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Abstract

Low plasma levels of sex hormone-binding globulin (SHBG) are a marker for obesity, insulin 
resistance, non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The transcription 
factor HNF4α is a major determinant of hepatic SHBG expression and thereby serum SHBG 
levels, and mediates in part the association of low SHBG with hyperinsulinemia and hepatic 
steatosis. We analyzed the lipidome in human liver specimens from a cohort of patients 
who underwent hepatic resection as a treatment for cancer, providing insight into hepatic 
lipids in those without extreme obesity or the clinical diagnosis of NAFLD or non-alcoholic 
steatohepatitis. Both steatosis and high HOMA-IR were associated with higher levels of 
saturated and unsaturated FA, other than arachidonic, with the most dramatic rise in 
18:1 oleate, consistent with increased stearoyl-CoA desaturase activity. Individuals with 
low HOMA-IR had low levels of total hepatic fatty acids, while both low and high fatty acid 
levels characterized the high HOMA-IR group. Both insulin resistance and high levels of 
hepatic fat were associated with low expression levels of HNF4α and thereby SHBG, but 
the expression of these genes was also low in the absence of these determinants, implying 
additional regulatory mechanisms that remain to be determined. The relationship of all 
FA studied to HNFα and SHBG mRNAs was inverse, and similar to that for total triglyceride 
concentrations, irrespective of chain length and saturation vs unsaturation.

Introduction

Sex hormone-binding globulin (SHBG) is a 90–100 kDa 
homodimeric glycoprotein that transports testosterone 
and other steroids in the blood plasma, reduces their 
metabolic clearance, and regulates their access to target 
tissues (1). SHBG levels are lower with obesity (2) and 
in patients with type 2 (T2DM) but not type 1 diabetes 
(3, 4), and in those with the metabolic syndrome (MetS) 
(5). Moreover, a low level of SHBG is associated with an 
increased risk for developing MetS (6), gestational diabetes 
(7) and T2DM (8, 9, 10), and SHBG is often studied as 
an early biomarker for these disorders (11). In addition, 
obese, insulin-resistant patients with low SHBG levels 
often have fatty liver disease (12, 13).

However, the mechanism(s) linking low SHBG to these 
metabolic disorders remains incompletely understood. 
Early studies established a relationship between 
hyperinsulinemia and low SHBG (14). Polymorphisms 
in the SHBG gene (15) and experiments using SHBG-
transgenic mice (16) have also implicated SHBG in the 
pathogenesis of T2DM and NAFLD.

Hepatocyte nuclear factor-4 (HNF4α) is a transcription 
factor that activates the promoters of multiple genes 
expressed in liver that function in lipid metabolism 
(17), and overexpression of HNF4α increased SHBG 
transcription in Hep-G2 hepatocarcinoma cells (18), 
suggesting that hepatic expression of HNF4α may underlie 
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the metabolic associations found with circulating SHBG. 
Based on those findings, we studied human liver samples, 
and demonstrated a strong positive correlation between 
mRNA levels for HNF4α and SHBG, and found an inverse 
relationship with the amount of liver triglyceride (19). It is 
now known that HNF4α expression is reduced in rodents 
fed a high fat diet (20), and in liver samples from human 
patients with NASH (21).

Study of the crystallized ligand-binding domain 
of rat HNF4α revealed binding of long-chain FA, which 
were presumed to represent endogenous ligands (22, 
23). Moreover, Hertz  et  al. found that radiolabeled 
FA CoA thioesters bound to HNF4α protein, and that 
the transcriptional activity of HNF4α in Cos-7 cells 
by long-chain fatty acid-CoAs varied by chain length, 
with activation by C:16 palmitate but suppression by 
C:18 stearoyl-CoA, while FA shorter than C16 were 
inactive (24). In other experiments using HepG2 cells, 
however, palmitoyl-CoA was reported to suppress HNF4α 
transcription (25). In the current research, we analyzed the 
lipidome in human liver specimens from the foregoing 
patients in order to better understand the relationship 
between insulin, insulin resistance by HOMA, and hepatic 
long chain fatty acids and the expression of HNF4α and 
SHBG in human liver. We hypothesized that both insulin 
resistance and total hepatic fat would be associated with 
lower levels of SHBG mRNA, and based on the results 
of Hertz et al. (24) there would be a positive association 
between SHBG mRNA and hepatic palmitate but an 
inverse relationship with stearate implying a direct role 
for FA in the control of SHBG expression.

