac1 GTP-loading, measured by pull-down 

assays with glutathione S-transferase-p21-activating kinase. As shown in Fig 3A, 

knockdown of B-RAF with either siRNA resulted in an increase in Rac1 activity. To 

investigate a role for mutant B-RAF signaling in Rac1 activity, we again used PLX4720, the 

inhibitor of mutant B-RAF signaling. We found that WM793 cells treated with PLX4720 

had increased levels of Rac1 activity when compared to control cells (Fig 3B). To determine 

if the effect of B-RAF knockdown on Rac1 activity was due to the ability of B-RAF to 

signal downstream to MEK the U0126 compound was used (Fig 3C). In WM793 cells 

treated with U0126 an increase in the levels of active Rac1 was observed when compared to 

control treated cells. Similar to the WM793 cells, we found that B-RAF knockdown or MEK 

inhibition in the WM115 cells also resulted in an increase in Rac activity (Fig 3D). These 

results are consistent with the idea that mutant B-RAF inhibits Rac1 activity in WM793 and 

WM115 melanoma cells.

As Rac1 activity has been shown to be a critical regulator of E-cadherin within the adherens 

junction (17) we next sought to determine if the ability of B-RAF to modulate cadherin 

expression was dependent on the B-RAF mediated regulation of Rac1 activity. To test this 

idea we simultaneously knocked down both B-RAF and Rac1 in WM793 cells and WM115 

cells and examined the levels of N-cadherin and E-cadherin by Western blotting (Fig 4A and 

C). As demonstrated earlier in Fig 1A, knockdown of mutant B-RAF resulted in the 

downregulation of N-cadherin. However, when both B-RAF and Rac1 are ablated with 

siRNA, N-cadherin levels remain similar to that of control. Conversely, when mutant B-

RAF alone is knocked down E-cadherin levels increase. However, when both B-RAF and 

Rac1 are knocked down E-cadherin levels remain undetectable. To further examine whether 

the effects of B-RAF knockdown on cadherin expression were dependent on increased Rac1 

activity, we used NSC, an inhibitor of Rac1 activity (23), (24) (Fig 4B). WM793 cells that 

had been subjected to either control or B-RAF knockdown were treated with NSC, to inhibit 

Rac1 activity, and the relative levels of N-cadherin and E-cadherin were analyzed. We found 

that in B-RAF knockdown cells inhibition of Rac1 activity with NSC caused N-cadherin 

levels to remain elevated and E-cadherin levels to remain undetectable, similar to control 

siRNA treated cells. In contrast, when B-RAF was knocked down in the absence of NSC N-
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cadherin levels decreased while E-cadherin levels increased. Collectively, these results 

suggest that Rac1 is required for the B-RAF regulated cadherin switch.

Once we had determined that knockdown of mutant B-RAF in melanoma cells resulted in a 

Rac-dependent cadherin switch we wondered what the effect would be on Rac activity and 

cadherin status if we transfected normal melanocytes with mutant B-RAF? We found that 

melanocytes expressing mutant B-RAF show decreased levels of E-cadherin and increased 

levels of N-cadherin when compared to their control counterparts (Fig 5). Additionally, we 

found that Rac activity was decreased in the mutant B-RAF expressing melanocytes.

While approximately 60% of melanomas harbor B-RAF mutations an additional 15% of 

melanomas express mutant N-Ras (25), (3). We wondered if melanoma cells that expressed 

N-Ras would show a similar Rac-dependent cadherin switch to the B-RAF mutant 

melanomas. In order to test this idea we used the VMM39 cell line, a melanoma cell line 

that expresses oncogenic N-Ras but has WT B-RAF. In Fig 6A we compared the basal 

levels of p-Erk and active Rac in the B-RAF mutant cell lines, WM793 and WM115, to the 

N-Ras mutant cell line, VMM39. We found that the mutant N-Ras cell line, VMM39, had 

lower levels of p-ERK and higher levels of active Rac than the mutant B-RAF cell lines, 

WM793 and WM115. We earlier demonstrated that in mutant B-RAF cells MEK inhibition 

with the U0126 compound raised the levels of active Rac and caused a switch in the 

expression of N-cadherin and E-cadherin (Fig 1 and 3). To determine if MEK inhibition had 

similar affects in the VMM39 cells we treated the cells with U0126 and analyzed levels of 

active Rac, N-cadherin and E-cadherin (Fig 6B). In contrast to the mutant B-RAF cell lines 

we found that MEK inhibition had no effect on the levels of active Rac, N-cadherin or E-

cadherin in the VMM39 cells. Furthermore, we found that knockdown of Rac expression 

with siRNA also had no effect on the levels of N-cadherin or E-cadherin in the VMM39 

cells. Collectively, these data suggest that a Rac-dependent cadherin switch is not present in 

the VMM39 N-Ras mutant cell line.

