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Abstract

A growing number of infectious pathogens are spreading among geographic regions. Some
pathogens that were previously not considered to pose a general threat to human health
have emerged at regional and global scales, such as Zika and Ebola Virus Disease. Other
pathogens, such as yellow fever virus, were previously thought to be under control but have
recently re-emerged, causing new challenges to public health organisations. A wide array of
new modelling techniques, aided by increased computing capabilities, novel diagnostic
tools, and the increased speed and availability of genomic sequencing allow researchers to
identify new pathogens more rapidly, assess the likelihood of geographic spread, and quantify
the speed of human-to-human transmission. Despite some initial successes in predicting the
spread of acute viral infections, the practicalities and sustainability of such approaches will
need to be evaluated in the context of public health responses.

Introduction

Infectious disease outbreaks pose a significant threat to human health. The frequency of such
outbreaks is thought to have increased over the past decade. For example, quickly after an epi-
demic of Ebola virus affected Guinea, Sierra Leone, and Liberia in 2013–2016 [1], chikungunya
virus (CHIKV) caused an extensive international epidemic in the Americas and beyond, and
was quickly followed by Zika virus (ZIKV) emergence. To date, there have been more than
500 000 confirmed or probable cases of ZIKV but the true number of cases remains unknown
[2]. Yellow fever (YF), a vaccine-preventable disease, recently posed major public health pro-
blems. In 2015–2016, the largest YF outbreak since the 1980s was observed in Angola and the
Democratic Republic of the Congo, causing 962 confirmed cases and 393 deaths [3]. YF also
poses an ongoing public health risk to large, urban and under-vaccinated populations in the
coastal areas of southern Brazil, a country that successfully eradicated YF in the 1950s and
1960s [3–5]. Examples of other emerging pathogens that have caused international health
security concerns include the severe acute respiratory syndrome (SARS) virus and the
Middle East Respiratory Syndrome Coronavirus (MERS-Cov) [6–9]. This list extends to
other pathogens such as influenza, Nipah and henipaviral diseases, and Lassa fever [10].
These examples show the continued risks that infectious diseases pose and highlight the chal-
lenges of large international outbreaks to epidemic planning and response.

During emerging infectious disease outbreaks, empirical information and mathematical
modelling techniques are now commonly used to characterise and predict the spatio-temporal
dynamics of the spread of pathogens. Such analyses may help policymakers to evaluate the
threat to public health, determine the resources required to reduce disease burden, and
guide disease surveillance efforts and the deployment of interventions.

In the last decade, our ability to perform such assessments has been improved by advances
in a number of disciplines, including digital disease surveillance [11], environmental model-
ling [12, 13], genomics [14] and mathematical modelling [15]. For example, environmental
variables such as rainfall and precipitation [13, 16–22] can be used to better understand the
landscape within which the disease may be transmitted, and detailed transmission data
from a small sampled population can be extrapolated to larger, un-surveyed areas [23].
Attempts have been made to illustrate the spatial structure of epidemics mainly using
human movement data [24–27], to provide mechanistic insights in how the disease may dis-
perse locally [3, 28, 29] or how effective reactive vaccination campaigns may be [30–32]. There
are continued efforts to reconstruct epidemic dynamics using information derived from
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pathogen genomic data, which contain unique information about
the history of transmission [2, 33–35]. Although each of these dis-
ciplines has an established relationship to disease prevention and
control, the benefits of integrating them into a unified framework
have yet to be fully achieved.

Here we describe the common applications and models used
to predict acute viral diseases and discuss the current challenges
and limitations. We then outline the advantages of integrating
disparate data sources to advance our understanding of epidemic
spread. We discuss how such research has been used in recent
outbreaks and outline shortcomings that may be addressed in
the future.

