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Introduction: Longitudinal tumor measurements (TM) are commonly recorded in cancer clinical trials of solid 
tumors. To define patient response to treatment, the Response Evaluation Criteria in Solid Tumors (RECIST) 
categorizes the otherwise continuous measurements, which results in substantial information loss. We investi-
gated two modeling approaches to incorporate all available cycle-by-cycle (continuous) TM to predict overall 
survival (OS) and compare the predictive accuracy of these two approaches to RECIST. 
Material and methods: Joint modeling (JM) for longitudinal TM and OS and two-stage modeling with potential 
time-varying coefficients were utilized to predict OS using data from three trials with cycle-by-cycle TM. The JM 
approach incorporates TM data collected throughout the course of the clinical trial. The two-stage modeling 
approach incorporates information from early assessments (before 12 weeks) to predict subsequent OS outcome. 
The predictive accuracy was quantified by c-indices. 
Results: Data from 577, 337, and 126 patients were included for the analysis (from two stage IV colorectal cancer 
trials (N9741, N9841) and an advanced non-small cell lung cancer trial (N0026), respectively). Both the JM and 
two-stage modeling reached a similar conclusion, i.e. the baseline covariates (age, gender, and race) were mostly 
not predictive of OS (p-value > 0.05). Quantities derived from TM were strong predictors of OS in the two 
colorectal cancer trials (p < 0.001 for both association in JM and two-stage modeling parameters); but less so in 
the lung cancer trial (p = 0.053 for association in JM and p = 0.024 and 0.160 for two-stage modeling pa-
rameters). The c-indices from the two-stage modeling were higher than those from a model using RECIST (range: 
0.611–0.633 versus 0.586–0.590). The dynamic c-indices from the JM were in the range of 0.627–0.683 indi-
cating good predictive accuracy. 
Conclusion: Both modeling approaches provide highly interpretable and clinical meaningful results; the improved 
predictive performance compared with RECIST indicates the possibility of deriving better trial endpoints from 
these approaches.   

1. Introduction 

The Response Evaluation Criteria in Solid Tumors (RECIST), first 
defined in 2000 [1] and subsequently updated in 2009 (RECIST 1.1) [2], 
uses measurement-based tumor response to define patient response to 
treatment and has been widely utilized in cancer clinical trials. Objec-
tive response rate and complete response, endpoints which are defined 
based on RECIST, are suitable for regulatory approval of new thera-
peutics by both the Food and Drug Administration (FDA) [3] and Eu-
ropean Medicines Agency (EMA) [4]. Even though RECIST-based tumor 

response has been established as a convincing measure of anti-tumor 
activity, multiple studies have suggested that it may not be the best 
predictor of overall survival (OS) [5–10]. Research efforts have been 
devoted to finding alternative endpoints [7,9,11,12] and to investi-
gating other features that may impact the prediction of OS, e.g. missing 
data [13] and mixed responses [14,15]. 

It is understandable that categorizing otherwise continuous tumor 
measurements, e.g. as is done in the binary RECIST-based tumor 
response, may result in substantial information loss. To address this, 
continuous endpoints have been developed to utilize the absolute/ 
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relative slope between baseline and 6- and 12-week assessments. Un-
fortunately, no improvements have been observed in either predictive 
ability (i.e. c-index, Brier score, and Hosmer-Lemeshow statistic) or 
clinical utility (e.g. positive and negative predictive values) compared to 
the RECIST-based binary response metric [10,12]. There are a couple of 
possible reasons behind the inability of improving prediction using 
continuous tumor measurements. The tumor measurements are taken by 
imaging at scheduled assessment timepoints which may not be suffi-
ciently frequent to capture the continuous tumor size changes. Multiple 
lines of therapies are available for most advanced cancers which weaken 
the association of early tumor measurements to downstream OS. 

