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Abstract: Cancer is a condition where the body cells multiply in an uncontrollable manner. Chemo-
prevention of cancer is a broad term that describes the involvement of external agents to slow down or
suppress cancer growth. Synthetic and natural compounds are found useful in cancer chemopreven-
tion. The occurrence of global cancer type varies, depending on many factors such as environmental,
lifestyle, genetic etc. Cancer is often preventable in developed countries with advanced treatment
modalities, whereas it is a painful death sentence in developing and low-income countries due to the
lack of modern therapies and awareness. One best practice to identify cancer control measures is to
study the origin and risk factors associated with common types. Based on these factors and the health
status of patients, stage, and severity of cancer, type of treatment is decided. Even though there are
well-established therapies, cancer still stands as one of the major causes of death and a public health
burden globally. Research shows that most cancers can be prevented, treated, or the incidence can
be delayed. Phytochemicals from various medicinal plants were reported to reduce various risk
factors associated with different types of cancer through their chemopreventive role. This review
highlights the role of bioactive compounds or natural products from plants in the chemoprevention
of cancer. There are many plant based dietary factors involved in the chemoprevention process. The
review discusses the process of carcinogenesis and chemoprevention using plants and phytocom-
pounds, with special reference to five major chemopreventive phytocompounds. The article also
summarizes the important chemopreventive mechanisms and signaling molecules involved in the
process. Since the role of antioxidants in chemoprevention is inevitable, an insight into plant-based
antioxidant compounds that fight against this dreadful disease at various stages of carcinogenesis
and disease progression is discussed. This will fill the research gap in search of chemopreventive
natural compounds and encourage scientists in clinical trials of anticancer agents from plants.

Keywords: chemoprevention; antioxidants; phytochemicals; carcinogenesis

1. Introduction

Cancer is a condition where cells anywhere in the body behave abnormally and
multiply in an uncontrollable manner. There are over 200 different types of cancer. The
symptoms and signs of cancer vary based on the size, location, stage, and cancer types.
The cancer type and staging can be determined by biopsy outcomes. The treatment
protocols vary based on the type and severity of the tumor. Surgery, chemotherapy, and
radiation are the widely used conventional cancer treatment modalities. There are many
complementary and alternative treatment modalities for cancer including herbal medicine.
Chemoprevention is an approach with great potential in controlling the incidence of cancer.
Chemoprevention works in different ways to stop, delay, and control cancer incidence
and progression [1]. Many products from natural and synthetic agents were employed
to prevent carcinogenesis or metastasis of cancer [2]. Chemoprevention research has
noticeably increased with advanced insight into carcinogenesis and the detection of potent
molecular targets to hinder the process of carcinogenesis. Worldwide, every year around
11 million people are diagnosed and out of which 6.7 million people die due to cancer.
Breast, lung, and colorectal cancers are the most common cancers diagnosed globally and
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the mortality rate of lung, stomach, and liver cancers are the highest among all cancers [3].
The drawbacks of modern cancer treatments, disease severity, increased mortality rate,
and loss of patient quality of life upon treatment show the need for a new and alternative
herbal approach in disease control and prevention.

Chemoprevention is one of the growing areas of anticancer research with the focus on
various interventions such as nutritional factors, biological and pharmacological. There are
three different approaches involved in cancer chemoprevention: primary, secondary, and
tertiary chemoprevention. First one involves interventions intended to prevent healthy
individuals from showing high-risk features, such as genetic predisposition to prevent the
development of certain cancer. Second type is mainly developed for treating premalig-
nant tumors to prevent cancer progression (example: colon polyps, skin actinic keratosis,
cervical dysplasia, lung metaplasia). Third approach is to support patients with cancer
history to prevent further cancer relapse or the development of new primary tumors [3].
Nutrients, and other dietary factors are importantly linked with the risk of developing
various cancer types. Manson in 2003 reported that around 35% of global cancer mortality
rates are directly associated with dietary factors [4]. Recently, dietary polyphenolic com-
pounds were reported to possess anticancer benefits and other related pharmacological
activities and received a great deal of attention for their health benefits. Polyphenolic com-
pounds are found in majority of fruits and vegetables. Based on the structural complexity,
chemical nature and structure of the polyphenols, they are categorized into 10 classes
with over 8000 compounds [5]. Among the pool of dietary polyphenols, flavonoids and
phenolic acids are the most common and account for about 60 and 30%, while phenolic
acids, flavonoids, stilbenes, and lignans are the most widely occurring plant polyphenols.
This review discusses the concept of chemoprevention with reference to the plant-based
chemopreventive agents, their mechanism of action, related signaling molecules, and the
role of antioxidant compounds.

2. Cancer Chemoprevention: Rapidly Growing Field

The characteristic feature of cancer cells is their ability to grow faster than normal cells.
Most of the chemotherapy agents are designed in such a way that they target these fast-
growing cells and block, kill, or slow down their growth. Nevertheless, these chemotherapy
drugs adversely affect or kill normal healthy cells too. Due to this reason, the patient experi-
ences severe side effects, and the therapy efficacy will be reduced or limited. Carcinogenesis
progresses through various molecular mechanisms and signalling molecules. The chemo-
prevention of cancer fosters the utilization of natural and artificial mediators to disrupt
carcinogenesis by stopping or defeating the precise molecular signaling mechanisms [6].
These mediators are mainly classified into two: blocking and suppressing agents. Chemo-
prevention using medicinal plant-derived compounds is an advanced cancer research
field that concentrates on prevention through nutritional mediations. Development of a
chemopreventive agent from a basic biological observation to clinically efficient anticancer
compounds or agent is challenging. The chemoprevention process must always be safe
and lengthy, and the compounds used must be acceptable for long-term administration to
healthy and elderly patients, as well as those with comorbidities.