Materials and methods

Subjects

Adult men (n = 25) and women (n = 23) undergoing 
hepatic resection as treatment for cancer were recruited 
for this study that was approved by the Institutional Board 
of the University of Louisville. Their diagnoses included 
colorectal carcinoma (n = 27), hepatocellular carcinoma 
(n = 7), renal cell cancer (n = 3) and other (n = 11). Subjects 
were ECOG performance status 0: fully active, and able to 
carry on all pre-disease performance without restriction. 
Subjects with other liver diseases, such as hepatitis C, were 
excluded, as were two women treated with oral estradiol 
and one with tamoxifen due to marked increases in 
SHBG. 19 patients had diabetes and 17 were being treated 
for dyslipidemia. The time from diagnosis to surgery was  

1–5 weeks. During this time, there was a median change in 
weight of −5 lbs (range −20 to +10 lbs). Patients were not 
instructed to take nutritional supplements before surgery, 
and no patients received chemotherapy or X-irradiation. 
Following informed consent, the patient’s medical history 
was reviewed and anthropometric data were collected, 
and a fasting blood sample was obtained in which glucose 
was measured in a biomedical panel and an aliquot 
was frozen at −70°C for the measurement of SHBG and 
insulin. After surgical resection of the liver specimen, 
tumor was separated for analysis by the pathologist, and 
normal liver as distant as possible from the tumor was 
frozen immediately in an effort to prevent changes due 
to warming, and stored at −70°C for subsequent study, or 
was stored in RNAlater (Life Technologies).

RNA isolation and real-time reverse  
transcription-polymerase chain reaction analysis

Total RNA was extracted from liver tissue using RNAeasy 
columns (Qiagen), and analyzed for HNG4α and SHBG 
mRNAs by qPCR as described previously (19).

Immunoassays

SHBG levels were measured with an ELISA kit from ALPCO 
Diagnostics (Salem, NH, USA). Insulin was measured using 
an ELISA kit from Mercodia (Winston-Salem, NC, USA).

Lipid profiles

Tissue was homogenized in diluent (100 mg/0.4 mL) 
containing 10 µL/mL protease inhibitors (RIPA Lysis 
buffer, Santa Cruz Biotechnology), and samples were 
diluted 1:5 for assay. Free fatty acids in the tissue 
homogenates were analyzed at the Mouse Metabolic 
Phenotyping Center at the University of Cincinnati (NIH 
U24 DK059630). Samples were saponified and methylated 
for gas chromatography analysis. The extracted solution 
was injected into the GC and retention times were 
compared to those of known standards.

Data analysis

Data are presented as the mean ± s.d. or as the median and 
interquartile range when continuous variables were not 
normally distributed or had unequal variance, SigmaStat 
(San Jose, CA, USA). HOMA-IR was calculated as fasting 
insulin (mU/L) × glucose (mg/dL)/405. Student’s t-test 
was used to assess differences between two groups with 
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equal variance, and the Mann–Whitney rank-sum test to 
compare groups when a skewed distribution was found. 
ANOVA followed by Dunn’s test was used to determine 
differences among multiple groups. Bivariate general 
linear regression models were performed to determine 
the association of liver fat chain length/saturation with 
HNF4α and SHBG mRNA expression levels. All statistical 
tests were two-sided and performed at the 0.05 level of 
significance .

Results

Normal liver samples surrounding tumor were used 
to quantitate a spectrum of long-chain fatty acids, and 
to determine their relationship to expression levels of 
HNF4α and SHBG. Liver samples from the individuals in 
this cohort contained a wide range of FA concentrations. 
The mean (±s.d.) FA level was 58.1 ± 55.1 mg/g liver, with 
a range of 17.5–251 mg/g. Total fatty acid concentrations 
were slightly higher in men (median 42.9 mg/g, 
interquartile range 29.9–80.5) than in women (median 
31.3 mg/g, interquartile range (25.3–40.6). Three women 
and four men had levels >10% FA/g.

Twenty-eight FA was quantified in each sample. Of 
these, seven FA, three saturated and four non-saturated, 
accounted for 91.6% of total FA, and were studied 
further. The most abundant FA was oleic (18:1) and 
palmitic (16:0) followed by linoleic (18:2), stearic (18:0), 

arachidonic (20:4), palmitoleic (16:1) and myristic (14:0) 
acids (Table 1).

