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Abstract 

Background:  Accurate prediction of binding between class I human leukocyte 
antigen (HLA) and neoepitope is critical for target identification within personalized 
T-cell based immunotherapy. Many recent prediction tools developed upon the deep 
learning algorithms and mass spectrometry data have indeed showed improvement 
on the average predicting power for class I HLA-peptide interaction. However, their 
prediction performances show great variability over individual HLA alleles and peptides 
with different lengths, which is particularly the case for HLA-C alleles due to the limited 
amount of experimental data. To meet the increasing demand for attaining the most 
accurate HLA-peptide binding prediction for individual patient in the real-world clinical 
studies, more advanced deep learning framework with higher prediction accuracy for 
HLA-C alleles and longer peptides is highly desirable.

Results:  We present a pan-allele HLA-peptide binding prediction framework—
MATHLA which integrates bi-directional long short-term memory network and 
multiple head attention mechanism. This model achieves better prediction accuracy 
in both fivefold cross-validation test and independent test dataset. In addition, this 
model is superior over existing tools regarding to the prediction accuracy for longer 
ligand ranging from 11 to 15 amino acids. Moreover, our model also shows a significant 
improvement for HLA-C-peptide-binding prediction. By investigating multiple-head 
attention weight scores, we depicted possible interaction patterns between three HLA 
I supergroups and their cognate peptides.

Conclusion:  Our method demonstrates the necessity of further development of deep 
learning algorithm in improving and interpreting HLA-peptide binding prediction in 
parallel to increasing the amount of high-quality HLA ligandome data.
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Background
HLA-peptide binding is crucial for epitope presentation on the human cell surface 
and the elicitation of subsequent T cell immune response. In silico prediction of 
binary HLA-epitope binding or HLA-epitope binding affinity score has become one 
of the most essential criteria in target identification for a variety of applications in the 
immunotherapy [1, 2]. In general, the HLA-epitope prediction is largely dependent on 
state-of-the-art machine learning algorithms and substantial amount of data quanti-
tating in vitro or in vivo HLA-epitope binding. In the past several years, a variety of 
deep learning models such as deep neural network [3], convolutional neural network 
[4] and recurrent neural network [5] have been developed for advancing HLA-pep-
tide prediction over traditional machine learning algorithms [6]. Meanwhile, some 
studies weighted greatly on the data quality for improving prediction accuracy. For 
example, MHCflurry [3] constructed multiple models using the same architecture 
and discovered that the model derived from large-scale mass spectrometry data was 
able to outperform competing models. Recently, larger mass spectrometry data for 
95 HLA class I alleles was generated, which further illustrated improving prediction 
accuracy by incorporating more data into the model [7]. However, data-dependent 
methods are confined by the limited number of alleles current technology can process 
and imbalance of data entries between three HLA class I supergroups (A, B, and C). 
As a result, data-dependent methods tend to result in lower prediction accuracy for 
HLA-C alleles due to smaller number of identified HLA-C ligands. Therefore, further 
refinement in deep learning architecture is required, which is especially the case for 
enhanced accuracy of pan-allele prediction tools. In contrast to the specialized model 
built by significant amount of training data of a fixed allele, pan-allele model is uni-
versal for predicting interaction between peptides and any HLA alleles. The princi-
ple of pan-allele model underlies that core sequences of HLA alleles can be explicitly 
outlined [8]. Thus, as HLA ligand sequence, the core HLA sequences can be encoded 
and fed into the learning algorithm for modeling HLA-peptide interaction. Compared 
to allele-specific methods, the pan-allele methods such as netMHCpan 4.0 [9] are 
more compelling to general users through higher compliance while retaining com-
parable performance [6]. However, prediction accuracy for a portion of HLA alleles, 
especially HLA-C alleles, are consistently far below average performance [6, 10]. In 
addition, since most natural ligands of HLAs are 8–11 amino acids in length [11], the 
limited amount of ligands of other lengths in the training dataset will affect the accu-
racy for predicting HLA-bound 12mer to 15mer [12]. Therefore, it is highly desirable 
to establish a more robust pan-allele model that is able to predict ligands of longer 
lengths and of cognate peptides of HLA-C alleles with higher accuracy.