There are several epidemiological studies that reported that consistent fruit and veg-
etable intake significantly reduces the possibility of the incidence of many cancers [7].
Bioactive compounds from medicinal plants or from herbal diets, dietary phytochemicals
lately showed their significant role in cancer chemoprevention [6], leading to the devel-
opment of a new and alternative method of cancer prevention and therapy [8]. Several
phytochemicals underwent clinical trials to investigate their possible cancer chemopreven-
tive effects [9]. Wattenberg in 1985 classified chemopreventive agents into inhibitors of
carcinogen formation, blocking agents, and suppressing agents. The first type prevents
the carcinogen formation from the precursors, and the second type prevents carcinogen-
induced mutations by blocking specific metabolic carcinogen activation pathways, and it
also enhances the detoxification process by trapping specific reactive oxygen species (ROS).
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Finally, the third type prevents the tumor progression by stopping cell proliferation and
differentiation, and by inducing apoptosis, autophagy, necrosis, etc. Most of the bioactive
compounds of plant origin block the cancer development process by any of these pathways.
Chemopreventive compounds were also shown to enhance the effectiveness of conven-
tional chemotherapeutic drugs. The important aim of cancer chemoprevention is to reduce
the early-stage cancer risk and to prevent the secondary spreading of tumors [10,11].

Carcinogenesis is a multistep process involving multiple genes and several genetic
alterations that are expected in a normal healthy cell to develop into a tumor cell. The
process of carcinogenesis, or cancer cell formation, is often divided into three steps such
as initiation, promotion, and progression. The number of hereditary changes engaged
in these different steps is not yet fully verified. The first step entails the initiation of an
irreversibly distorted cell and is often associated with a mutation and different initiation
pathways. During the second stage, the initiated mutated cells expand and form a visible
mass of cells, which are probably a nonmalignant lesion. The promotion stage certainly
involves epigenetic factors that affect the multiplication of the initiated cells. The detailed
mechanism involved in the second stage of carcinogenesis is not well-understood. The final
product of promotion is usually nonmalignant or benign cells, or sometimes preneoplastic
cells. These benign cells undergo a couple of extra genetic alterations during the progression
stage into neoplastic cells. The final stage in carcinogenesis, i.e., progression involves in
the formation of malignant tumors from nonmalignant benign tumors, are different from
other earlier two steps. Stem cells play a vital role in the initiation of carcinogenesis
through various factors such as physical, chemical, or biological, including viruses. Such
initiated cells will then be exposed to a promoting factor to stimulate the full neoplastic
cell formation, and the sequential steps are important in the malignant transformation
of preneoplastic cells [12,13]. The carcinogenesis process in a multicellular animal is the
consequence of various chemical, physical, biological, or genomic changes in the cells.
Though carcinogenesis is mostly driven by mutation, several other factors are also involved
in this development. Chemoprevention is a pharmacological intervention approach to
arrest or reverse the process of carcinogenesis. Chemoprevention influences and stops the
carcinogenesis process in each stage as shown in Figure 1.

Figure 1. Stages of carcinogenesis and chemoprevention.
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3. Role of Plant Polyphenols in Chemoprevention of Cancer

Many plant-derived products are used for the treatment and management of various
diseases. Several purified plant products are available in the market for use, and such
products are either entire plants or parts of the plant available in powder, capsule, or
liquid forms. These plant products can be consumed as food, tablets, prepared in tea,
used as gels to apply over the skin, and sometimes can be used in bathing water. Even
though plant products were used for centuries in anticancer and cancer chemopreventive
roles, investigation of active compounds from plants drove interest in the last few decades.
Nevertheless, appropriate prudence must be held during the use of such herbal products
in cancer patients because some of the herbal products may interfere with the conventional
treatments patients undergo, or the dosages of the plant products may cause adverse effects
on the patients’ health [14–17].

One of the main drawbacks of anticancer chemotherapies is the resistance developed
during the continued therapies. Recent research is focused on this area to find out the
resistance genes and drug resistance processes. There are some reports on the use of
herbal products in combination with conventional anticancer drugs, and the outcome
showed these herbal combinations resensitize the chemotherapy resistance established
after the continued use of the anticancer chemotherapeutic drugs. Therefore, these com-
bination therapies using herbal product anticancer drug conjugates improve the healing
efficacy and result in the desired treatment outcomes. The herbal combination chemother-
apies also showed significantly reduced undesirable side effects of synthetic drug-based
chemotherapies [18,19]. The dietetic phytochemicals are widely used in the chemopreven-
tion process, and this idea of cancer prevention is achieving increased research focus due to
the diverse chemical components in plants, complex structure of chemicals, characteristic
biological effects, cost-effectiveness, easy accessibility, and reduced or less toxic side effects.
Phytocompounds can alter various molecular signaling pathways and impart protective
role in cancer chemoprevention. The dietary chemopreventive phytochemicals not only
played an important role in cancer prevention, but they were also employed as a primary
competitor as a natural lead compound in the development of potent cancer chemothera-
peutic drugs. Polyphenolic compounds among the phytochemicals have a significant role
in cancer therapies and prevention due to their prominent role in interfering carcinogenesis
at the initiation, promotion, progression stages, etc. Phytochemicals lead to the alteration
of proteins in different signal transduction pathways and integrate with distinct molecular
signals to exert the definitive chemopreventive and/or chemotherapeutic role [20].

Environmental factors including diet are one of the major causes of the development
of cancer. Nutrients, and other dietary elements are strongly correlated to the risk of
developing various cancer types. Research investigations showed that one-third of cancer
mortality rates are associated with diet and nutrition [4]. Phenolic acids, flavonoid com-
pounds, stilbenes, lignans, etc., are the commonly appearing polyphenolic compounds
in plants; among them, flavonoids and phenolic acids account for about 90% of dietetic
polyphenols. Based on the complexity of molecular and chemical structure, there are
around 4,000 different types of flavonoids reported. The dietary sources of some of the im-
portant chemopreventive polyphenolic compounds are shown in Figure 2. Various clinical
studies showed the positive correlation between the intake of polyphenolic compounds or
flavonoids as food or drinks rich in polyphenols and reduced cancer incidence, lowered the
risk of developing different cancer types, and decreased cancer relapse [21–27]. Most of the
potent chemopreventive polyphenols disrupt or reverse carcinogenesis through initiation,
promotion, and progression steps via the network of intracellular signaling molecules [28].
Therefore, the anticancer and chemopreventive role of nutritive and dietary polyphenols
are based on the combination role as cytoprotective and cytotoxic efficacies. They protect
the normal healthy cells, while they kill or are toxic to the premalignant and neoplastic or
malignant cells.
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Figure 2. Common examples of chemopreventive dietary phytochemicals.