Reconstruction of transmission pathways using genomic
data

Phylogenetic and phylodynamic tools are increasingly being used
to infer a range of outbreak properties [36]. Common spatio-
temporal analyses of pathogen genomes focus on mapping and
predicting virus lineage exchange among locations, with the
underlying aim of reconstructing the pathways of disease intro-
duction and spread, albeit at a coarse spatial resolution, and
often retrospectively [2, 8, 33, 35, 37, 38]. An additional feature
that can be inferred from genomic data is the timing of individual
founder introductions [39]. Blue arrows in Fig. 1 indicate the time
when the first report was published inferring the likely geographic
origin of four major international infectious disease outbreaks.
Phylogenetic tools can help to characterise the number of intro-
ductions that lead to disease transmission in a new location
[41], quantify the risk of cross-species transmission [42], and
infer ecological drivers of transmission [43, 44]. Genome-derived
estimates have been compared qualitatively to those from epi-
demiological data, but formal model-based integration of both
data sources are rare [45, 46]. In principle, pairing genomic infor-
mation with epidemiological inference should enable us to quan-
tify the number of cases missed in each location and help to
estimate parameters such as the basic reproductive number and
doubling time of the epidemic, as done for ZIKV at the tail end
of the epidemic (Fig. 1a) [46–48]. A common limitation when
genetic data are used is the absence of a rigorous and formal sam-
pling scheme. In many instances, genomic sampling is affected by
convenience and expedience and may not reflect underlying inci-
dence, although this can be improved post-hoc in large data sets
via sub-sampling using, for example continuous phylogenetic
inference [49–51]. Strong sampling biases may affect estimates
of the arrival time of a pathogen and its pathways of dissemin-
ation among locations [33].

Prediction of disease spread using spatial information

Static disease mapping is a powerful tool to visualise and defines
the landscape within which transmission occurs, based on eco-
logical drivers of transmission [17, 18, 22]. When combined
with global data on human travel and mobility, it can be used
to understand the global dynamic risk surface of infectious dis-
ease, especially when there are strong ecological determinants of
transmission, as there are for the vector-borne diseases Zika,
dengue, chikungunya and YF [27, 52]. Publication of reports
that estimate geographic spread for the diseases in Fig. 1 are indi-
cated by green arrows. The global epidemic history of Zika, for
example, remains poorly understood. The challenge to accurately
reconstruct the epidemic pathway of the virus is further

complicated by its relatively unspecific clinical presentation.
This may explain why the initial studies that aimed to understand
the geographic origin of the Zika epidemic in the Americas were
published relatively late into the epidemic (>1 year, Fig. 1a). For
the other major outbreaks highlighted in Fig. 1, estimates of the
geographic origin were documented between 6 and 8 months
after the first reports of human cases (Fig. 1b–d; Table 1).
However, given the underlying ecological determinants of trans-
mission that restrict the reproduction of the virus in the mosquito
vector species, large areas can be excluded from the risk of local
virus transmission. When overlaying information on the reported
presence of Zika cases vs. the underlying ecological risk map, sur-
veillance gaps may be identified [19, 27]. Areas where there is a
mismatch in the predicted presence and reported presence (i.e.
cases detected) should be targeted for active surveillance.

The spatial spread process of new pathogens, however, is not
only determined by the underlying ecological determinants in
each location but also by the dynamic nature of importation,
often driven by human movements [61]. Spatial models that
take into account the patterns of human spread and mobility
may, therefore, improve our ability to characterise and anticipate
spatial expansion. Different models have been proposed to pre-
dict the geographic spread of epidemics but rarely have they
been used in real time during the course of an epidemic
[3, 62] (Fig. 1). For example, during the YF outbreak in
Angola and the Democratic Republic of the Congo, estimates
of geographic spread to provinces outside Luanda, the capital
of Angola, were published >6 months after the last cases were
reported (Fig. 1c). Such information could guide public health
institutions to decide where and when to implement surveillance
and control programs [27]. More work, however, is needed to
dynamically map the spread of infectious diseases and to extract
meaningful and interpretable quantities for public health
practitioners.

Characterising disease dynamics and transmission clusters

In parallel to these efforts to model the spread of pathogens at a
meta-population level (e.g. between cities, regions, countries or
continents), we also need to better understand transmission
dynamics at a much more granular level and assess the character-
istics of the inter-human transmission. While historically, the
potential for inter-human transmission has often been sum-
marised with a single statistic; the reproduction number R
(i.e. the average number of secondary infections generated by a
case). However, it has long been recognised that it is also essential
to assess heterogeneities in individual R values, since the presence
of super-spreading events may have a major impact on the risk of
emergence and our ability to control outbreaks [63]. This was
exemplified in a large MERS-CoV outbreak in South Korea in
2015 in which only a small number of cases were responsible
for the majority of infections [64, 65]. Other factors that may
drive the spatial differences in the reproductive number are eco-
logical (population density, climatic factors, or others) and can
now be readily incorporated in transmission models [66].