Subjects were divided into two groups based on the 
traditional biochemical diagnosis of steatosis of >5% fat 
content by weight (n = 17) or controls (n = 29). By this 
criterion 37% of this population had steatosis which is 
comparable to prior estimates by magnetic spectroscopy 
for United States urban adults (26). As summarized in 
Table 1 those subjects who met the criteria for steatosis 
had a higher BMI (P < 0.001) and HOMA-IR (P = 0.017). 
The concentrations of myristic, palmitic, stearic, 
palmitoleic, oleic and linoleic acids were all significantly 
higher (P < 0.001) in those with steatosis while the 
level of arachidonic acid was similar (P = 0.15) in the  
two groups.

Figure 1 compares the levels of each of the seven 
FA in the two patient groups as a percent of total liver 
triglyceride levels. From this perspective, four FA were 
increased (14:0, 16:0, 16:1 and 18:1) and three were lower 
(18:0, 18:2 and 20:4) in the steatosis group (all P < 0.001). 
The most prominent increase was in oleic 18:1, which 
accounted for 31% of total FA in the steatosis subjects. 
The ratios of oleic/stearic, and palmitoleic/palmitic (Table 
1) were calculated as indices of stearoyl-CoA desaturase 
activity (27). Both ratios were higher (P < 0.001) in the 
steatosis subjects, although the fold increase was 3.80 
for the 18:0 FA compared to 2.2-fold for the 16:0 FA 
pair, consistent with the greater activity of stearoyl-
CoA desaturase for stearic than palmitic as substrate, 

Table 1 Clinical characteristics and hepatic fatty acid composition in individuals with steatosis compared to the low-fat group.

Total cohort (n = 48) <5% fat content (n = 32) >5% fat content (n = 16) P value

Age (years) 61.8 ± 11.2 62.6 ± 11.8 58.9 ± 9.7 0.29
Sex 21F/25M 17F/15M 6F/10M 0.475
BMI (kg/m2) 28.9 ± 6.4 26.6 ± 5.4 33.2 ± 6.0 <0.001
HOMA-IR 2.49 ± 2.17 1.99 ± 0.36 3.62 ± 0.57 0.017
Total fat (mg/g) 58.1 ± 55.1 29.9 (25.7–38.1) 98.1 (54.0–196) <0.001
Myristic 14:0 mg/g 0.78 ± 1.3d 0.105 (0.065–0.23) 1.91 (0.61–3.43) <0.001
Palmitic 16:0 mg/g 15.5 ± 17.0a 6.80 (5.38–9.34) 31.7 (13.8–51.1) <0.001
Palmitoleic 16:1 mg/g 1.75 ± 2.60cd 0.28 (0.18–0.58) 3.52 (1.01–6.90) <0.001
Stearic 18:0 mg/g 4.96 ± 1.74b 4.08 (3.51–4.83) 6.05 (5.26–8.50) <0.001
Oleic 18:1 mg/g 16.2 ± 21.6ab 4.88 (3.57–7.19) 31.8 (15.6–67.9) <0.001
Linoleic 18:2 mg/g 10.7 ± 9.0a 6.42 (5.60–7.40) 14.3 (10.3–30.5) <0.001
Arachidonic 20:4 mg/g 3.31 ± 0.91c 3.41 (2.67–3.87) 2.86 (2.38–3.70) 0.151
16:1/16:0 0.072 ± 0.049 0.04 (0.031–0.065) 0.095 (0.074–0.145) <0.001
18:1/18.0 2.63 ± 2.30 1.23 (0.90–1.75) 5.44 (3.29–7.57) <0.001
SHBG (nmol/L) 80.4 ± 51.3 73.4 (48.1–96.2) 48.1 (35.9–90.9) 0.07
SHBG mRNA (×106)  

copies/µg RNA
1.04 ± 0.63 1.05 ± 0.66 0.79 ± 0.50 0.048

HNF4α mRNA (×107)  
copies/µg RNA

1.19 ± 0.86 1.10 (0.68–1.75) 0. 97 (0.35-1.41) 0.19

Results represent the mean ± s.d., or the median and interquartile range. FA that share a common superscript are p=NS. P values compare subgroup with 
<5% and >5% fat content.
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based on the partially purified enzyme from rat liver  
microsomes (28).