Phenolic compounds of plants alter carcinogenesis through various pathways and
their efficacies will vary based on the type of tissue and dosages used. Though there are
some clinical studies reported on the role of polyphenols, many of the anticarcinogenesis
roles of nutritive polyphenolic compounds are studied in in vitro and in vivo models.
Studies showed the safe doses of green tea extract are daily up to 4.2 g or 1.0 g thrice daily
intake to the patients with advanced stage of cancers, and 3 g per day for patients with
advanced lung cancers. In these studies, the toxicity observed was directly linked to the
caffeine (neurological and gastrointestinal effects) doses [29,30]. Another study reported
the anticancer activity of green tea based on the expression of molecular biomarkers. The
decreased levels of PSA and urinary 8-hydroxydeoxyguanosine markers were noted in
liver and prostate cancer patients with a 6 g/m2 intake of green tea daily [31,32]. Some of
the common medicinal plants used in the chemoprevention of cancer, their therapeutic
role, and cancer types treated or prevented are listed in Table 1.

Table 1. Medicinal plants used in chemoprevention of cancer and their therapeutic role.

Common Name Botanical Name Therapeutic Role Type of Cancer References

Indian Gooseberry Phyllanthus emblica Immunomodulatory,
cytoprotective Breast cancer [33]

Garlic Allium sativum Anticancer, immuno-stimulant Oesophageal, colorectal cancer [34,35]

Turmeric Curcuma longa Anti-inflammatory, anticancer;
chemo-resistance Breast cancer [36–38]

Common mayapple Podophyllum peltatum Anticancer Testicular, lung cancer [39]

Heartleaf moonseed plant Tinospora cordifolia Immunomodulatory,
antioxidant, anticancer Cervical cancer [40]

King of bitters Andrographis paniculata Immune stimulator Leukaemia, Colon, breast cancer [41]

Atemoya Annona atemoya Anticancer Lung, Colon, breast cancer [42]

Stone breaker Phyllanthus amarus Cell cycle arrest, DNA repair,
anti-angiogenic Lung [43]

Amruta Mappia foetida Antineoplastic Leukaemia, lymphoma, cervical [44]

Winter cherry Withania somnifera Anti-inflammatory, antitumor,
antioxidant, immuno-modulatory Leukaemia [45]

Himalayan cedar Cedrus deodara Apoptosis induction Leukaemia [46]

Heart leaved moonseed Tinospora cordifolia Cytotoxic Cervical [47]

Soursop Annona muricata Cytotoxic Breast [48]

Chestnut rose Rosa roxburghii Immunomodulatory, antiaging Oesophageal, gastric, pulmonary [49]
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Table 1. Cont.

Common Name Botanical Name Therapeutic Role Type of Cancer References

Jewel Vine Derris scandens Radiosensitizer Colon [50]

Penawar Hitam Goniothalamus macrophyllus Apoptosis induction Cervical [51]

Dong quai Angelica sinensis Cytotoxic Leukaemia [52]

Cang Zhu Atractylis lancea Apoptotic, cell
cycle arrest Liver [53]

Mongolian milkvetch Astragalus membranaceus Immunomodulatory Myeloid Leukaemia [54]

Tea plant Camellia sinensis Antioxidant, antitumor,
antibacterial, antimutagenic Breast, lung, colon, skin [55]

Fire-flame bush Woodfordia fruticosa Cytotoxic Lung, colon, Liver,
Neuroblastoma [56]

Red spiderling Boerhaavia diffusa Cytotoxic, anticarcinogenic Cervical [57]

Umbrella cheese tree Glochidion zeylanicum Cytotoxic Prostate, liver, colon [56]

Black nightshade Solanum nigrum Antimicrobial, antioxidant, cytotoxic,
antiulcerogenic, hepatoprotective Cervical [58]

Chaga Inonotus obliquus Anticancer Lung, breast, cervical, stomach [59]

4. Natural Chemopreventive Agents in Clinical Setting

Many natural compounds were widely examined for their possible use in the preven-
tion of cancers over the years. The increasing volume of in vitro and in vivo data on the
cancer chemopreventive and chemotherapeutic outcomes of plant-derived compounds
urged scientists to do clinical trials focusing on the pharmacokinetics, efficiency, and safety
of the phytocompounds.

4.1. Curcumin

Curcumin is a potential natural compound that originated from Curcuma longa and
is widely used for cancer chemoprevention. Apoptosis induction, inhibition of molecu-
lar signals, free radical scavenging, and inhibition of inflammatory responses on tumor
microenvironment are the various molecular mechanisms by which curcumin exerts chemo-
prevention of cancer. Curcumin exhibits ideal chemopreventive features, such as low toxic
effects, cost-effectiveness, and easy accessibility. In different continents, especially in Asia,
the powder form of rhizome of the Curcuma plant was used widely as a spice and as a
coloring and flavoring agent in many foods, and it also showed anti-inflammatory effects.
Diferuloylmethane (1,7-bis- (4- hydroxy-3-methoxyphenyl)-1,6-heptadine-3,5-dione) or
curcumin is the chief pigment of turmeric, with strong antioxidant and anti-inflammatory
activities [60]. Turmeric contains many bioactive compounds of which curcuminoids
such as curcumin, tetrahydrocurcumin, bisdemethoxycurcumin, and demethoxycurcumin
are common, and the levels vary based on the species type, farming, and rhizome treating
conditions. Tetrahydrocurcumin is the key naturally occurring curcuminoids compound,
and it is of great interest in anticancer research due to its increased solubility in water. They
are chemically stable and showed maximum bioavailability with strong antioxidant activity.
Anticancer activities of tetrahydrocurcumin are linked to many molecular pathways such as
they modulate oxidative stress created in cells, reduce inflammation and proliferation, and
induce immunity and cell death [61].

The major molecular targets of curcumin that help in cancer cell death are cyclooxygenase-2
(COX-2), nuclear factor kappa B (NF-kB), tumor necrosis factor-alpha (TNF-a), and cyclin D1.
The molecular targets exert substantial anti-inflammatory and anti-tumorigenic properties
in different clinical and preclinical studies [62,63]. Many in vitro studies also showed
different mechanisms of curcumin in the antiproliferation of cancer cells. Cyclin D1 and
CDK-4 expressions were significantly reduced in breast and skin cancers after curcumin
treatments [64]. Curcumin also downregulates the expression of angiogenic genes including
VEGF, angiopoietin and MMP-9, and MMP-3; this effect was mediated by AP-1 inhibitory
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action [65,66] a promising in cancer therapeutic and chemopreventive approach. The
chemopreventive action of curcumin is altogether mediated by several biochemical and
molecular pathways that regulate apoptotic cell death and the role of different types of
transcription factors and enzymes.