Here we propose a novel deep learning HLA-epitope binding prediction method 
which takes advantage of the intrinsic ability of bi-directional LSTM to extract infor-
mation from longer sequence and the ability of multiple head attention mechanism to 
capture contextual dependence from different angles. The proposed framework is more 
powerful in predicting the binding between HLA-C alleles and peptides. In addition, this 
framework is more robust than existing tools in predicting ligands ranging from 12 to 15 
amino acids in length. Finally, this model can also help interpret the interaction between 
HLA alleles and peptides through multiple subspaces of interaction representation.
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Methods
Datasets

Our training dataset is composed of data from IEDB [13], BD2013 dataset [14] and 
SysteMHC Atlas [15]. We only retained HLA class I ligands as well as peptides with-
out post-translational modifications and ambiguous amino acids. In addition, ligands 
with relatively low confidence (prob < 0.99) in SysteMHC Atlas were excluded. All 
peptides in the final training dataset were between 8 and 15 amino acids in length. To 
balance the number between positive and negative datasets, we retrieved a compan-
ion decoy peptide from the host protein of the positive peptide from mass spectrom-
etry data.

To convert qualitative affinity data to quantitative values, we applied a similar 
rule as MHCflurry [3]: positive-high, < 100  nM; positive, < 500  nM, positive-inter-
mediate, < 1000  nM; positive-low, < 5000  nM; negative, > 5000  nM; MS-identified 
ligands, < 500  nM; decoys, > 5000  nM. In addition, we applied another set of rules to 
remove measurement redundancy for the same allele-peptide pair: keep the only data 
with “=” if other data were measured by inequality; if all the data are measured by “>”, 
the one with the greatest affinity values was retained; if all the data are measured by “<”, 
the one with lowest affinity value was then retained; and all the remaining data with con-
tradictory measurements were discarded.

To facilitate model training, we normalized the original nanomolar affinity between 0 
and 1.

where anormal is normalized affinity and anM is the original nanomolar affinity value. The 
final training dataset is composed of 753,961 entries for 167 HLA class I alleles (53 HLA-
As, 92 HLA-Bs and 22 HLA-Cs).

The positive data of the test dataset was compiled from a recent large-scale HLA class 
I ligandome data covering 95 HLA alleles. Data entries from 16 HLA alleles which were 
previously generated by the same group [16] and were included in the training dataset 
were first excluded. Next, we retained HLA-displayed ligands with length of 8 to 15 
amino acids and removed those with post-translational modifications. To introduce neg-
ative data into the test dataset, we randomly sampled decoy peptide sequences, which 
were not included in the positive datasets from the host protein-coding transcripts of 
the positive peptides. For each positive peptide, 100 decoy sequences were generated 
correspondingly. Finally, after filtering out data entries overlapping with the training 
dataset, there are in total 140,232 positive peptides and 13,939,114 negative decoys in 
the test dataset.

Model structure

Each residue of peptide and HLA pseudo-sequence (retrieved from netMHCpan 4.0 [9]) is 
encoded to a similarity score vector according to the BLOSUM62 substitution matrix [17]. 
Different from many other methods with a predefined “padding” rule to ensure the equal 
dimension of input matrix during training, our model allows input sequences with flexible 
lengths. The encoded matrix with dimension lseq*20, where lseq is the length of concatenated 

(1)anormal = 1− log50000 (anM)
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sequence of peptide and HLA pseudo-sequence, is then input into sequence learning layer 
(Fig. 1a).

We chose the long short-term memory network [18] to model dependence between 
amino acid residues of peptides with flexible lengths. Compared to conventional recurrent 
neural network, LSTM network bearing gate control units (input gate, forget gate, and out-
put gate) is able to learn dependency information between distant residues within peptide 
sequences more effectively.

To enhance the capability of our model to learn bidirectional dependence between n-ter-
minal and c-terminal amino acid residues, bidirectional LSTM (bi-LSTM) was used [19]. 
By inputting both the forward and reverse sequences to LSTM networks with the same 
structure respectively, the outputs of LSTM ht and h′

t at time t for forward and reverse 
sequence are derived and the HLA-peptide sequence at position t is represented as 
hiddent =

[

ht , h
′

t

]

 . Finally, the output of bi-LSTM is denoted as outlstm (Fig. 1b).

To attend to peptide information at different positions from various subspaces of 
sequence representation, we applied multiple-head attention mechanism [20, 21] to the 
output of bidirectional LSTM.