We aim to investigate other flexible statistical models which either 
use all the tumor measurements as a longitudinal biomarker or early 
tumor measurements-based metrics while relaxing the proportional 
hazards assumption. This analysis explores the use of two different 
analysis approaches, namely joint modeling [16] and two-stage 
modeling with potential time-varying coefficients [17], applied to 
tumor measurements data to predict OS. The strength of the two-stage 
modeling approach includes the ease of obtaining metrics from the 
first stage modeling, which involves fitting a simple linear regression 
model on individual tumor measurements collected prior to a 
pre-defined landmark time point, i.e. 12 weeks, for each patient. The 
first-stage model estimates, which represent tumor measurement-based 
metrics and subsequently enter the second-stage as covariates, have 
natural and clinically relevant interpretations, i.e. the average tumor 
size at baseline and the trajectory of tumor growth within the first 12 
weeks. Incorporating time-varying coefficients further improves the 
predictive ability and is easily achieved given modern statistical soft-
ware. The strength of the joint modeling approach is that it takes into 
account all tumor measurements throughout the course of a clinical trial 
and can be used to perform risk prediction for individual patients. Both 
models circumvent the missing tumor measurement issue by using all 
recorded data instead of limiting to the complete cases or imputing 
missing values, as was done in previous analyses [9,10,12,13]. Both 
models can also handle tumor measurements taken at varying assess-
ment times allowing for flexibility in protocol adherence, which make 
the methods more applicable to real life data. 

2. Patients and methods 

2.1. Analysis population 

This analysis included patients enrolled in one of three Alliance/ 
NCCTG cancer clinical trials: a phase III randomized study between May 
1999 and April 2001 of IFL (bolus 5-fluorouracil [5-FU], leucovorin 
[LV], irinotecan), FOLFOX (oxaliplatin and infused fluorouracil plus 
leucovorin), and IROX (irinotecan and oxaliplatin) as first line therapy 
for advanced colorectal cancer (N9741 [18], n = 795); a phase III ran-
domized trial of CPT-11 (irinotecan) versus OXAL (oxaliplatin)/5-FU 
(5-Fluorouracil)/CF (Leucovorin) as second line therapy for patients 
with advanced colorectal carcinoma (N9841 [19], n = 491); and a phase 
II first line pemetrexed plus gemcitabine study in advanced non-small 
cell lung cancer (N0026 [20], n = 157). N9741 found FOLFOX to be 
an active regimen for treatment of patients with previously untreated 
advanced colorectal cancer and led to a statistically significantly 
improved response rate and time to disease progression compare to IFL. 
N9841 demonstrated noninferiority of FOLFOX4 to irinotecan in OS as 
second-line therapy in patients with FU-refractory disease. N0026 
showed that pemetrexed followed by gemcitabine on day 1 and gemci-
tabine on day 8 was less toxic compared with the other treatment 
schedules. These trials were chosen for illustrative purposes only; all 3 
trials collected cycle-by-cycle tumor measurements and individual pa-
tient data were available. 

Only patients with both a baseline measurement and at least one 
post-baseline image-assessed tumor measurement were included in this 
analysis. For the two-stage modeling, patients who did not have a 

measurement in the first 12 weeks since randomization or died within 
12 weeks were further excluded. This additional exclusion was needed 
because a landmark analysis approach was adopted for the second stage 
modeling with the landmark time chosen to be 12 weeks, and the 
baseline and early tumor measurements (prior to 12 weeks) were used 
for the first stage modeling. 

2.2. Tumor measurements 

Each trial collected cycle-by-cycle, lesion-by-lesion tumor measure-
ments which were assessed by site investigators. While both N9841 and 
N0026 used RECIST 1.02 for collection and assessment, N9741 was 
activated prior to RECIST and therefore collected and assessed tumor 
measurements according to WHO criteria [21]. To facilitate fair com-
parisons across trials, as well as to be compliant with current standards, 
we applied RECIST 1.13 to all three trials. Specifically, we chose the 
maximum of the bi-dimensional measurements recorded as the single 
dimensional measurement for each lesion and included data from up to 
5 target lesions. We did not consider non-measurable lesions or new 
lesion information in this analysis. 

2.3. Endpoint 

Overall survival (OS), defined as time from trial registration to death 
due to any cause, was the primary outcome of this analysis. 

2.4. Statistical analyses 

Notation 
Let Di = {Ti, δi, yijk, tik,wi} be the observed data for the ith patient(i =

1, …, n), where Ti = min(T*
i ,Ci) is the observed failure time, T*

i is the 
underlying (possibly unobserved) failure time, and Ci is the censoring 
time, and δi = 1(T*

i < Ci) is the failure indicator. All time-to-event var-
iables are measured in weeks. The observed longitudinal tumor mea-
surement yijk represents the size (in millimeters) of tumor j from patient i 
at time tik, where j = 1, …,ni ≤ 5. The sum of the longest diameter (as in 

RECIST 1.1) for a patient at a given time, tik, is denoted by zik =
∑ni

j=1
yijk . 

wi is the vector of static demographic covariates, age, sex (male vs. fe-
male), and race (white vs. non-white) for patient i at baseline. To 
investigate the performance of using observed longitudinal tumor 
measurements in predicting OS, we considered two modeling ap-
proaches as illustrated below. 