4.2. Resveratrol

Grapes, berries, and many other plant products exhibit strong polyphenolic com-
pounds are rich in resveratrol (3, 5, 4′-trihydroxy-trans-stilbene). Not only in cancer
research but many other clinical research data also showed that resveratrol has significant
effects with many age-related diseases, such as diabetes, neurodegenerative disorders,
arthritis, and coronary and pulmonary illnesses. Reports suggest that resveratrol modifies
all the different steps in carcinogenesis, such as initiation, promotion, and progression.
They alter various signaling mechanisms to reduce the cancer cell multiplication and
progression, inducing programmed cell death and reducing inflammatory responses and
angiogenesis, and also stopping the metastatic spread of tumors. They modulate multiple
signaling pathways of the cell cycle, inflammation, and apoptosis [67–70]. One of the
promising roles of resveratrol is how it significantly decreases the toxic side effects associ-
ated with therapies and enhances the cancer therapeutic effects. It can also be employed in
the treatment of some autoimmune diseases [71–74].

Side effects of chemotherapies were always a serious complication in the application of
chemotherapy drugs in clinical practice. Resveratrol is a safe and potent natural compound
that showed a multifunctional role which has a protective role against chemotherapy side
effects with strong chemopreventive and chemotherapy properties [75,76]. Resveratrol
significantly reduced the accumulation of arsenic and decrease the arsenic-induced tox-
icities in renal cells. They also inhibit the arsenic trioxide-induced oxidative stress, and
decline the arsenic accumulation in hepatic cells and increase antioxidant enzyme effects to
prevent arsenic-induced toxicity in liver [77]. The promising antioxidant role of resveratrol
also helps to protect acetaminophen-induced liver toxicity, as well as cisplatin-induced
gastrointestinal tract disorders by improving the tubular dilation and cell vacuolization
of kidney tubes [78,79]. The topical application of resveratrol inhibits UVB-mediated skin
edema and reduces hydrogen peroxide production and leukocyte infiltration in mice. This
study led found that the long-term application of resveratrol before and after the treatment
significantly reduced the tumor incidence or delayed the start of oncogenesis, while the
short-term application led to the inhibition of cellular proliferation [80,81]. Some studies
reported that regulatory cell cycle signaling molecules and apoptotic inhibitory proteins
expression after resveratrol treatments showed inhibition of photocarcinogenesis [82,83].

4.3. Apigenin

A flavonoid rich in fruits and vegetables with chemopreventive action is apigenin
(4′, 5, 7, -trihydroxyflavone). Antiangiogenic properties of apigenin are linked to the regula-
tion of signaling pathways, induction of apoptosis, prevention of cancer cell transformation,
and cell cycle arrest [84–87]. Apigenin has an inhibitory effect on tobacco smoke-related
cancers and HPV infections. They substantially reduced HPV-altered human prostate
cells by cell cycle alteration and apoptotic induction [88], and this effect was due to the
inhibiting action of apigenin on NNK, a tobacco-specific carcinogen through focal adhesion
kinase (FAK) and extracellular regulated protein kinase (ERK) signals [89]. Furthermore,
they specifically inhibit HPV-positive HeLa and SiHa cells while reduced toxic effects are
observed in HPV-negative C33A and HaCaT cells [90].

There are many in vivo studies that reported the chemopreventive role of apigenin.
The dosages, different modes of administration, and frequencies of treatments, etc., were
studied on various animal models. The in vivo results showed the inhibition of phos-
phoinositide 3-kinase (PI3K)/Akt/Forkhead box O-signaling pathway [91], and apigenin
reduced Her2/neu protein expression in breast cancer mice models [92]. In a xenograft
tumor model, the intake of apigenin also reduced the serum-immunoglobulin F-I concen-
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tration, and stimulated apoptotic cell death and cell cycle arrest at different phases [93].
The interruption of apigenin in the NF-kB pathway is responsible for prostate cancer
inhibition [94]. A clinical study was conducted to investigate the absorption of apigenin
systemically after the intake of parsley rich diet, the results of which showed improved bio-
logical antioxidant levels, such as SOD and GR, whereas the GPx, CAT activities seemed to
be reduced in blood cells [95]. Apigenin also showed other bioactivities, such as reduction
in plasma level LDLs, platelet aggregation, and cell proliferation [28,95,96].

4.4. Epigallocatechin Gallate

Green tea is rich in a strong antioxidant chemopreventive compound epigallocatechin
gallate (EGCG). The chemical structure of EGCG consists of three attached heterocyclic
rings, and electron delocalization led to the free radical scavenging [97]. Tea catechins
including EGCG have redox properties and react with reactive oxygen species. The metal
chelating abilities of EGCG helps in the prevention of ROS production and catechin oxida-
tion process [98,99]. The chemical structure of EGCG imparts antioxidant properties and the
air oxidation process with ions and leads to the generation of unstable dimers of catechin.
Though EGCG has many health benefits, it showed low bioavailability due to increased
instability, low distribution in the digestive tract, and active efflux properties [100–103].
Due to these drawbacks, the effect and application of EGCG in human trials is reduced. Re-
cently, many clinical trials were conducted on controlled pharmacokinetic factors to choose
highly suitable dosages and administration modes for proper EGCG intervention [103].

Several in vitro studies conducted to investigate the different mechanisms of EGCG
chemoprevention. EGCG shown prominent regulatory effects on various signalling path-
ways such as JAK/STAT, MAPK, PI3K/AKT, Wnt, Notch, NF-κB and AP-1 [104–111]. The
bioactive compounds of green tea also established tumour suppressor activities, includ-
ing p53, p21, p16 and Rb [112–115]; these activities play a vital role in the prevention of
cancer [116,117]. Another important property of EGCG is its regulatory role on several
receptors in host; for example, EGCG control 67-KDa laminin receptor activity, formerly
recognized as extracellular matrix as part of the translational assembly and as surface
receptors [118,119]. Furthermore, they control the androgen receptor activity in prostate
tumors [120] and the estrogen receptor action in the mammary tumors [121].