(2)Watten
i = hiddenlstm ·W

project
i

Fig. 1  The network structure of MATHLA. a Embedding layer. Encode peptide and HLA pseudo-sequence 
through BLOSUM62 similarity matrix. b Sequence learning layer. Encoded information from embedding layer 
was input into sequence learning layer for retrieving contextual sequence features. c Attention block. Each 
head assigns weights to individual positions of the original input according to the corresponding subspace 
of sequence representation. d Fusion layer. A 2-dimension convolutional neural network with a 1*1*head 
filter is used to fuse vectors output from (c). e Output layer. Output normal affinity score between 0 and 1 
through linear layer and sigmoid function
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where hiddenlstm ∈ R1×(hidden×2) is a hidden state of the bi-LSTM network, 
W

project
i ∈ R(hidden×2)×(hidden×2) are weights for projecting original hidden states to differ-

ent representation subspaces. Watten
j ∈ R1×(hidden×2) are attention weights, (·)T represents 

transpose of a matrix. Contextj ∈ R1∗lseq is the context vector. outlstm ∈ Rlseq×(hidden×2) is 
the output of LSTM network and finally Headj ∈ R1×(hidden×2) is the attention vector of 
the original sequence under the ith attention mechanism (Fig. 1c).

The concatenated output vector of forward and backward attention is combined. A 
2-dimension convolutional neural network (2D CNN) with a head*1*1 filter is then 
applied to the combined vectors for a fusion vector by learning the weight of each head 
of attention (Fig. 1d).

where h stands for the number of head of multiple head attention module, 
WF ∈ Rh×1×1 is the filter of 2D CNN, and Fusion ∈ R1×(hidden×2) is the output vector 
after applying 2D CNN. Finally, a predicted value ranging from 0 to 1 is output by apply-
ing a linear layer with sigmoid activation function (Fig. 1e).

where Wo ∈ R(hidden×2)×1 and b are the weight vector and bias for linear layer, 
respectively.

We randomly sampled 70% of the positive and negative data respectively from the 
training dataset to compile the training data. The remaining data were used as validation 
dataset for tuning hyperparameters.

To minimize the influence of outliers (noise) on model training, we employ an opti-
mized Huber loss function [22] during training.

where y and y are values of observed and predicted binding affinity respectively. When 
the inequality relationship between y and y is not met, their difference (diff) will thus 
affect loss. Moreover, Huber loss will degenerate to MSE loss when diff is less than 
expected value δ . Otherwise Huber loss uses linear errors to evaluate training losses, 
which is able to minimize the impact of hard-to-learn data on the performance of model 
training. RAdam is used for the optimization of model parameters. Compared to tradi-
tional Adam, RAdam [23] is able to adjust the variance of adaptive learning rate so as to 

(3)Contexti = Watten
i ·

(

tan h(outlstm
)

)T

(4)Headi =
Contexti

∑h
k=0 Contextk

· outlstm

(5)Fusion = tanh([Head1,Head2, . . . ,Headh] ·WF )

(6)Output = sigmoid(Fusion ·Wo + b)

(7)L
(

y, y
)

=

{

0.5× diff 2,
∣

∣diff
∣

∣ ≤ δ

δ ·
(∣

∣diff
∣

∣− 0.5× δ
)

,
∣

∣diff
∣

∣ > δ

(8)diff =







min(y− y, 0), if measurement is (<)

max(y− y, 0), if measurement is (>)

y− y, if measurement is (=)



Page 6 of 12Ye et al. BMC Bioinformatics            (2021) 22:7 

prevent model from converging to the local minimum. The batch size is chosen as 512 
and the training stops as the loss over validation dataset shows no improvement after 5 
consecutive epochs. The epoch number is set as 100. The learning rate is set as 0.001, 
and the dropout rate is set as 0.1.

Results
Model evaluation based on fivefold cross‑validation

To evaluate model performance and robustness, we conducted fivefold cross-validation 
test over training dataset. Area under the receiver operating characteristic curve (AUC) 
was used for model evaluation as well as model comparison against top-performed 
allele-specific and pan-allele models—MHCflurry, netMHCpan and ACME [24]. To 
ensure proper ratio of positive data to negative data in every fold of cross-validation, 
we separately divide positive and negative data into five individual subsets by random 
sampling. In each fold of cross-validation, four positive subsets and four negative subsets 
were pooled as training dataset whereas the remaining data were used as test dataset. 
The cross-validation tests were repeated for 10 times in order to calculate the mean and 
standard deviation. MATHLA achieves the best mean AUC score of 0.964, comparing to 
0.945, 0.925 and 0.905 for netMHCpan 4.0, MHCflurry and ACME respectively (p val-
ues: 2.66e−16, 9.06e−12 and 4.91e−09 respectively, one-sided t-test over AUC scores of 
10 cross-validation repeats) (Fig. 2a).