Ideally, these assessments should be performed on detailed
data documenting chains of transmission, as such data can pro-
vide precise quantification of the transmission potential and the
impact of targeted interventions in different settings and over
time, and allow testing specific hypotheses about the transmission
process (e.g. what is the contribution of re-introductions to the
overall dynamic?) [67]. However, such data are rarely available
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as it is difficult to identify the source of infection for most patho-
gens. As a result, sophisticated statistical techniques are often
required to reconstruct chains of transmission and estimate trans-
mission parameters from more limited data that may include: (i)
in the context of zoonoses, the size of human clusters [68–70] or
the proportion of surveillance cases that reported a contact with
the natural reservoir [71], (ii) the growth rate in the case count
[72–75], (iii) partial data on chains of transmission [76], or (iv)
outbreak data where the timing of symptom onsets and location
of cases are recorded in small communities such as households
[77–80], schools [81] or villages [82]. In cases of high-density
sampling, genomic data can help to reconstruct transmission
chains [83].

Disease outbreak modelling

Mechanistic models of infectious disease dynamics can be used to
make predictions about the future course of an outbreak within a
given location [84]. Increasingly, such models are being used in
real time, such that predictions are updated every time a new
data point becomes available [85, 86]. Some other applications
track pathogen evolution over time as data become available
[87]. However, the perceived ability of such models to successfully
or unsuccessfully make ‘correct’ predictions can generate consid-
erable controversy [88, 89]. There are few studies that systematic-
ally investigate forecasting accuracy and its relationship to the
length of time that is being predicted and to the quantity and
quality of data available [90, 91]. Other examples are forecasting
challenges for ongoing epidemics such as CHIKV in the

Americas (https://www.darpa.mil/news-events/2014-08-15), EVD
in West Africa [92] and seasonal influenza [85, 93], designed
and initiated by funding agencies and public health governments.
This is an important area for future research.

Integrating data sources to better characterise infectious
disease dynamics

There are clear benefits to combining information from different
data sources in order to better predict viral epidemic spread.
Previous work most commonly presents estimates from different
sources side-by-side, for example, estimates of the epidemic
reproductive number derived from genomic vs. epidemiological
data [46]. Such comparisons are important to assess the consist-
ency of data sources and may help to derive new hypotheses.
Spurred by technological innovation such as portable sequencing
using the MinION device (Oxford Nanopore Technologies,
Oxford, UK) [94] and by interdisciplinary collaborations during
disease outbreaks, researchers have started to work to combine
three types of transmission data: spatial, genomic and epidemio-
logical which have now been published for three of the four major
outbreaks we considered here (Fig. 1, red arrows) [33, 38, 41].

For example, such interdisciplinary work helped to identify the
introduction of Zika into the Americas [2], investigated the main
drivers of transmission of ZIKV through climatic suitability of its
mosquito vectors [25] and tried to extrapolate how many people
had been infected with the virus [23, 92, 93]. In the context of
phylogenetic analyses, environmental and other spatial data
may be helpful in reconstructing the drivers of transmission

Fig. 1. Timing of publications addressing key questions during
outbreaks. Blue shows the first peer-reviewed publication iden-
tifying the geographic origin of the outbreak, green shows the
date predictions about geographic spread are published,
purple shows the date when predictions of numbers of cases
are made and red indicates the date when work on the integra-
tion of geographic, genomic and epidemiological data was
published. (a) Shows weekly cases of the 2014–2017 Zika
virus epidemic in the Americas using data from [33, 38] and
the Pan American Health Organization (PAHO) available from
https://github.com/andersen-lab/Zika-cases-PAHO. (b) Shows
weekly cases from the West African Ebola epidemic published
by the World Health Organization (WHO). (c) Shows weekly
cases of the 2015–2016 Yellow fever epidemic in Angola and
the Democratic Republic of Congo, published by WHO [40].
(d) Shows weekly cases from 2012 to 2017 Middle Eastern
Respiratory Syndrome outbreak available from https://github.
com/rambaut/MERS-Cases.
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and spread using, for example, information on the reservoir or
host movements [35, 95]. In turn, phylogenetic information
may complement epidemiological analysis by providing more evi-
dence on the transmission routes that are common in an outbreak
[96]. This may be particularly useful for diseases that have a
highly structured transmission dynamic, such as MERS or
SARS, where a small number of people are responsible for the
majority of secondary cases [63, 97], transmission from the ani-
mal reservoir is frequent, or importation drives locally observed
epidemics [33]. One common assumption in many epidemio-
logical models is that it is equally likely for people to meet and
infect others living in the same location and that population
immunity is proportional to the demographic structure [98].
Hence, observed cases are often assumed to arise from other
cases that are reported locally as long as they are consistent
with the generation time of the disease. However, a well-
connected location can, in principle, accrue a large number of
incident cases through recurring introductions from elsewhere,
rather than via local transmission [33]. These results can have
large implications for surveillance and control, as different com-
peting strategies (e.g. limiting importations or eradicating the dis-
ease locally) may be considered. While analytical approaches of
various degrees of complexity have been proposed to probabilis-
tically reconstruct transmission trees from incomplete outbreak
data [73, 81, 97], contact tracing, which can be very labour inten-
sive [67], remains a gold standard information source. This may
allow us to is to determine the true distribution of cluster sizes
(i.e. the number of subsequent cases resulting from each introduc-
tion) but is often only available for a small number of locations.