The activity of Rac1 is regulated in part by the activity of GEFs. To identify the GEF(s) 

responsible for Rac1 activation in response to mutant B-RAF knockdown, we performed 

pull-down assays with the nucleotide free Rac1 mutant Rac1 (15A) (26). WM793 cells were 

subjected to knockdown of B-RAF by 2 different siRNAs and GEF activity was analyzed. 

The association of Rac1-15A with the GEF Tiam1 was increased upon B-RAF knock down, 

indicative of an increase in the activity of the GEF (Fig 7A). The association of Rac1-15A 

with the GEF Vav2 remains unchanged after B-RAF knockdown (Fig 7B). Activation of 

Tiam1 is known to change its cellular localization (27). To determine if there was any 

change in the cellular localization of Tiam1 upon its activation via BRAF knockdown, 

WM793 cells were fractionated in to cytosolic and membrane fractions. We found that 

BRAF knockdown caused a shift of Tiam1 from the cytosolic to the membrane fraction (Fig 

5C).

To determine if Tiam1 was the GEF responsible for Rac1 activation upon B-RAF ablation 

siRNA was employed. WM-793 and WM115 cells were subjected to simultaneous 

knockdown of both B-RAF and Tiam1 and Rac1 activity was analyzed (Fig 8A and B). In 

the absence of Tiam1 siRNA the knockdown of B-RAF resulted in increased Rac1 activity. 
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However, when both Tiam1 and B-RAF were knocked down Rac1 activity remained 

unchanged. Similar experiments were performed using Vav siRNA; however, no difference 

in Rac1 activity was observed in the presence or absence of Vav (Fig 8C). Taken together 

these results suggest that Tiam1 is the GEF responsible for the increase in Rac1 activity 

observed upon B-RAF knockdown.

To confirm that Tiam1-dependent Rac1 activity was regulating the cadherin switch observed 

upon B-RAF ablation, both B-RAF and Tiam1 were knocked down with siRNA and the 

relative expression levels of E-cadherin and N-cadherin were assessed (Fig 9A and B). In 

cells subjected to a knockdown of B-RAF the levels of N-cadherin were observed to 

decrease while the levels of E-cadherin were observed to increase. However, when both 

Tiam1 and B-RAF were knocked down in the same cells the levels of N-cadherin remained 

elevated while the levels of E-cadherin remained undetectable. Tiam1 knockdown alone 

appeared to have no effect on the levels of N-cadherin and E-cadherin when compared to 

control cells. No effect on cadherin levels was observed when Vav and B-RAF were 

simultaneously knocked down in the WM793 cells (Fig 9C).

Mutant B-RAF has been shown to modulate invasiveness in melanoma cells (7). We found 

that knockdown of B-RAF alone caused a significant decrease (p<0.05, Student's t test) in 

the invasive capacity of the melanoma cells. To investigate whether Rac was required for the 

decrease in invasion observed upon B-RAF knockdown cells were subjected to double 

knockdown of B-RAF and Rac. We found that under these conditions the invasive capacity 

of the double knockdown cells was not significantly different than the control cells (Fig 

10A). As we had previously demonstrated in Fig 8 that Tiam1 activity was responsible for 

the increase in Rac1 activation observed upon B-RAF knockdown, we wanted to determine 

of Tiam1 activity was required for the decrease in the invasive phenotype observed after B-

RAF knockdown. We tested this idea by using siRNA directed against both B-RAF and 

Tiam1. We again found that knockdown of B-RAF alone caused a significant decrease 

(p<0.05, Student's t test) in the invasive capacity of the melanoma cells. However, when we 

knocked down both Tiam1 and B-RAF we observed that the invasive capacity of the 

melanoma cells was not significantly different than that of the control cells (Fig 10B). When 

we knocked down both B-RAF and Vav2, another Rac1 GEF, we found that in both cases 

the melanoma cells continued to show significantly decreased (p<0.05, Student's t test) 

invasion equivalent to the B-RAF knockdown alone (Fig 10C). Collectively, these results 

suggest that both Rac and Tiam1 activity are required for the decrease in invasion seen upon 