2.4.1. Joint modeling 
One approach to modeling a longitudinal outcome and a time-to- 

event outcome simultaneously is through joint modeling [16]. A 
fundamental assumption of joint modeling is that bi (a vector of 
time-independent random effects) underlies both the longitudinal and 
survival processes, which implies that the random effects account for the 
association between both processes as well as the correlation between 
repeated measures in the longitudinal process, i.e. the longitudinal and 
survival processes are conditionally independent given bi. Let mi(t)
denote the true and possibly unobserved tumor measurements on the 
same scale at time t. We considered a linear mixed effects 
subject-specific longitudinal sub-model for tumor measurements and a 
Cox proportional hazards survival sub-model for OS. 

The longitudinal sub-model is defined as follows: 

zi(t)=mi(t)+ εi(t)= β0 + β1t+ β2xi(t) + bi0 + bi1t+ εi(t), εi(t) ∼ N
(
0, σ2),

(1)  

where {β0, β1, β2} are fixed effects, xi(t) is the number of lesions being 
measured at time t, and bi0 and bi1 are random intercept and random 
slope per individual, respectively. We further assume a multivariate 
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normal distribution for bi and independence between εi(t)and bi. Note 
that a non-linear trajectory of the tumor measurements can be incor-
porated into the model by including polynomial or spline terms in the 
longitudinal sub-model. 

The hazard function of the survival sub-model is defined as follows: 

hi(t|Mi(t),wi )= h0(t)exp
{

γTwi +αmi(t)
}

(2)  

where Mi(t) = {mi(u) : 0≤ u< t} denotes the longitudinal history of 
true unobserved tumor measurements until timet, h0(t) is the baseline 
hazard function, and parameter α quantifies the association between 
true tumor measurements and the risk of death. Due to computational 
complexity, we only considered parametric models for h0( ⋅). Specif-
ically, the baseline risk function was assumed to be piecewise constant 
with six internal knots placed at equally spaced percentiles of the 
observed event times. The number of knots was set to be six to allow a 
certain degree of flexibility in the baseline risk function yet, at the same 
time, to include a sufficient number of events in each segment. 

Given the data are observed at discrete times tik, when fitting the 
model, zi(t) in Equation (1) is replaced by the observed sum of lesions, 
zik. 

The joint distribution of {Ti, δi, zik} can then be derived based on the 
assumption that random effects bi explain all interdependencies within a 
patient. Thus, the longitudinal and survival processes are conditionally 
independent given bi and the joint likelihood can be solved using a two- 
step approach. For further details of the mathematical derivation of 
these results, we refer to Rizopoulos 2012 [16]. 

2.4.2. Two-stage modeling 
Though joint modeling is capable of utilizing all observed tumor 

measurement data, thereby likely to have a better prediction accuracy, it 
does not suggest an obvious metric (such as in RECIST 1.1) and therefore 
may be difficult to implement in clinical practice. To address this limi-
tation, we propose a landmark analysis combined with a two-stage 
modeling strategy with potential time-varying coefficients which re-
laxes the proportional hazard assumption in the survival process. 

In the first stage, we fit a simple linear regression model to all 
available individual tumor measurements (yijk) through 12-weeks for 
each patient and estimate subject-specific baseline tumor size, β0i, and 
tumor size changing rate, β1i. In the second stage, we fit a Cox model, 
landmarked at 12 weeks, with potential time-varying coefficients for the 
estimated, subject-specific, tumor measurement-based metrics, i.e. β̂0i 

and β̂1i  , from the first stage. Specifically, the hazard model is defined 
as: 

hi(t|yi,  wi,  tM)= h0(t)exp
{

γTwi + γ0(t)β̂0i + γ1(t)β̂1i

}

for t > tM, where tM is the landmark time. The landmark time point of 
12 weeks was chosen given the fact that the protocol required trials 
N9741, N9841 and N0026 to have 6- and 12-week assessments, and 12- 
week is a commonly utilized landmark time point for tumor 
measurement-based metrics in other literatures [9,10,22,23]. 