The performance of MATHLA is more robust for longer HLA ligands

Most of previous methods tend to use sequence padding to handle flexible peptide 
lengths. Since LSTM is intrinsically designed for modelling longer sequence, we also 
examined the prediction performances of different tools over peptides ranging from 8 
to 15 amino acids in length by fivefold cross-validation. The degrees of improvement 
by MATHLA over other models are positively correlated with the length of peptides 
(Fig.  2b). Especially for longer peptides of 12 to 15 amino acids in length, MATHLA 
achieves an average AUC score of 0.926 and shows 6.4%, 6.8% and 19.1% improvement 

Fig. 2  Model evaluation by the fivefold cross-validation test. a Fivefold cross-validation test was repeated for 
10 times. The mean and standard deviation of AUC scores were shown. b In the fivefold cross-validation test, 
data in each fold were stratified by peptide length. The AUC score for each length was then calculated. The 
mean and standard deviation of AUC scores of 10 repeated tests were shown
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of average AUC score over ACME, MHCflurry and netMHCpan 4.0. In summary, the 
fivefold cross-validation results demonstrate that MATHLA outperforms state-of-the-
art tools in both of model performance and robustness over variable lengths of ligands.

MATHLA outperforms existing pan‑allele models on novel alleles

The foremost characteristic of a pan-allele model underlies its ability to accurately 
predict peptides bound to HLA alleles beyond the training dataset. To test the gener-
alizability of MATHLA, we took the advantage of non-overlapping alleles between our 
training dataset and a set of mass spectrometry HLA ligandome data [7]. In total, 10 out 
of 95 alleles were used for assessing pan-allele model generalizability. Another two pan-
allele models—netMHCpan 4.0 and ACME were used for model comparison regardless 
of whether these 10 alleles were included in their training datasets or not (only 7 HLA-A 
and HLA-B alleles are supported by ACME). In total, MATHLA outperforms netMHC-
pan 4.0 and ACME over 80% and 100% of non-overlapping alleles respectively. The aver-
age AUC of our model over 10 alleles reaches up to 0.982 which is higher than 0.975 of 
netMHCpan 4.0 (Fig. 3a). Relative to netMHCpan 4.0, it is noteworthy that performance 
advantage of MATHLA is more prominent for HLA-C alleles rather than HLA-A and 
HLA-B alleles. The average AUC score of three HLA-C alleles is 0.988 for MATHLA as 
compared to 0.965 for netMHCpan 4.0.

MATHLA improves accuracy over existing models for HLA‑C alleles

Inspired by the observation that MATHLA shows exceptional improvement for non-
overlapping HLA-C alleles, we further compared the performance of our model over 
different supertypes of HLA I molecules. We separately calculated AUC scores of our 
model over all the HLA-A, B and C alleles in the test dataset. Pan-allele methods netM-
HCpan 4.0 and ACME, as well as allele-specific model MHCflurry, were used for model 
comparison. Although the AUC of MATHLA shows marginal enhancement over the 
top performed competing method netMHCpan for HLA-A and -B alleles, the AUC of 
MATHLA corresponding to HLA-C group is significantly improved over the compet-
ing models (0.976 for MATHLA, 0.951 for netMHCpan 4.0 and 0.927 for MHCflurry) 
(Fig. 3c). Moreover, we find that our model outcompetes netMHCpan 4.0 for 19 out of 
21 (90.5%) individual HLA-C alleles. Since there are fewer data of HLA-C in the training 
dataset than those of HLA-A and HLA-B, we demonstrate that our model can outcom-
pete both pan-allele and allele-specific models for HLA-C alleles in the context of lim-
ited number of training data.