B-Raf knockdown. One concern, however, was that the change in invasiveness could 

actually represent a change in the proliferative rate of the cells upon B-RAF knockdown. To 

test this possibility, we performed a proliferation assay of control, BRAF and V600E siRNA 

treated cells. We analyzed proliferation using an electrical impedance assay to quantify cell 

number (28). The RTCA (Real-Time Cell Analysis) is an automated real-time method to 

monitor impedance generated by cells grown on microelectrode sensors. WM793 cells were 

transfected with control, BRAF or V600E siRNA, trypsinized and replated onto 

microelectrode dishes and analyzed for 72 hours. A representative impedance trace 

(represented as Cell Index) is shown in Fig 10D. Knockdown of BRAF, with either the 

BRAF or V600E siRNA, showed no significant difference in Cell Index (impedance) when 

compared to the control cells. This result finds no significant difference in the proliferation 
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rate of BRAF knockdown cells when compared to control cells. Taken together, thes e 

results suggest that mutant B-RAF regulates the invasive capacity of melanoma cells in part 

through the regulation of Tiam1-dependent Rac1 activity.

Discussion

The ability of cells to invade and eventually progress to a metastatic disease is an important 

hallmark in the development of melanoma. Acquiring the metastatic phenotype in melanoma 

changes the disease from one with a high survival rate (approximately 80%) to one with a 

low survival rate (less than 20%). Although the importance of the invasive phenotype is 

well-known, the molecular mechanisms that control this event are still poorly understood. 

Here we demonstrate that mutant B-RAF expression in melanoma cells regulates the 

invasive capacity of those cells through modulation of Rac1 activity and cadherin 

expression.

We initially focused on mutant B-RAF upregulation of N-cadherin expression and 

downregulation of E-cadherin expression. In the normal skin, melanocyte growth is 

regulated by the surrounding keratinocytes (29). Keratinocyte control is often lost during 

oncogenesis after the downregulation of E-cadherin, which is typically accompanied by an 

increase in N-cadherin (30). This event is known as the cadherin switch and it enables cell-

cell interactions between adjacent melanoma cells as well as melanoma cell interactions 

with both fibroblasts and endothelial cells (12), (13), (14)). In addition, this cadherin switch 

promotes both the survival and migration of melanoma cells (14). The mutant B-RAF 

induced cadherin switch provides us with one mechanism underlying increased melanoma 

invasion. Our data demonstrate that the cadherin switch can be regulated by mutant B-RAF 

signaling which inhibits Rac1 activity. When this inhibition on Rac1 activity is lifted, either 

through B-RAF knockdown or pharmacological inhibition of B-RAF or B-RAF-dependent 

downstream MEK/ERK signaling, we observe a reversal of the cadherin switch, where N-

cadherin is down regulated and E-cadherin is upregulated. This reversal in cadherin 

composition is concomitant with a decrease in the invasive capacity of the melanoma cells. 

Several transcription factors have linked mutant BRAF signaling in melanoma with the 

cadherin switch and with changes in invasiveness. Perhaps the most well-studied is the 

transcription factor Snail, which is known to be highly upregulated in melanoma and to 

inhibit the transcription of E-cadherin (31). Recent work has demonstrated that BRAF 

signaling through Erk leads to activation of Snail and the subsequent inhibition of the tumor 

suppressor, CYLD. This inhibition of CYLD allows for the transcription factor BCL3 to act 

on the N-cadherin promoter resulting in increased expression of N-Cadherin (32). Another 

interesting study has demonstrated the BRAF signaling leads to the activation of the 

transcription factor BRN2 which subsequently leads to an increase in invasion (33) (34). 

These previous studies provide interesting avenues of exploration for future work with the 

goal of determining what transcriptional events may link BRAF signaling to Rac signaling 

and the subsequent cadherin switch.

The small GTPases of the Rho family including RhoA, Rac1 and Cdc42 regulate the 

establishment and maintenance of adherens junctions in epithelial cells (15), (35), (16), (36). 

Rac1 activity in particular is considered one of the key signaling components controlling the 
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cadherins at sites of cell-cell contact (16), (17), (37). We observed that in melanoma cells 

mutant B-RAF signaling attenuates Rac1 activity and results in a more invasive phenotype. 