The relationship between hepatic fat and HOMA-IR 
is shown in Fig. 2. It is clear that a low HOMA-IR was 
a determinant of low hepatic triglycerides. On the 
other hand, the hepatic triglyceride concentration was 
highly variable in insulin-resistant subjects among 

whom 6/23 were being treated with a lipid-lowering 
drug. Nevertheless, total hepatic fat was significantly 
(P = 0.014) greater with insulin resistance when subjects 
were divided into two groups based on HOMA-IR (Table 
2). As with the analysis by steatosis, all saturated and 
unsaturated FA analyzed, other than arachidonic (20;4) 
were higher in the high HOMA-IR group. The ratios of 
oleic/stearic and palmitoleic/palmitic were also higher 
in the high HOMA group, with a higher ratio for the 18 
than for the 16 carbon FA pairs. Individuals with high 
HOMA-IR also had lower levels of SHBG and HNF4α 
mRNAs in liver.

Figure 3 illustrates the relationship between SHBG and 
HNF4α mRNAs and hepatic triglyceride concentrations 
for the low HOMA-IR and high HOMA-IR subgroups (A), 
and with HOMA-IR for those with TGA <5% vs >5% (B). 
Subjects with >50 mg/g hepatic triglyceride had lower levels 
of SHBG and HNF4α mRNAs; however, low mRNA levels 
were also found in liver without steatosis. Furthermore, 
most individuals with HOMA-IR >2.5 had low SHBG and 
HNF4α mRNA concentrations, but low mRNA levels were 
also found in individuals with HOMA-IR <2.5 as well as 
TGA < 5%.

Each of the lipid signatures was next compared with 
SHBG and HNF4α mRNA levels. Figure 4 illustrates the 
relationships between myristic 14:0, palmitic 16:0, stearic 
18:0 and oleic 18:1 with SHBG mRNA. In each case, high 
FA levels were associated with suppressed SHBG as well as 
HNF4α mRNAs, whereas low HNF4α and SHBG mRNAs 
were also found in individuals without high levels of 
these fatty acids. As summarized in Table 3, in unadjusted 
models, levels of FA of 14–18 carbons were inversely 
associated with SHBG and HNF4α expression. In contrast 
to our initial hypothesis, in each case, irrespective of chain 
length and saturation vs unsaturation, the relationship to 
HNFα and SHBG mRNAs was inverse and similar to that 
for total triglyceride concentrations.

Discussion

This research examined the relationships between hepatic 
triglycerides, insulin resistance and the expression levels 
of SHBG and HNF4α in surgical human liver samples in 
part to determine if a unique relationship exists based 
on fatty acid chain length or saturation. To the best of 
our knowledge, we also provide the largest quantitative 
assessment of the human hepatic lipidome for individuals 
who do not have a clinical diagnosis of NAFLD or NASH, 
or did not undergo liver biopsy because of extreme obesity 

Figure 1
Liver composition of fatty acids represented as percent of total fatty acids 
measured in individuals with less than or greater than 5% liver fat. 
Percent myristic (14:0), palmitic (16:0), palmitoleic (16:1) and oleic (18:1) 
were higher, while stearic (16:0), linoleic (18:2) and arachidonic (20:4) were 
lower in subjects with NAFLD. *P < 0.01.

Figure 2
Relationship between percent hepatic fat and HOMA-IR. Subjects being 
treated with statins are indicated by open circles. Insulin resistance by 
HOMA-IR was found in the absence or presence of steatosis, whereas 
total lipid levels were low with insulin sensitivity.
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in conjunction with gastric bypass surgery. We found 
that both insulin resistance based on high HOMA-IR, and 
hepatic steatosis, are associated with low HNF4α and SHBG 
mRNA levels, but low levels were also found in the absence 
of these regulators, implying that other mechanisms 
also lead to suppressed expression of these genes. In 
addition, neither chain length nor saturation influenced 
substantially the relationship between long-chain FAs 
with SHBG or HNF4α mRNAs. These results extend the 
findings of Luo et al. (29) and Sáez-Lopez et al. (30), who 
reported that SHBG mRNA and protein levels correlate 
negatively with hepatic triglyceride content in patients 
with benign hepatic tumors or obese patients with NAFLD 
undergoing bariatric surgery, respectively, and suggest that 
down-stream signaling by increased hepatic fatty acids,  

rather than the fatty acid per se, is responsible for the low 
levels of SHBG in subjects with metabolic syndrome.