4.5. Genistein

Legumes produce an important isoflavone known as genistein (4′, 5, 7-Trihydroxyisoflavone),
commonly called phytoestrogens with a similar structure to human estrogen. They are
ketone or nonketone polyhydroxy polyphenolic compounds of leguminous plants [122].
Genistein exhibit a wide range of biological properties including cancer chemoprevention.
Epidemiological studies showed that in Asian countries, the incidence of certain types of
cancers such as breast and prostate cancers is lower compared to that of western countries
due to diets rich in soy and soy products [123]. The report says the genistein was first
isolated from Genista tinctoria, Fabaceae family, in 1899, but the most abundant amounts of
genistein are sourced from legumes [124].

Biochemical properties of genistein mediate many health benefits including anti-
tumor. Genistein phytoestrogen competes with 17β-estradiol in estrogen binding tests
in vitro cell cultures. The report says genistein blocks the proliferation and multiplication
of estrogen and androgen receptor-positive and negative mammary and prostate tumor
cells in vitro [125]. Genistein blocks PTK signaling mechanism via protein-tyrosine ki-
nase (PTK) inhibition, which indirectly suppresses the proliferation of cancer cells [126].
Other important molecular cancer targets of genistein are topoisomerase I and II [127],
5α-reductase [128], and protein histidine kinase [129]. Inhibition of these targets also
imparts antiproliferative and apoptotic induction of cancer cells. Genistein showed strong
antioxidant potential and protects the cells from ROS action via free radical scavenging,
and it also inhibits the stress response-related genes expression and reduces their role in
carcinogenesis [130]. Genistein is a strong inhibitor of cell survival pathways, such as NF-
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κB and Akt [131], and these inhibitory effects play a major role in the apoptosis induction
in genistein-treated cells.

Some of the most well-known plant-derived chemopreventive agents, their chemical
structure and chemopreventive mechanisms are listed in Table 2.

Table 2. Chemopreventive agents and mechanisms.

Chemopreventive Agents Chemical Structure Chemopreventive Mechanism References

Curcumin
Inhibits lipid peroxidation, free radical
generation, lipo- and cyclooxygenase,

protein kinase C
[132]

Resveratrol
Alter signalling mechanism of cell division
and proliferation, cell death, inflammation,

angiogenesis, metastasis
[70]

Apigenin
Inhibit angiogenesis, malignant

transformation, cell invasion, metastasis,
induce apoptosis, regulate cell cycle

[133]

Epigallocatechin gallate
Regulate signalling pathways- PI3K/AKT,

JAK/STAT, Notch, Wnt, AP-1, NFκB. tumor
suppressor activities- p53; p21, p16 and Rb

[134]

Genistein
Inhibit cell growth, protein-tyrosine kinase,

NF-κB, Akt signalling, PTK, regulate cell
cycle regulation, induce apoptosis

[135]

5. Phytochemicals Induced Chemopreventive Mechanisms
5.1. Antiangiogenesis and Metastasis

The physiological process by which new blood vessels are formed from the old ones
is called angiogenesis. This process is a vital step in the growth, invasion, and spread
of tumors. There are many phytochemicals including phenolics that act as angiogenesis
inhibitors to block tumor cell growth and multiplication. The preliminary mechanisms of
antiangiogenic properties of phenolic compounds are well understood in many in vitro
and in vivo studies. The antiangiogenic properties of ellagic acid, EGCG, genistein, and
anthocyanin-rich berry extracts are via suppression of vascular endothelial growth factor,
vascular endothelial growth factor receptor-2, platelet derived growth factor, platelet-
derived growth factor receptor, hypoxia-inducible factor 1a, and matrix metalloproteases.
The blocking of epidermal growth factor receptor, vascular endothelial growth factor
receptor, and platelet-derived growth factor receptor phosphorylation also impart in an-
tiangiogenesis [136–139].

Many phenolics show a variance of effects on antiangiogenic factors of tumor and
healthy normal cells. Green tea phenolic EGCG can chelate ferrous ions and prevent
hypoxia-inducible factor-1a-induced cancer cell growth. In vitro studies showed a de-
crease in hypoxia-inducible factor-1-mediated transcription and hypoxia-inducible factor-
1a protein level under normal oxygen levels after treatment with EGCG in prostate tumor
cells [140]. Kaempferol, quercetin, myricetin, and galanin suppress the vascular endothelial
growth factor-mediated human umbilical vein endothelial cells (HUVEC) tubular forma-
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tion and block the U937 cell adhesion to HUVECs to prevent the angiogenesis process [141].
Flavonoids, such as naringin, rutin, apigenin, genistein, and kaempferol, decreased the
vascular endothelial growth factor from human mammary cancer cells [142]. Metastasis is
the process of spreading cancer cells to distal organs through lymph nodes. This process
interchange with the degradation of extracellular matrix, proteolysis, cell adhesion, cell mi-
gration, angiogenesis, and invasion [143]. Many dietary polyphenolic compounds possess
anti-invasive and antimetastatic properties by interfering with the tumor cell adhesion and
migration via various mechanisms. However, their exact molecular mechanism and signal
transduction pathways are yet to be discovered [4].