This is in agreement with earlier studies demonstrating that increased Rac1 activity inhibits 

the migration and invasion of certain epithelial cells (17). However, this observation is also 

in contrast to published reports that demonstrate enhanced activation of Rac1 induces 

invasion of certain cell types, including murine T-lymphoma cells (38). It seems that Rac1 

signaling is more complicated than simply high activity leading to high (or low) levels of 

invasion. Instead it is likely that the functions of Rac1 on invasion are at least in part cell-

type and effector dependent.

The MAPK family is activated in virtually all melanomas (39). The most common mutations 

are in B-RAF, present in ∼60% of melanoma (3), and N-Ras, present in ∼15% of 

melanomas (40). Both B-RAF and N-Ras mutations lead to enhanced MEK/ERK signaling; 

however, the mechanism of MEK/ERK activation differs with these mutations. Cells with 

mutant N-Ras use C-RAF, as opposed to B-RAF, to signal to MEK/ERK (41) and this 

results in the propagation of different downstream signals (41). Indeed, we found that our 

mutant B-RAF cells signal through MEK to initiate a Rac-dependent cadherin switch. 

However, no such Rac-dependency in cadherin expression is observed in the mutant N-Ras 

cells. The role of the MEK/ERK pathway is regulating Rac1 activity is also diverse. In 

gastrointestinal epithelia EGF induces MEK/ERK activation that, in turn, induces Rac1 

activation (42). This is in contrast to our results that demonstrate B-RAF dependent 

MEK/ERK activation inhibits Rac1 activity in melanoma cells. The combined data reinforce 

the idea that the MEK/ERK pathway balances Rac1 activation, although context-dependent 

differences in the mechanisms of crosstalk are present.

Tiam1, an upstream activator of Rac1 has been implicated in the regulation of adherens 

junction components, including cadherins (17), (43). When we examined Tiam1 activity in 

melanoma cells we found that, similar to Rac1, Tiam1 activity was low in cells expressing 

mutant B-RAF. Inhibition of B-RAF activity through RNAi resulted in enhanced Tiam1 

activity which, in turn, led to the activation of Rac1. We demonstrate that the activity of 

Tiam1 is required for the cadherin switch and the decrease in invasion observed upon B-

RAF knockdown. The effects of Tiam1 on cadherin expression are consistent with earlier 

reports showing that Tiam1 promotes the accumulation of E-cadherin and other adherens 

junction components while simultaneously decreasing cellular invasion (17), (44). Taken 

together with our data these observations support the idea that Tiam1 plays a role in 

regulating the potential malignancy of various cancers, including melanoma. It has been 

shown that expression of Tiam1 in the MV3 metastatic melanoma cells line inhibits the 

invasion and migration of those cells (45). It has also been observed that Ras-induced skin 

tumors progress more frequently to malignancy in Tiam1 -/- mice than in wild-type (45).

Additional studies have linked Rho GTPases and their effectors to B-RAF dependent effects 

in melanoma invasion. Aplin's group has demonstrated (46) (47) that the Rho antagonist 

Rnd3 regulates Rho activity and invasion through mutant BRAF-dependent mechanisms. 

Their results clearly show that B-RAF dependent MEK/ERK signaling regulates Rnd3 

activity and our results show that B-RAF dependent MEK/ERK signaling regulates Tiam1 

activity. In both cases, however, the exact mechanism of regulation remains unknown. 
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Important future studies should be directed at determining the mechanisms through which 

ERK is able to regulate multiple GTPase effector pathways.

In conclusion, we provide evidence that mutant B-RAF regulates a cadherin switch to 

modulate the invasive capacity of melanoma cells (Figure 11). These effects are mediated 

through regulation of a Tiam1/Rac1/cadherin dependent pathway. In addition, Tiam1 acts 

downstream of B-RAF and modulates the crosstalk between the MEK/ERK pathway and the 

Rac1/cadherin pathway. These results emphasize the need to further identify the role of 

Tiam1/Rac1 in regulating melanoma invasiveness.