Unlike in the joint modeling approach, we did not impose any re-
strictions on h0( ⋅) in the model. We conducted the Grambsch-Therneau 
test [24] for non-proportionality. The functional forms of the potential 
time-varying coefficients γ0(t) and γ1(t) were chosen based on visual 
inspection of the lowess fit of the scaled Schoenfeld residuals and model 
selection criterion Akaike Information Criteria (AIC). 

2.5. Model performance and predictive accuracy 

To provide a benchmark for comparison, a proportional hazards 
model with OS as the response variable was used. RECIST-based best 
response (complete response vs. partial response vs. stable disease vs. 
progressive disease) by 12 weeks was the independent variable in the 
model while adjusting for the same baseline characteristics of age, sex, 

and race. Model performance was summarized by AIC and BIC. It is 
important to note that the AIC and BIC from the joint modeling and two- 
stage modeling should not be compared because their underlying like-
lihood functions are substantially different. It is, however, appropriate 
to compare the AIC and BIC between the proportional hazard model 
with RECIST-based best response and two-stage modeling. For predic-
tive accuracy, Harrell’s C [25] was used for both the proportional hazard 
model and two-stage modeling. For joint modeling, Rizopoulos devel-
oped a time-dependent ROC curve [26] which corresponds to a cumu-
lative sensitivity and dynamic specificity (C/D, see the general 
definition of Heagerty and Zheng [27]). The area under the curve (AUC) 
for this time-dependent ROC curve provides a summary measure of the 
discriminatory power of the joint model and is termed the dynamic 
c-index [26]. It should be noted that Harrell’s C is a weighted area under 
the incident sensitivity and dynamic specificity (I/D, see the general 
definition of Heagerty and Zheng [27]) ROC curve [27]. Given the 
different definitions of Harrell’s C (i.e. using the I/D definition) and 
dynamic c-index (i.e. using the C/D definition), these c-indices are not 
comparable. 

A 2-sided p-value of <0.05 was considered statistically significant for 
all tests. No adjustments were made for multiple comparisons. All ana-
lyses were performed using R (version 3.6.1) with the JM package for 
joint modeling and the survival package for two-stage modeling. 

3. Results 

Patients included in this analysis are shown in the CONSORT dia-
gram (Fig. 1). Among the 1443 patients enrolled into one of the three 
clinical trials, 403 patients were excluded due to a lack of requisite 
measurements to perform the analysis. Patients were excluded from this 
analysis for the following reasons: (1) all measurements were based on 
clinical evaluations only (n = 17); (2) no lesion measurements available 
in the trial dataset (n = 236); (3) no baseline measurements recorded (n 
= 7); and (4) having baseline but no post-baseline measurements 
available (n = 143). Additional exclusions for the two-stage analysis 
include patients with no post-baseline assessments before 12 weeks (n =
63) or died before 12 weeks (n = 26). Baseline characteristics for pa-
tients included in the joint modelling analysis are summarized in 
Table 1. In total, 1273, 695, 226 lesions were recorded at baseline from 
patients enrolled in N9741, N9841, and N0026, respectively. Baseline 
tumor burden, defined as the sum of the longest diameter (cm) of all 
target lesions within a patient, are similar in terms of median but data 
from N9741 are more skewed than the others. All three trials have long- 
term survival follow-up with mature OS outcomes (number of events/ 
number of patients are 559/577, 320/337, and 119/126 for N9741, 
N9841, and N0026, respectively). 

3.1. Joint modeling 

Results from the longitudinal sub-model and the random effects es-
timates are shown in Supplemental Table 1. The estimates of random 
intercepts and slopes are larger in comparison to the fixed effects esti-
mates indicating that there is a lot of variability across individuals. 
Furthermore, the baseline sum of the tumor measurement (β̂0) tends to 
be larger in the two colorectal trials (N9741 and N9841) than in the lung 
trial (N0026). A closer to zero slope in the change of tumor measurement 
(β̂1) in N9841, a second-line study, indicates that the tumor shrinkage is 
less pronounced in N9841 compared to the first-line studies, N9741 and 
N0026. Results from the survival sub-model are given in Table 2. It is 
clear that OS does not associate with age, gender and race in any of the 
trials considered. The association between the risk of death and the 
biomarker values (i.e. sum of tumor measurements) was found to be 
statistically significant for N9741 and N9841 but not for N0026 
(potentially due to the smaller sample size). For all 3 studies, the esti-
mates of the hazard ratio of association variable are greater than one, 
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indicating that a larger tumor measurement (higher tumor burden) is 
associated with higher risk of death, as expected. 