5.2. Apoptosis and Cell Cycle Arrest

Apoptosis is the most common programmed cell death and acts as the therapeu-
tic target for many cancers. Several dietary chemopreventive compounds (resveratrol,
quercetin, EGCG, curcumin, apigenin, chrysin, silymarin, and ellagic acid) showed the
inhibition of carcinogenesis via apoptosis induction [4,28]. Cancer cells are more sensi-
tive to these compounds than healthy normal cells [144–146]. EGCG mediated apoptosis
induction in sarcoma cells was by the cell cycle arrest at G2/M phase, suppression of
Bcl-2 and myc, expression of p53 and Bax, whereas the expression of other important
targets of apoptosis such as p21, p27, Bcl-xL, mdm2, and cyclin D1 remains unchanged
in sarcoma cells [147]. However, the overexpression of p21, p53 and Bax were observed
along with the activation of caspases-3 and -9 and PARP cleavage to achieve apoptosis
in prostate cancer cells. EGCG primarily activates and promotes the cell cycle arrest and
apoptosis through p53-mediated signal transduction along with the effect of p21 and
Bax [148]. Another study showed that a black tea phenolic called theaflavin stimulated the
fragmentation of DNA, caspases-3 and -8, Bax expression, and Bcl-2 downregulation to
achieve apoptosis [149]. Remarkably, theaflavin also stimulated apoptosis by p53 expres-
sion, altering the Bax/Bcl-2 ratio, increased release of cytochrome c from mitochondria,
and activates the caspases-9 and -3 expressions in prostate cancer cells [150]. An important
class of flavonoid compound, anthocyanins, showed an ability to decrease cell proliferation
in colon cancer cells in a dose-dependent manner. Anthocyanins-mediated apoptotic induc-
tion in colon cancer cells was due to the DNA fragmentation and imbalance of Bax and Bcl-2
expressions. However, some bioflavonoid compounds (rutin, epicatechin, chlorogenic acid,
or p-hydroxybenzoic acid) showed no growth inhibitory effect in cells [145]. Delphinidin is
an anthocyanidin plant pigment that inhibited vascular endothelial growth factor-mediated
cell movement and proliferation through the cell cycle arrest at G0/G1 phase. During this
process, the expression of p21 and p27 increased whereas the levels of cyclin D1, cyclin A
significantly reduced [151]. Additionally, the delphinidin-mediated antiproliferative effect
was also caused by the early activation of extracellular signal-regulated protein kinase1/2,
upregulation of caveolin- 1, and downregulation of Ras [152].

6. Signaling Molecules Involved in Cancer Chemoprevention

There are several factors leading to the progression of cancer, including complex
interactions of signaling molecules [153]. With advancement in science and research tech-
nologies, these pathways are being unveiled to track the conditions leading to cancer
progression. Molecular oncology has identified key mechanism of actions with a pre-
cise understanding of gene expression, suppression, mutations, etc., [154,155]. Several
medicine and drugs performed wonders in cancer therapy. However, cancer incidence
and progression can be prevented by modifying lifestyle and dietary changes [28]. These
dietary components as chemopreventive agents attained much interest in resolving many
medical conditions.

6.1. Phytochemicals Modulating Signaling Molecules

Naturally occurring chemopreventive agents, especially from plants, inspired the
scientific community to conduct many experiments to investigate the underlying mecha-
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nisms of action against cancer prevention [156]. Plant-based compounds or phytochemicals
interfere with cellular mechanisms including action of antioxidant enzymes, reducing
oxidative stress, cell cycle arrest, apoptosis, necrosis, autophagy, and inhibit expression
of genes suppressing cancer progression and lead to activation of oncogenes, modulating
signaling pathways and inhibiting angiogenesis and metastasis. All these and many other
pathways have targeted molecules that activate chemoprevention of cancer [157,158].

These target molecules include kinases, receptors, caspases, tumor-suppressor pro-
teins, transcriptional factors, miRNAs, and cyclins. Due to internal or external factors,
oncogenes get activated inducing carcinogenesis. However, cells initiate their self-defense
mechanisms through apoptosis, cell cycle arrest, autophagy etc., by altering cell signaling
pathways. Phytochemicals can accelerate these defense mechanisms on cellular matrix,
cytoplasm and nucleus through multiple molecules controlling these pathways which
decide cell fate [71,159,160].

6.2. Major Signaling Pathways

MAPK Pathways. Phytochemicals can target the extracellular signal regulated kinase
(ERK) and mitogen-activated protein kinase (MAPK) pathway, which essentially regulates
cellular growth and survival. These natural compounds from plants potentially control
cancer progression through various mechanisms [160,161]. The major plant compounds
that were reported to induce apoptosis through MAPK and ERK pathways include ursolic
acid, kaempferol, resveratrol, gingerol, sulforaphane, genistein, and isothiocyanates [161–163].

Akt Signaling Pathways. In cancer control and progression, Akt/PI3 signaling path-
way plays a pivotal role. Levels of epidermal growth factor (EGF) regulates series of
molecular mechanisms including activation of NF-κB and phosphorylation of Akt leading
to resistance to apoptosis and uncontrolled cell proliferation, while downstream, it leads to
the regulation of caspases, Bcl-2, glycogen synthase kinase 3-beta (GSK3β), and mammalian
target of rapamycin (mTOR) [164]. Alkaloids and phenolics significantly contributed to
controlling the expression of these factors. Resveratrol, luteolin, luteolin, apigenin, flavone,
sulforaphane, and curcumin were reported to induce anticancer activities through cell
cycle arrest and apoptosis, inhibit Akt/PI3K signaling, proapoptosis, activation of FOXO3a
(forkhead box O3), antiproliferation, and anti-invasion [165–171].

JAK/STAT Signaling Pathways. Activation of Janus kinases (JAKs) subsequently
phosphorylates signal transducer and activator of transcriptions (STATs), and translocates
to the nucleus, where it controls the transcription of p53, Bcl-2, cyclin D, and interlukin-6
(IL-6) involved in cell death, proliferation, and apoptosis [172]. Compounds isolated from
plants significantly induce cell death in various cancer forms by inhibiting activity of
JAK/STAT signaling and activating apoptotic cascades [173].

Wnt/β-Catenin Signaling Pathways. Common cancers, including that of breast, lung,
colon, blood, ovary, skin, and brain, are frequently associated with abnormal signaling of
Wnt/β-catenin pathway [174]. Activation of this pathway is initiated with the binding of
Wnt-protein to frizzled family transmembrane receptors and accumulation of β-catenin in
the nucleus leading to the activation of transcriptional factors regulating cell proliferation,
survival, and migration [175,176]. Phytochemicals, such as curcumin, resveratrol and
epigallocatechin-3-gallate (EGCG), inhibit the translocation and accumulation of β-catenin
in the nucleus by activation of glycogen synthase kinase 3 (GSK3) [174,177,178].

Tumor Suppressor p53. Similar to other signaling pathways, p53 accounts for anti-
cancer activities in cell. This tumor suppressor protein facilitates activation of apoptotic
cascades [179]. Several phytochemicals, including resveratrol, Quercetin, EGCG, and
piceatannol, were reported to upregulate p53, downregulate Akt, and induce cellular apop-
tosis and elevated cell cycle rest [179–181]. Another significant contribution is with p53,
MAPK, and JNK pathway crosslink [182].