Methods

Cell Culture

Human WM793 and WM115 melanoma cells were kindly provided by Dr. Andrew Aplin 

(Thomas Jefferson University, Philadelphia, PA). WM793 and WM115 melanoma cells 

were cultured in MCDB 153 (Sigma-Aldrich, St. Louis, MO) containing 20% Leibovitz 

L-15 medium (Sigma-Aldrich), 2% fetal bovine serum (Sigma-Aldrich), 0.2% (wt/vol) 

sodium bicarbonate (Sigma-Aldrich) and 5 ug/ml insulin (Sigma-Aldrich) at 37C with 5% 

CO2. Human VMM39 melanoma cells were kindly provided by Dr. Jim Bear (University of 

North Carolina Chapel Hill, Chapel Hill, NC). HaCat keratinocytes were kindly provided by 

Paul Higgins (Albany Medical College, Albany, NY). VMM39 melanoma cells, HaCat and 

MRC5 cells were grown in DMEM containing 10% FBS. Normal Human Epidermal 

Melanocytes (NHEM) were purchased from ATCC and grown in Melanocyte Medium plus 

Bullet Kit (ATCC).

Antibodies and Inhibitors

The following antibodies were used: B-RAF and Tiam1 were from Santa Cruz 

Biotechnology (Santa Cruz, CA); E-cadherin, phospho-ERK1/2, N-cadherin, Vav2 and ERK 

were from Cell Signaling Technology (Danvers, MA); Rac1 was from BD Biosciences; 

actin was from Sigma-Aldrich. In some experiments, cells were treated with the MEK 

inhibitor U0126 (Cell Signaling Technology), the BRAF inhibitor PLX4720 (Selleck 

Chemicals) or the Rac inhibitor NSC (Calbiochem).

siRNA Transfections

The following siRNAs were used B-RAF, Tiam1, Vav and Rac (Dharmacon) as well as B-

RAFV600E described in Calipel et al 2003. Melanoma cells were transfected for 4h with 

25nM siRNA using OligofectAMINE (Invitrogen) according to manufacturer's instructions. 

After transfection cells were cultured in complete medium for an additional 72h in complete 

medium, and then they were processed for further analysis.

Immunofluorescence

WM793 cells were fixed with 3.7% formaldehyde in phosphate-buffered saline and 

permeabilized in 0.5% Triton X-100. E-cadherin was visualized with anti-E-cadherin 

antibody (Cell Signaling) followed by an anti-mouse Alexa 594-conjugated secondary 

antibody. Images were recorded with a Zeiss LSM510 confocal microscope.
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Rac1 Activity Assays

Cells were treated as indicated in figure legends. After treatments cells were kept on ice, 

washed with ice-cold PBS and assayed for Rac activation with glutathione S-transferase-

p21-activating-kinase, as described by Sandler et al. The beads were washed four times with 

lysis buffer and after the final wash beads were resuspended in sample buffer. Samples were 

then analyzed by SDS-PAGE.

Melanocyte Transfections

NHEM were transfected with PMCEF BRAF V600E (kindly provided by Richard Marais, 

Institute of Cancer Research, London). Transfections were carried out using X-tremeGENE 

HP (Roche) according to manufacturer's instructions. 24 hours after transfection cells were 

harvested.

Nucleotide free Rac1 Pulldown Assays

Affinity precipitation of exchange factors with the nucleotide-free Rac1 mutant (G15A) has 

been described in detail in previous work from our laboratory (Garcia-Mata et al., 2006). 

Briefly, cells were lysed in 20 mM HEPES (pH 7.6), 150 mM NaCl, 1% Triton X-100, 5 

mM MgCl2, 200 μM orthovanadate plus protease inhibitors. Equalized and clarified lysates 

were incubated with 20 μg of purified Rac1(15A) bound to glutathione-sepharose beads for 

60 minutes at 4°C. Samples were then washed in lysis buffer and processed for SDS-PAGE.

Subcellular Fractionation

Cells were washed and incubated with ice-cold hypotonic lysis buffer (10mM Hepes pH 7.3, 

1.5mM MgCl2 , 5mM KCl, 1mM DTT and protease inhibitors) for 10 minutes. Cells were 

scraped and homogenized with 20 strokes of Dounce homogeneizer. Homogenates were 

centrifuged at 700g for 3 minutes to pellet nuclei and intact cells. The supernatants were 

then centrifuged at 40,000g for 30 minutes at 4°C. The pellets (membrane fraction) were 

then resuspended in Sample Buffer.

Invasion Assays

Polycarbonate filters (8um pore size; Corning, Lowell, MA) of traswell cell culture 

chambers were coated with 50ul of growth-factor reduced Matrigel (BD Biosciences). 