3.2. Two-stage modeling 

The non-proportionality test was not statistically significant (small-
est p-value = 0.48 for first-stage slope) for N0026, so no time-varying 
coefficient was considered for that particular trial. For models 
involving data from N9741 and N9841, the non-proportionality test 
indicates a time-dependent effect for the first-stage slope (p-value =
0.007 and 0.013, respectively). Either a piecewise linear function or a 
linear function with a constant after a change point was considered after 
examining the scaled Schoenfeld residuals with loess fit (Supplemental 
Fig. 1). A rough grid search (per 10 weeks increase) was conducted for 
the change point and the final model was chosen by AIC value (a smaller 
AIC was desired). A linear function with a constant after a change point 
was selected for N9741 and N9841 with change points at 150 and 130 
weeks post-landmark time point (i.e. 12 weeks), respectively. The two- 
stage modeling results are shown in Table 3. Age and race were not 

Fig. 1. CONSORT diagram depicting exclusions from each trial to reach the analysis dataset. * Data used for joint modeling portion of the analysis. # Data used for 
two-stage and RECIST related analysis. Number of OS events available from each trial are 559 (out of 577), 320 (out of 337), and 119 (out of 126) for N9741, N9841, 
and N0026, respectively. 

Table 1 
Baseline characteristics of patients included in the joint modelling analysis.  

Characteristics N9741 (n =
577) 

N9841 (n =
337) 

N0026 (n =
126) 

Age, median (range) 61 (27–88) 63 (28–86) 65 (39–82) 
Gender, n (%) 

Male 357 (61.87) 198 (58.75) 76 (60.32) 
Female 220 (38.13) 139 (41.25) 50 (39.68) 

Race, n (%) 
White 504 (87.35) 291 (86.35) 113 (89.68) 
None-white 73 (12.65) 46 (13.65) 13 (10.32) 

Number of TL per patient at 
baseline, median (range) 

2 (1, 5) 2 (1, 5) 1.5 (1, 5) 

Tumor burden (cm)a per patient at 
baseline, median (range) 

8.2 (1.0, 
42.6) 

7.0 (1.0, 
28.7) 

6.3 
(2.0,22.5) 

TL: Target lesions. 
a Tumor burden is defined as the sum of the longest diameter of all target 

lesions within a patient. 

Table 2 
Joint modeling results.   

Parameter 
N9741 N9841 N0026 

Hazard Ratio (95% CI) p-value Hazard Ratio (95% CI) p-value Hazard Ratio (95% CI) p-value 

Age 1.003 (0.995, 1.011) 0.480 0.998 (0.988, 1.008) 0.726 1.013 (0.993, 1.034) 0.233 
Race (White vs. Non-white) 1.135 (0.882, 1.461) 0.325 0.886 (0.629, 1.249) 0.490 0.943 (0.515, 1.726) 0.846 
Gender (male vs. female) 1.100 (0.923, 1.310) 0.287 0.912 (0.720, 1.156) 0.448 1.154 (0.769, 1.732) 0.469 
Associationa 1.002 (1.001, 1.003) <0.0001 1.006 (1.004, 1.008) <0.0001 1.028 (0.994, 1.063) 0.053 
Baseline hazard b Estimate Std Err Estimate Std Err Estimate Std Err 

log(ξ1) − 5.798 0.278 − 5.564 0.366 − 6.397 0.741 
log(ξ2) − 4.917 0.278 − 4.697 0.363 − 5.462 0.716 
log(ξ3) − 4.927 0.278 − 4.573 0.361 − 5.136 0.705 
log(ξ4) − 4.440 0.278 − 4.318 0.360 − 5.084 0.698 
log(ξ5) − 4.400 0.279 − 4.008 0.358 − 5.588 0.680 
log(ξ6) − 4.432 0.275 − 3.900 0.354 − 5.452 0.671 
log(ξ7) − 5.078 0.287 − 3.993 0.386 − 5.518 0.694 