Curcumin and ursolic acid reportedly promote autophagy, wherein the cells shut down
irregular cell proliferation and progression. In cancer cells, autophagy is induced through
downregulation Akt/mTOR pathways [183]. Dietary phytochemicals also regulates of
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antitumor functions in tissues by regulating inflammation, angiogenesis, invasion, and
metastasis [184]. Phytochemicals, hence through these signaling pathways, suppress cancer
development (Figure 3).

Figure 3. Interaction of phytochemicals with signaling molecules in cancer chemoprevention. Figure
represents action of phytochemicals on MAPK, Akt, Wnt, and JAK/STAT pathways inducing cancer
cell death through activation of several internal signaling molecules.

7. Role of Antioxidants in Chemoprevention of Cancer

Many factors promote cancer development, and one among them are free radicals.
These free radicals fundamentally belong to reactive nitrogen species (RNS) and reactive
oxygen species (ROS). Singlet oxygen, superoxide radicals, hydrogen peroxide, and nitric
oxide (NO) are known to impart potential impact on cellular mechanisms [185]. These free
radicals cause damage to lipid bilayer disrupting the cellular membrane, also tampering
with amino acids and DNA, thereby activating a series of enzymatic and nonenzymatic
reactions inside the cell, leading to irregular gene expressions [186]. In cells, some of
the ROS produced are neutralized by endogenous antioxidants in the body. However,
imbalance between pro and antioxidants results in accumulation of free radicals promoting
malignancy and metastasis.

The oxidative damage of DNA induces gene mutations and chromosomal aberrations,
leading to failure in cell cycle arrest in G1 and diminishing DNA repair capacity. This
will promote replication errors, inactivation of tumor suppressor gene, activation of onco-
genes, and malignancy. The depletion of normal cell population is more evident with free
radical induced resistance in cells due to incorrect DNA replication and chromosomal rear-
rangements leading to carcinogenesis. Studies reported activation of C-Raf-1 and K-RAS
oncogenes by hydroxyl radicals. This activation initiates through N-terminal deletion of
genes and GC base pair mutations [187].

To counteract these free radicals and promote cell death in tumor tissues, antioxidants
are being studied widely as they neutralize free radicals that enhance cancer progression.
Endogenous and exogenous antioxidants are the major forms of classified based on their
source. This includes enzymes, phenolics, carotenoids, minerals, and vitamins [188].
Despite the availability of synthetic antioxidants, antioxidants from natural sources are
abundant with immense health benefits. Dietary antioxidants are among the most explored
ones as they can be included in daily diet which can mitigate free radical induced oxidative
stress and disease [189]. Plant-derived antioxidants showed explicit potential in preventing
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diseases, and hence, researchers’ interest towards identifying novel antioxidants from
plants are increasing.

Cancer and its subtypes are a challenging concern for most of the medical experts
and researchers all over the world. However, plant-derived compounds, especially those
with antioxidant properties to counteract free radicals and oxidative stress, are promising
solutions in cancer chemoprevention. Moreover, these phytochemicals are proved to
possess none-to-minimal toxicity towards normal cells, making them preferred agents
in chemoprevention.

8. Possible Actions of Antioxidant Phytochemicals

Several phytochemicals induce antimigratory, anti-invasive, and antiproliferative
effects on cancer cells. Free radicals induced carcinogenesis and activation of nuclear factor
erythroid 2-related factor 2 (Nrf2), resulting in the accumulation of ROS and increased
oxidative stress. These results in translocation of Nrf2 into nucleus once dissociated from
Kelch-like ECH-associated protein 1 (KEAP1). Meanwhile, KEAP1 undergoes proteasomal
degradation. In the nucleus, Nrf2 binds with Musculoaponeurotic Fibrosarcoma (MAF),
initiating transcription of genes activating superoxide dismutase (SOD), glutathione-S
transferases (GSTs), quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HMOX-1),
suppressing free radical-induced stress, as well as DNA and protein damage, and down-
regulating several other signaling pathways responsible for carcinogenesis [190]. In the
following paragraphs, we discuss a few important antioxidant phytochemicals with proven
chemopreventive roles against cancer.

Curcumin, one of the major alkaloids found in plants of cucurbitaceae family, is known
to reduce ROS-induced tumorigenesis and simultaneously protect normal tissues from
ROS-mediated DNA damage [191]. Curcumin showed the ability to modulate several sig-
naling pathways by reducing free radical load in cancer cells. Extracellular signal regulated
protein kinase (ERK1/2) is one such signaling molecule involved in reverting ROS produc-
tion, tumor invasion, and migration [192]. Nuclear factor kappa B (NFkB) is also activated
in cancer cells in response to ERK1/2 pathway [193]. Endogenous enzymes such as catalase
(CAT), superoxide dismutase (SOD), and heme oxygenase-1 are important in fighting free
radical imbalance in the cells. Phenolic compounds were potentially proven to be an agent
in activating these enzymes inhibiting the production of ROS in several organs and reduc-
ing metastases by altering levels of matrix metalloproteinase (MMPs), Vascular endothelial
growth factor (VEGF), and Protein kinase (PKC) levels [194]. Garattini et al. studied the
effective role of all trans retinoic acids and other retinoids in the prevention of breast
cancer. This was attained by modulating several growth factor pathways such as epidermal
growth factors including (EGF), insulin growth factor (IGF), mitogen activated protein
kinase (MAPKs) and Akt signaling pathways [195]. Angiogenesis, being one of the major
promoters of cancer proliferation, became a target of cancer prevention. Retinoids prevent
this process of angiogenesis in cancer populations [196]. These and other classes of phy-
tochemicals are known to eliminate cancer stem cells responsible for cancer relapse [197],
inducing apoptosis and modulating gene and immune functions [198]. The preventive
role of tocopherols were studied in many cell lines inducing antiproliferative, apoptotic,
cell cycle arrest, and proapoptotic activity in pancreas, colorectum, lung, breast, prostate,
liver, bladder, stomach, and glioblastoma [199–201]. Shin-Kang et al., [202] studied the
mechanism behind these properties and concluded that tocols act on several signaling
cascades, including inhibition of ERK, Akt, cyclins, NF-κB, P13K/Akt signaling, TGF-β,
and EGF-2, upregulation of caspases 8, 6, and 9, and suppression of cell proliferation [199].