This study provides data from a unique patient cohort 
in which results for subjects fulfilling the traditional 
criteria for NAFLD of >5% hepatic fat were compared to a 
comparable cohort with <5% hepatic fat. The BMI of those 
with steatosis was significantly higher. Steatosis was not 
found in subjects with normal HOMA-IR, whereas excess 
hepatic triglyceride accumulation was found in some but 
not all those with insulin resistance. Both treatment with 
statins (31), and the impact of dietary fructose and fat 
(32), which were not assessed, may have contributed to 
these results.

As in previous studies (33, 34, 35), the predominant 
FA in liver was palmitic (16:0) followed by oleic (18:1) and 

Table 2 Hepatic fatty acid composition, and HNF4α and SHBG mRNA levels based on HOMA-IR.

HOMA-IR
P value0.3–2.09 (n = 23) 2.12–9.82 (n = 23)

0.82 (0.35–1.42) 3.61 (2.51–4.80) 0.001
Total fat (mg/g) 29.8 (25.8–38.8) 48.1 (21.8–114) 0.009
Myristic 14:0 mg/g 0.105 (0.065–0.395) 0.598 (0.150–2.08) 0.006
Palmitic 16:0 mg/g 6.79 (5.23–9.43) 11.7 (6.95–39.0) 0.012
Palmitoleic 16:1 mg/g 0.284 (0.161–0.700) 1.17 (0.747–3.62) 0.002
Stearic 18:0 mg/g 4.12 (3.51–5.00) 5.24 (3.72–6.70) 0.033
Oleic 18:1 mg/g 4.88 (3.50–9.55) 12.6 (6.28–34.0) 0.005
Linoleic 18:2 mg/g 6.42 (5.50–8.03) 9.60 (6.36–22.6) 0.016
Arachidonic 20:4 mg/g 3.57 (2.90–3.91) 2.72 (2.45–3.33) 0.047
Oleate 18:1/stearic 18:0 1.25 (0.90–2.04) 2.65 (1.54–6.00) 0.005
Palmitoleic 16:1/palmitic 16:0 0.044 (0.031–0.067) 0.086 (0.051–0.118) 0.002
HNF4α mRNA × 107 1.64 ± 0.98 0.80 ± 0.57 0.001
SHBG mRNA × 106 1.29 ± 0.59 0.78 ± 0.61 0.006

Results are mean ± s.d., or median and interquartile range. Total subjects are 46 due to missing fasting insulin levels.

Figure 3
Relationship between total triglycerides and SHBG 
(A) and HNF4α (B) mRNA levels, and between 
HOMA-IR and SHBG (C) and HNF4α mRNA (D) 
levels. In A and B those with HOMA-IR of < or >2.5 
are noted while in C and D those with hepatic 
triglyceride of < or >5% are shown. There is a 
curvilinear relationship between these variables, 
with high HOMA-IR or hepatic triglycerides 
associated with lower HNF4α and SHBG mRNAs.  
It is noteworthy that certain individuals have low 
SHBG or HNF4α mRNA levels with <5% hepatic 
triglycerides as well as HOMA-IR <2.5.

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-20-0401

https://ec.bioscientifica.com	 © 2020 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-20-0401
https://ec.bioscientifica.com


S J Winters et al. Hepatic fatty acids and SHBG 
expression

1014

PB–XX

9:10

stearic (18:0). The concentrations of myristic, palmitic, 
stearic, palmitoleic, oleic and linoleic acids were all 
significantly higher in those with steatosis while the level 
of arachidonic acid in the two groups was similar perhaps 
because arachidonic acid is not metabolically determined 
but rather is derived from the dietary essential linoleic 
acid through ∆6-desaturation (36) and is esterified in 
membrane phospholipids (37). With steatosis, there was a 
striking increase in oleic 18:1, the product of stearoyl-CoA 
reductase, which accounted for 31% of total FFA among 
the steatosis group.