However, using genomic data can help refine the understanding
of heterogeneity in transmission but such framework does not
yet allow to exactly quantify the fraction of observed cases that
are attributable to local transmission versus introduction from
elsewhere, or to determine how many importations are respon-
sible for the local incidence, despite its crucial importance for
eradication campaigns [42, 100, 101]. In the context of the Zika
outbreak in Florida, combining genomic data from the outbreak
with epidemiological analysis revealed that the outbreak was dri-
ven by a large number of introductions rather than by persistent
local transmission. In the recent yellow fever outbreak in southern
Brazil, linking epidemiological, spatial and genomic data and
techniques could provide insights into the transmission potential
and risk of urban transmission [102]. One dataset and analysis
alone would have not been strong enough to make such conclu-
sions [33].

Inferences about epidemic processes made using mathematical
models rely on a number of assumptions. Geographic modelling
approaches, mostly informed by spatial ecology, attempt to fill
gaps where no data has been observed, hence inferences may be
uncertain, as the underlying ecological process may be poorly
understood and dynamical aspects of the invasion process are
ignored. These deficiencies can be ameliorated, in part, by adding
virus genome data that contain information about past transmis-
sion and invasion patterns [103]. However, due to incomplete
and poor sampling (as discussed above), genomic data alone
may provide an incomplete picture of the timing of viral introduc-
tion and spread among locations. This, in turn, can be supported
by the addition of epidemiological time series of reported cases

Table 1. Key dates and publications describing the geographic origin and spread of four major international outbreaks prediction of the expected number of cases,
and integration of geographical, epidemiological and genetic data

Characteristic of outbreak Date published (online) Citation

Zika virus outbreak in the Americas (2014–2017)

Geographic origin 24 March 2016 Faria et al., 2016 [2]

Geographic spread 14 January 2016 Bogoch et al., 2016 [52]

Number of cases 25 July 2016 Perkins et al., 2016 [23]

Integration of genomic/epidemiological/geographical data 17 May 2016 Grubaugh et al., 2017 [33] and Faria et al., 2017[38]

Ebola virus disease outbreak in West Africa (2013–2016)

Geographic origin 12 September 2016 Gire et al., 2014 [53]

Geographic spread 2 September 2014 Gomes et al., 2014 [54]

Number of cases 8 September 2016 Fisman et al., 2014 [55]

Integration of genomic/epidemiological/geographical data 12 April 2017 Dudas et al., 2017 [35]

Yellow fever outbreak in Central Africa (2015–2016)

Geographic origin 20 September 2016 Grobbelaar et al., 2016 [56]

Geographic spread 22 December 2016 Kraemer et al., 2016 [3]

Number of cases 16 January 2018 Zhao et al., 2018 [57]

Integration of genomic/epidemiological/geographical data NA NA

Middle East Respiratory Syndrome outbreak (2012–2017)

Geographic origin 20 September 2013 Cotten et al., 2013 [58]

Geographic spread 17 July 2013 Khan et al., 2013 [59]

Number of cases 5 July 2013 Breban et al., 2013 [60]

Integration of genomic/epidemiological/geographical data 16 January 2018 Dudas et al., 2018 [42]
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and serological information about population immunity [104, 105].
Despite this, building a joint inference framework that combines
all available data sources and which characterises observation and
sampling processes correctly is a daunting task. However, we are
entering a period where the data for this task are becoming avail-
able in a timely fashion but need to ensure that results are com-
municated as soon as they are generated in order to avoid delays.
Initial successes have already led to important advancements in
epidemic control and should progress to a tool-kit for guiding
public health, hopefully available in real time for future epidemics.
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