Std Err: Standard Error. 
a The estimate for α in Equation (2) which measures the association between longitudinal biomarker (i.e. tumor measurements) and the risk of death. 
b Baseline hazard is assumed to be piecewise constant with seven knots placed at equally spaced percentiles of the observed event times. 
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predictive of OS, consistent with findings from the joint modeling 
approach, with the exception of N9841, where male gender was asso-
ciated with longer OS. For N0026, the subject-specific first-stage inter-
cept was statistically significant for predicting OS; however, the subject- 
specific first-stage slope was not. Since there were no time-varying co-
efficients incorporated into the model for N0026, the effects of subject- 
specific first-stage intercept and slope on OS remained constant 
throughout the course of the study. For N9741 and N9841, on the other 
hand, the subject-specific first-stage intercept and slope were highly 
significant and were strong predictors of OS. Given that the coefficients 
of the subject-specific slope from the first-stage may change over time, 
for illustrative purposes, we calculated the hazard ratios (HR) at 12 
weeks (landmark), 1 year after landmark time, 2 years after landmark 
time, and the change point (Table 3). Although the association 
decreased over time (i.e. HR of 1.357 and 1.274 at 12 weeks and 
decreased to 1.127 and 0.924 at 2 years after landmark for N9741 and 
N9841, respectively), the subject-specific slope from the first-stage 
remained a strong predictor of OS within one year post landmark. 

3.2.1. Model performance and predictive accuracy 
AIC and BIC are summarized in Table 4. One should note that the AIC 

and BIC presented in Table 4 should not be compared across the joint 
modeling and two-stage modeling because the underlying likelihood 
functions are different for the two models. Predictive accuracy of the 
two approaches is presented in Table 5, along with results from the 
model using RECIST response by 12 weeks, which is intended to be used 
as a benchmark. The Harrell’s C-index from the two-stage modeling is 
consistently higher (range from 0.611 to 0.633) than that obtained using 
RECIST response (range from 0.586 to 0.590). The dynamic c-index for 
joint modeling ranges from 0.627 to 0.683. Even though the dynamic c- 
index cannot be compared to Harrell’s C-index directly, it does display a 
similar pattern as Harrell’s C for the different trials (i.e. N9841 has the 
highest dynamic c-index [0.683] and Harrell’s C [0.633]; while N0026 
has the lowest dynamic c-index [0.627] and Harrell’s C [0.611]). 

4. Discussion 

In this analysis, we adopted two different approaches, joint modeling 
and two-stage modeling, to predict OS using tumor measurements. The 
associations in the joint model were highly statistically significant for 
N9741 and N9841 (both colorectal cancer trials) indicating that tumor 
measurement data is predictive of OS for those two studies. Despite the 
fact that the association in the joint model for N0026 was not statisti-
cally significant, it was the greatest in magnitude (i.e. HR of 1.028) 
compared to N9741 and N9841 (HR of 1.002 and 1.006, respectively). 
The statistically non-significant result may be due to the fact that N0026 
has the smallest sample size among all three trials considered. 

Similar conclusions can be drawn from the two-stage modeling 

approach as well. A larger tumor measurement at baseline and a larger 
slope between baseline and landmark time both associated with a 
shorter OS. 

A primary difference between the two approaches is in how much 
tumor measurement data were used to model OS. The joint modeling 
approach uses all tumor measurement data throughout the course of the 
clinical trial; whereas the two-stage modeling approach only in-
corporates information from early assessments (i.e. prior to 12 weeks). 
Our models did not account for patients developing new lesions or 
progression in non-target lesions. In joint modeling, the new lesion in-
formation (a binary variable) and non-target lesion status (a categorical, 
qualitative variable) can be easily incorporated into the longitudinal 

Table 3 
Two-stage modeling results.   