One of the major classes of compounds found in plants with known wide range of
properties are phenolic compounds (PCs). They were shown to kill cancer cell lines in many
ways. Similar to phytochemical actions discussed above, phenolic compounds also exert
their preventive role though cell cycle arrest, apoptosis, and most importantly, scavenging
free radicals responsible for carcinogenesis and its progression [203–205]. Phytochemicals
involved in cancer chemoprevention were always a topic of controversy due to their pro-
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oxidant action. However, compounds from plants are sought after to effectively prevent
cancer. The role of such natural compounds are shown in Table 3.

Table 3. Gene regulatory mechanisms of phytochemicals.

Phytochemical Action Gene Regulation References

Curcumin
Antiproliferation, antimigration,

anti-invasion, cytotoxicity
Reduces tumor invasiveness

↓ ERK1/2 and NFkB
STAT [206,207]

Epigallocatechin-3-gallate
Antiproliferation, antioxidant

defence capacity
Reduces exogenous oxidative stress

↓ NFkB ↑ GSH
↑ Nrf2, UGT1A, UGT1A8,

and UGT1A10
[208,209]

Resveratrol

Inhibits ROS-induced proliferation and
Migration

Protects against (4-OHE2)- induced
migration and transformation

↓ pERK, pAKT, and pNFkB
ERK, NFkB and p38,

MAPK/NFkB signaling
[210]

Hesperedin Reducing oxidative stress ↓ NFkB and COX-2 [167]

Quercetin Accelerates endogenous antioxidant
enzymes, Apoptosis GST and GPx [211,212]

Gingerol Apoptosis ↑MAPK [213]

Ursolic acid Antiproliferation, proapoptosis,
proautophagy ↓ Akt, ↓MAPK [171]

Apigenin, flavone, eupatilin Antiproliferation, proapoptosis ↓ Akt [180]

‘↓’ indicate down-regulation and ‘↑’ indicate up-regulation of genes.

9. Role of Natural Products in CYP450 Inhibition

Several natural compounds or phytochemicals were proven to exert inhibitory activity
towards different isoforms of P450 protein family as potential anticancer and chemopreven-
tive therapeutic agents. Phytochemicals, such as polycyclic aromatic hydrocarbons (PAH),
naphthoquinones and anthraquinones, stilbenoids, flavonoids, coumarins, alkaloids etc.,
inhibit the P450 enzyme activity. Mechanistically, these phytochemicals are classified as re-
versible (competitive or noncompetitive), quasi-irreversible, and irreversible inhibitors of P450
enzyme. Phytochemicals, such as polycyclic aromatic hydrocarbons, flavones, and coumarins,
exhibit very high P450 inhibitory activity. Nonsubstituted PAHs, 5-hydroxy-2-methyl-NQ,
2-methyl-NQ, 2-hydroxy-NQ, and 1,4-NQ, 2,4,3′,5′-Tetramethoxystilbene, protoberber-
ine alkaloids, cannabinoids etc., inhibit P450 enzymes in a competitive manner. The
well-known anti-inflammatory and anticancer agent berberine acts as a noncompetitive
inhibitor of P450 CYP1 family enzymes. Linderane and thujopsene terpenoids show an
irreversible inhibition of CYP2 enzymes, while methylenedioxyphenyl lignans act as an
irreversible inhibitor of CYP34A [214–216]. Resveratrol exhibits various P450 inhibitory
mechanisms such as it inhibits human P450 CYP1A1 activity in a mixed-type inhibition
(competitive–noncompetitive), while also acting as a noncompetitive inhibitor against P450
CYP1B1 and a mechanism-based inhibitor of cytochrome P450 CYP3A4 [214]. A unique
inhibition type known as mechanism-based inactivation (MBI) is also observed in certain
natural compounds. In MBI the original substrate of the enzyme undergoes additional
metabolic conversion, which chemically activates the substrate to irreversibly binds and
inactivates the enzyme. The natural mechanism-based inhibitors of P450 enzymes include
anthraquinone derivatives (4-amino-1-chloro-3-methylanthraquinone), stilbenoids (rhapon-
tigenin), flavones (7-hydroxyflavone, 3-flavon propargyl ether), coumarins (coriandrin),
alkaloids (furafylline), etc. However, application of MBIs as anticancer agents is not rec-
ommended, as irreversible and permanent inhibition of P450 enzyme causes disturbed
pharmacokinetics and pharmacodynamics of drugs metabolized by P450. This causes a
significant increase in drug concentration in blood circulation, leading to toxicity [214,215].
Other than direct inhibition, resveratrol also acts as a competitive antagonist of arylhydro-
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carbon receptor (AhR) ligands such as dioxin by blocking the activation of dioxin-inducible
genes and inhibits cytochrome P450 1A1 expression [217,218]. In an in vivo study, resver-
atrol was shown to abrogate the benzo[a]pyrene-induced P450 1A1 expression and its
subsequent effects on B[a]P-DNA adducts formation and apoptosis induction [219].

10. Conclusions

Chemoprevention of cancer using plant-based compounds became a preferred ap-
proach in cancer management. Exploration of new chemopreventive phytocompounds
became a central goal of anticancer research, and it also helps with finding new therapeutic
targets. Specific dietary compounds explained in this review may constitute potent can-
cer chemopreventive agents, and the consumption of food that involves such bioactive
compounds was shown to have protective and therapeutic effects on various types of
cancers. The polyphenolic compounds from plants have an immunomodulatory role that
identifies and destroys cancer cells by antiangiogenic effects. Chemopreventive drugs
enhance chemo and radiotherapy efficacies via multiple signal transduction pathways.
Since oxidative stress plays a vital role in the pathogenesis of many cancers, the antioxidant
effect of dietary phenolic compounds might act as a promising strategy to prevent cancer.
Dietary antioxidant phytochemicals are abundant in plants representing different classes
of compounds, which exert various mechanisms of actions on tumors. Hence, chemopre-
vention through diets rich in plant-based antioxidants show great potential in reducing the
risk factors associated with cancer progression.
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