Because of lipotoxicity (38), several previous studies 
have carefully examined the spectrum of FA in liver 
in NAFLD and NASH patients, and controls, but with 
variable results. Araya  et  al. (39) studied liver from 19 
patients undergoing bariatric surgery (10 with NAFLD 
and 9 with NASH), and 11 patients undergoing anti-reflux 
surgery as controls. While total triglycerides and levels of 
16:0 and 18:1 were high in NAFLD and NASH subjects, 
18:0 and 18:2 were similar while 14:0 and 20:4 were lower 

in patients than controls. Some subjects had consumed a  
25 kcal/kg diet before the surgery. Puri et al. (33) performed 
a core needle liver biopsy in individuals diagnosed with 
NAFLD (n = 9) or NASH (n = 9). The control group (n = 9) 
was undergoing abdominal surgery with no symptoms or 
signs of liver disease, but were noted to be obese with the 
metabolic syndrome. They found increased total lipids, 
diacyglycerol and triacylglycerol in the NAFLD and NASH 
groups, but no differences in the levels of individual 
saturated or non-saturated FFA among their study groups. 
Allard et  al. (34) studied 73 patients undergoing liver 
biopsy for elevated liver enzymes and suspected NAFLD. 
Of these, 17 with normal liver biopsies and <5% steatosis 
were designated controls, but they had similar BMI, waist 
circumference and percent diabetes as those diagnosed 
with NAFLD by biopsy. They reported FA composition 
as percent of total FA, and found higher values for 16:1 
and 18:1 only in those with NASH, but no difference in 
16:0 and 18:0, and like our findings, lower percentage of 
20:4 than in those without steatosis. Lukkonenn et al. (40)  

Figure 4
Relationship between hepatic FA and SHBG mRNA 
concentrations. Spearman correlation coefficients 
relating hepatic FA levels to SHBG mRNA were: 
myristic 14:0 (r = −0.344; P = 0.009), palmitic 16:0 
(r = −0.356; P = 0.007), stearic 18:0 (r = −0.345; 
P = 0.009) and oleic 18:1 (r = −0.354; P = 0.007), as 
well as (not shown) linoleic 18:2 (r = −0.28, 
P = 0.036); palmitoleic 16:1 (r = −0.354; P = 0.007) 
and arachidonic (r = −0.113, P = 0.409). Neither 
type of FA, chain length nor saturation was found 
to have a unique relationship to the expression 
level of SHBG.

Table 3 Relation of liver fat chain length/saturation with SHBG and HNF4α expression levels.

SHBG HNF4α
Standardized beta coefficients P value Standardized beta coefficients P value

Unadjusted 
 Oleic 18:1 −0.36061 0.0101 −0.23114 0.1063
 Palmitic 16:0 −0.35985 0.0103 −0.24728 0.0834
 Stearic 18:0 −0.35060 0.0126 −0.22461 0.1168
 Palmitoleic 16:1 −0.35004 0.0127 −0.26400 0.0639
 Myristic 14:0 −0.34976 0.0128 −0.25287 0.0764
 Linoleic 18:2 −0.29208 0.0396 −0.17212 0.2320
 Arachidonic 20:4 0.13327 0.3562 0.22717 0.1126
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studied 125 adults undergoing laparoscopic bariatric 
surgery and divided them into low vs high HOMA-IR 
subgroups. Hepatic concentrations of palmitic, stearic and 
oleic FA were all statistically higher in the high HOMA 
group. Kumashiro  et  al. (35) found higher levels of all 
hepatic FA measured in subjects with high HOMA-IR, 
but the numbers of subjects was small (4/group), and the 
between-group difference were not statistically significant. 
Not only sample size, but also differences in diet and 
control groups, as well as methodological details are 
among the factors contributing to these variable results.

Stearoyl-CoA desaturase (SCD) is the rate-
limiting enzyme in the bioconversion of saturated to 
monounsaturated FA (41). We found a marked rise in oleic 
18:1 in our steatosis patients among whom it represented 
31.6% of total hepatic fat. In agreement with the results 
from Kotronen et al. (42), the ratio of product to precursor 
18:1–18:0, as well as 16:1–16:0, as measures of SCD activity, 
were higher in our subjects with hepatic steatosis, as well 
as those with high HOMA-IR, with higher values for the 
18:1/18:0 pair, the preferential substrate. Stefan et al. (43) 
did not find up-regulation of SCD-1 expression or activity 
in subjects with fatty liver or insulin resistance while 
Peter et al. (44) found that SCD1 mRNA levels in human 
liver samples obtained at surgery for a variety of clinical 
conditions were positively associated with the ratio of 
16:1–16:0 in the VLDL triglyceride fraction separated by 
TLC but not with the ratio 18:1–18:0. Our data support 
the notion that insulin resistance and hepatic steatosis in 
humans are associated with increased SCD activity.