Parameter 
N9741 N9841 N0026 

Hazard Ratio (95% CI) p-value Hazard Ratio (95% CI) p-value Hazard Ratio (95% CI) p-value 

Age 1.004 (0.996, 1.012) 0.377 0.999 (0.989, 1.010) 0.911 1.009 (0.988, 1.031) 0.394 
Race (White vs. Non-white) 1.179 (0.899, 1.548) 0.234 1.072 (0.758, 1.516) 0.694 0.809 (0.417, 1.569) 0.530 
Gender (Male vs. Female) 1.014 (0.844, 1.219) 0.884 0.782 (0.620, 0.987) 0.038 1.203 (0.794, 1.824) 0.384 
First-stage intercept (mm) 1.008 (1.004, 1.011) <0.0001 1.008 (1.003, 1.012) 0.0008 1.010 (1.001, 1.019) 0.024 
First-stage slope (mm/week) e[0.305-0.002amin(time in weeks,150)] <0.0001 e[0.242-0.003amin(time in weeks,130)] <0.0001 1.119 (0.957, 1.309) 0.160 

e.g. At 12 weeks (landmark) 1.357 (1.232, 1.496) – 1.274 (1.155, 1.405) – 1.119 (0.957, 1.309) – 
e.g. At 1 year 
post landmark 

1.237 (1.167, 1.311) – 1.085 (1.007, 1.169) – 1.119 (0.957, 1.309) – 

e.g. At 2 years 
post landmark 

1.127 (1.044, 1.216) – 0.924 (0.783, 1.090) – 1.119 (0.957, 1.309) – 

e.g. At change 
pointa 

1.038 (0.919, 1.173) – 0.854 (0.686, 1.062) – 1.119 (0.957, 1.309) –  

a Change point is 150 weeks post landmark time point (i.e. 12 weeks) for N9741 and 130 weeks for N9841. 

Table 4 
Model performance.   

N9741 N9841 N0026 

Joint Modeling 
AIC 35490.060 16858.160 5631.858 
BIC 35568.500 16926.920 5682.911  

Two-stage Model 
AIC 5316.500 2910.281 859.102 
BIC 5341.800 2932.543 872.559  

RECISTa 

AIC 5082.823 2855.010 834.287 
BIC 5107.879 2877.152 850.268  

a Proportional hazard model with RECIST-based best response by 12 weeks 
treated as a 4-level categorical variable (complete response vs. partial response 
vs. stable disease vs. progressive disease) in the model. 

Table 5 
Predictive accuracy.  

Model Harrell’s C-index (95% CI) Dynamic C-index 

N9741 
RECISTa 0.586 (0.557, 0.616) – 
Two-stage modeling 0.613 (0.584, 0.642) – 
Joint modelingb – 0.646 
N9841 
RECISTa 0.587 (0.552, 0.622) – 
Two-stage modeling 0.633 (0.598, 0.668) – 
Joint modelingb – 0.683 
N0026 
RECISTa 0.590 (0.523, 0.657) – 
Two-stage modeling 0.611 (0.554, 0.668) – 
Joint modelingb – 0.627  

a Proportional hazard model with RECIST-based best response by 12 weeks 
treated as a 4-level categorical variable (complete response vs. partial response 
vs. stable disease vs. progressive disease) in the model. 

b Δt was set to 12 weeks. 
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sub-model; however, this information remains challenging to incorpo-
rate into the two-stage modeling approach. Incorporating new lesions 
and non-target lesion information can potentially enhance the predictive 
ability of modeling and more closely adhere to the current clinical 
practice.” Advantages of the two-stage modeling include the ease of 
obtaining a metric from the first stage model and ease of computation. It 
allows time-varying coefficients and offers better predictive accuracy 
than classical Cox models using RECIST. It also provides an opportunity 
to derive a better alternative tumor measurement-based endpoint for 
trial design. Advantages of the joint modeling include taking into ac-
count all tumor measurements throughout the entire course of the 
clinical trial and performing risk prediction for an individual patient. 
However, the joint modeling approach is computationally intensive. For 
it to be successfully implemented in practice, it will require a centralized 
database to house all tumor measurements, a centralized computing 
system to update the prediction algorithm as more data are collected, 
and a user-friendly interface so results can be easily understood. Since 
this will require a joint effort from multiple stakeholders with infra-
structure, sophisticated software, and computing support, we acknowl-
edge that this approach would be difficult to implement in practice. 
Further, unlike two-stage modeling, joint modeling does not readily 
provide an obvious metric for clinical decision making. 

In conclusion, these two approaches provide easily interpretable and 
clinical meaningful results while using tumor measurement data with 
potentially missing lesion information. Alternative endpoints based on 
early tumor measurement data may be better at predicting OS. The 
approaches presented in this paper allow for utilizing serial continuous 
tumor measurements for predicting OS. With the advancement of 
computer technology, statisticians should strive to bring approaches 
that can help enhance risk prediction and facilitate individualized 
medicine decision making. 
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