MATHLA enables depiction of a variety of HLA‑ligand binding patterns

To better understand the characteristics of model integrating bi-directional LSTM 
and multiple head attention mechanism, we investigated the attention weight scores 
corresponding to different supertypes of HLA class I molecules as well as ligands 
with different lengths. Previous motif analyses of HLA ligands revealed that the resi-
due at the most C-terminal end was most likely to have recurring amino acids than 
other positions [25], which was confirmed by the consensus dominant weight score 
for the last residue of peptide sequence in the head 0 vectors across all three HLA 
class I supertypes (Fig.  4). On top of the consensus pattern in the head 0 vectors, 
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we observed more diversified patterns from the head 1 vectors. First, we found the 
weight distribution for peptide of 9 amino acids was distinct from peptides of all 
other lengths, in which the 9th position on the peptide is weighted dominantly. This 
pattern is consistent with previous finding that C-terminal residue is more impor-
tant for the binding of 9-mer peptide than longer peptides [26]. Second, the atten-
tion weight scores of the second or third position on peptides bound by HLA-A and 
B are consistent with another known motif, while the corresponding positions for 
HLA-C ligands accounts for much less weights. This distinguished weight pattern 
of HLA-C ligands might explain why our model achieves greater advantages over 
other tools for HLA-C-peptide prediction. Collectively, our model demonstrates 
incorporating multiple head attention mechanism into LSTM network can capture 
HLA-supergroup-specific and peptide-length-specific information that enhances 
the robustness of MATHLA in HLA-ligand prediction.

Fig. 3  a AUC scores of three pan-allele models (MATHLA, netMHCpan 4.0 and ACME) over 10 
non-overlapping alleles between the training and test datasets. b–d The receiver operating characteristic 
curve of MATHLA, netMHCpan 4.0 and MHCflurry on the test dataset. Plots for HLA-A, HLA-B and HLA-C 
alleles are generated separately. e The AUC scores of MATHLA and netMHCpan 4.0 over 21 HLA-C alleles in 
the test dataset
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Discussion
Machine learning based HLA-peptide binding prediction have been undergoing rapid 

Fig. 4  Heatmap of weight scores of two heads (head 0 and 1) in the attention model for both HLA 
pseudo-sequences and peptide sequences. Weight scores of the test data associated with HLA-A, B and C 
supergroups are displayed separately. Each row is corresponding to the position of amino acid residue on 
HLA pseudo-sequence and peptide sequence. Each column corresponds to peptide of different lengths (8aa 
to 15aa)
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development in the past few years owing to the breakthrough of deep learning algorithm 
and emergence of large-scale mass spectrometry data. Meanwhile, prediction tools 
have been genuinely deployed in more and more clinical studies than before, due to the 
booming of cancer immunotherapy. The current criteria for selecting optimal tool in a 
real-world project mostly rely on the number of supporting alleles and average predic-
tion accuracy measured by different metrics like AUC. However, in regard to prediction 
accuracy over individual alleles, there is no tool whose prediction accuracy is unani-
mously higher over all the individual HLA alleles. This fact has posed several questions 
about HLA-peptide prediction on top of previous criteria like average prediction perfor-
mance. First, for any given individual patient subject to target identification for cancer 
immunotherapy, how to select from a variety of existing tools the most accurate one for 
the given HLA alleles of this patient? This question becomes even more urgent and criti-
cal for patients carrying rare HLA alleles or alleles with limited amount of experimental 
data. Second, for longer ligands (11mer to 15mer) whose prediction accuracy is relatively 
lower, how to further improve the prediction accuracy given the fact the increasing mass 
spectrometry data alone can only provide limited prediction power.

Conclusions
Our model integrating bidirectional LSTM and multiple head attention mechanism has 
addressed these two questions by not only achieving prominent advantage in predic-
tion accuracy for the HLA-C alleles but also attaining better prediction power for longer 
class I HLA ligands. Our work shows that advanced architecture of deep learning can 
provide an interpretive model to further improve and understand HLA-peptide bind-
ing prediction. We envision that introducing other alternative methods, such as self-
attention mechanism and word2vec model, can provide better peptide representation to 
further improve prediction accuracy. Our framework will certainly benefit T cell-based 
vaccine development in treating cancers as well as for prevention of infectious diseases.

Abbreviations
HLA: Human leukocyte antigen; LSTM: Long short-term memory; AUC​: Area under the receiver operating characteristic 
curve; CNN: Convolutional neural network; MSE: Mean squared error.
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