Knockdown melanoma cells were added to the upper chamber in serum-free medium. The 

lower chamber was filled with normal melanoma growth medium, thereby establishing a 

soluble gradient of chemoattractants that promoted cellular invasion. The cells were allowed 

to invade for 24h at 37C, at which time the Matrigel and cells associated with the upper 

chamber were removed with cotton swabs. The undersides of the filters were then 

trypsinized to collect cells that had invaded through the Matrigel and cells were counted 

with a hemocytometer.

Immunoblotting

Treatment doses and times are provided in the figure legends. Cells were rinsed with PBS 

and lysed in sample buffer. Lysates were electrophoresed into SDS-PAGE gels. Proteins 

were transferred to nitrocellulose (Schleicher and Schuell Bioscience) and processed for 
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Western blot analysis using the antibodies described in the figure legends. Bound antibodies 

were detected by enhanced chemiluminescence.

TER

Co-cultures of WM793 cells and MRC5 cells or WM793 cells and HaCat cells were plated 

at confluence onto Transwell filters (0.4 uM pore, 12mm diameter, Corning) and cultured 

for 3 days with medium replacement daily. TER was measured using an Endohm-12 

voltohmeter (World Precision) according to manufacturer's instructions.

Real Time Cell Analysis (RTCA) of Proliferation

The xCELLigence Real-Time Cell Analyzer (RTCA) system (Acea Biosciences/Roche 

Applied Science 05-469-759-001) was used to measure electrical impedance, as a readout of 

proliferation. This method uses electrical impedance signals to monitor the status of cells 

grown directly on micro-electrode coated surfaces. Changes in impedance reflect changes 

cell number. WM793 cells Transfected with the indicated siRNA were counted with a 

hemocytometer, then plated (in quadruplicate) directly onto a microelectrode-surface within 

the wells of an E-Plate 16 (Roche Applied Science, 05-469-813-001). Impedance readings 

were taken automatically every hour for another 72 hrs and plotted as Cell Index ± SEM.
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Figure 1. 
BRAF knockdown causes a cadherin switch. A) WM793 cells were transfected with control, 

total B-RAF (BRAF) or mutant B-RAF (V600E) siRNA. Cell lysates were analyzed by 

Western blotting for BRAF, P-ERK, ERK, E-cadherin, N-cadherin and actin (as a loading 

control). B) WM793 cells were treated with5uM PLX4720 for 24 hours. N-cadherin and E-

cadherin expression as well as P-Erk levels were analyzed by Western blotting. Actin was 

used as a loading control. C) WM793 cells were treated with 1uM U0126 for 24 hours. N-

cadherin and E-cadherin expression as well as P-Erk levels were analyzed by Western 

blotting. Actin was used as a loading control. D) WM115 cells were transfected with 

control, total B-RAF (BRAF) siRNA or 1uM U0126. Cell lysates were analyzed by Western 

blotting for P-Erk, N-cadherin and E-cadherin levels. Actin was used as a loading control.
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Figure 2. 
BRAF knockdown results in the expression of a functional E-cadherin. A) WM793 cells 

were transfected with BRAF siRNA for 72h. Cells were then stained for the presence of E-

cadherin. B) WM793 cells were transfected with control or BRAF siRNA. Cells were then 

lysed with immunoprecipitation buffer and β-catenin was immunoprecipitated from cells. 

Immunoprecipitates were then blotted for the presence of E-cadherin. C) WM793 cells were 

transfected with control siRNA or BRAF siRNA and co-cultured with either MRC5 cells 

(fibroblasts) or HaCat cells (keratinocytes) on transwell filters. After 72h TER readings were 

taken with a voltohmeter. * indicates statistical significance when compared to control 

treatment (p<0.05, Student's t-test).
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Figure 3. 
BRAF knockdown results in the activation of Rac1. A) WM793 cells were transfected with 

control, total B-RAF (BRAF) or mutant B-RAF (V600E) siRNA. The cells were lysed and 

the activation of Rac was measured through a GST-PBD pulldown assay as described in the 

Methods. B and C) WM793 cells were treated with 5uM PLX4720 (B) or 1uM U0126 (C) 

for 24 hours. The cells were lysed and the activation of Rac was measured through a GST-

PBD pulldown assay as described in the Methods. D) WM115 cells were transfected with 

control, total B-RAF (BRAF) siRNA or 1uM U0126. The cells were lysed and the activation 

of Rac was measured through a GST-PBD pulldown assay as described in the Methods.
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Figure 4. 
The cadherin switch induced upon BRAF knockdown requires Rac. A) WM793 cells were 

transfected with control, total B-RAF (BRAF) or mutant B-RAF (V600E) siRNA and Rac 

siRNA. Cell lysates were analyzed by Western blotting for E-cadherin, N-cadherin or actin 

(loading control). The levels of B-RAF and Rac were also analyzed to confirm knockdown. 

B) Cells were treated overnight with NSC. Cell lysates were analyzed by Western blotting 

for E-cadherin, N-cadherin or actin (loading control). To confirm the activity of the NSC 

compound cells were lysed and the activation of Rac was measured through a GST-PBD 

pulldown assay as described in the Methods. C) WM115 cells were transfected with control, 

total B-RAF (BRAF) siRNA and Rac siRNA. Cell lysates were analyzed by Western 

blotting for E-cadherin, N-cadherin or actin (loading control). The levels of B-RAF and Rac 

were also analyzed to confirm knockdown.
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Figure 5. 
Melanocytes experience a cadherin switch upon mutant B-Raf expression. NHEM were 

transfected with B-Raf V600E for 24 hours. Cells were lysed and the lysates were analyzed 

for the presence of B-Raf, E-cadherin, N-cadherin, GTP-Rac, total Rac and actin (loading 

control).
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Figure 6. 
The BRAF- induced cadherin switch does not occur in N-Ras mutant melanoma cells. A) 

VMM39, WM115 and WM793 cell lysates were blotted to compare relative levels of p-Erk, 

Rac and active Rac. Actin was used as a loading control. B) VMM39 cells were transfected 

with control siRNA, BRAF siRNA or treated with 1uM U0126. Cells were lysed and 

samples were blotted for N-cadherin, E-cadherin, active Rac, total Rac and p-Erk levels. 

Actin was used as a loading control.
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Figure 7. 
BRAF knockdown activates Tiam1. WM793 cells were transfected with control, total B-

RAF (BRAF) or mutant B-RAF (V600E) siRNA and Rac siRNA. Pulldowns were then 

performed with GST-Rac(15A) and samples blotted with antibodies against Tiam1 (A) and 

Vav2 (B). B) WM793 cells were transfected with control or BRAF siRNA. Cells were then 

lysed, scraped and lystates homogenized. The lysates were then centrifuged to separate 

cytolsolic and membrane fractions. The fractions were then analyzed by Western blotting for 

the Tiam1.
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Figure 8. 
Rac activation observed upon BRAF knockdown requires Tiam1. WM793 (A) cells or 

WM115 cells (B) were transfected with control, Tiam1 (A, B) or Vav2 (C) siRNA in 

addition to BRAF or V600E siRNA. The cells were lysed and the activation of Rac was 

measured through a GST-PBD pulldown assay as described in the Methods. The levels of 

BRAF and Tiam1 (A,B) or Vav (C) were checked to confirm knockdown.
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Figure 9. 
The cadherin switch observed upon BRAF knockdown requires Tiam1. WM793 cells (A) or 

WM115 cells (B) were transfected with control, BRAF, V600E and Tiam1 (A, B) or Vav2 

(C) siRNA. N-cadherin and E-cadherin expression were analyzed by Western blotting. Actin 

was used as a loading control. The levels of BRAF and Tiam1 (A,B) or Vav (C) were 

checked to confirm knockdown.
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Figure 10. 
BRAF knockdown regulates the invasive capacity of melanoma cells through Tiam1 and 

Rac. WM793 cells were transfected with control, BRAF, V600E and Rac (A), Tiam1 (B) or 

Vav2 (C) siRNA. A 24 hour Matrigel cell invasion assay was performed after knockdown. 

Asterisks denote statistical significance comparing knockdown cells with controls. D) 

WM793 cells were transfected with control, BRAF or V600E siRNA and proliferation was 
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measured through an RTCA assay. * indicates statistical significance when compared to 

control treatment (p<0.05, Student's t-test).

Elizabeth and Burridge Page 25

Oncogene. Author manuscript; available in PMC 2014 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Model of mutant BRAF Rac-dependent cadherin switch. In melanoma cells expressing 

BRAFV600E the activity of MEK and ERK is high, leading to low Tiam1 activity followed 

by low Rac activity. Low Rac activity results in high expression of N-cadherin and low 

expression of E-cadherin and enhanced invasiveness. (Black arrows outline the pathway. 

Red arrows show the relative activity level or expression of the indicated molecule).
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