HNF4α is an orphan nuclear receptor that is a master 
regulator of liver development and function, including 
genes involved in triacylglycerol, cholesterol and 
lipoprotein metabolism (17, 45), and is thought to play 
a central role in fatty liver disease (46). Our results reveal 
suppressed HNF4α expression not only with steatosis 
but also with insulin resistance. While the direction of 
causality between variables cannot be determined from 
a cross-sectional study, our results support the notion 
of a feed-forward mechanism in which hepatic HNF4α 
expression is decreased by the steatosis that results from 
genetically determined insulin resistance in adipose tissue 
leading to increased plasma and hepatic FA (47, 48), and 
reduced HNF4α expression, together with hepatokines, 
increase liver fat which worsens insulin resistance (49). 
This sequence is further amplified inasmuch as HNF4α 
regulates its own level of expression (50).

Many studies have shown that NALFD in men and 
women is associated with low serum SHBG levels (51). 
Fatty acids and their lipotoxic metabolites increase the 

production of cytokines, including TNF, IL-6 and IL-1b, 
which initiate the production of pro-inflammatory 
signals, including nuclear factor-κB (NFκb) and c-jun 
n-terminal kinase (JNK) (52). Selva and colleagues, 
using HepG2 hepatocarcinoma cells, showed that TNFα 
suppresses SHBG expression by decreasing HNF4α 
through a mechanism involving NF-κB (53), and that 
IL1β reduces SHBG mRNA through HNF-4α via the 
MAPK kinase-1/2 and JNK signaling pathways (54), and 
we reported a strong positive correlation between the 
expression levels of HNF4α and SHBG using the human 
liver samples in this study (19). We then considered the 
possibility that fatty acids might also regulate HNF4α and 
thereby SHBG directly since fatty Acyl CoAs have been 
reported to stimulate or inhibit HNF4α transactivation 
depending on chain length and saturation (24). Our 
findings show, however, that a high fat content in 
human liver samples is associated with low levels of 
SHBG and HNF4α mRNAs irrespective of chain length 
and saturation.

The association of high HOMA-IR with reduced 
HNF4α and SHBG expression in human liver support and 
extend the association of high insulin or c-peptide levels 
with low serum SHBG levels in patients (55), and with 
experimental evidence linking insulin resistance with 
hyperinsulinemia to low levels of SHBG by suppressing 
HNF4α. Specifically, Xie  et  al. (56) showed that HNFα 
mRNA in liver is decreased in diabetic hyperinsulinemic 
db/db mice but not in mice rendered diabetic by 
streptozotocin-induced hypoinsulinemia, and that insulin 
inhibits HNF4α expression by stimulating transcription 
of SREBP. Thus both high insulin and hepatic fat down-
regulate HNF4α and thereby SHBG expression through 
distinct mechanisms.

Several limitations of the current study should 
be acknowledged. First, liver samples were obtained 
from patients with cancer, and although their clinical 
performance was ECOG grade 0 – fully active – and they 
had not received chemo- or radiation-therapy, some impact 
of their cancer diagnosis or self-management is possible. 
As a cross-sectional correlative study, the direction of 
causality cannot be proven. Gas chromatography was 
used to separate and quantify FA, and quantification by 
mass spectrometry may be more sensitive and accurate 
(57). While the tissue samples studied were at least 
1 cm3 in volume, the lipid content of the liver is not 
homogeneous, and the distribution of FA differs within 
lipid droplets and outside of steatotic vesicles (58). DAG 
within lipid droplets was the strongest predictor of insulin 
resistance in the study by Kumashiro et al. (35).
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In summary, we describe the distribution of fatty 
acids in surgical liver specimens from subjects with a 
wide range of values and insulin sensitivity by HOMA-IR. 
Because of ethical considerations, most previous studies 
of human liver have been performed in obese subjects 
undergoing bariatric surgery or in those with the diagnosis 
of NAFLD or NASH. Our purpose was to further determine 
how hepatic FA and insulin resistance might regulate 
HNF4α expression in humans, and thereby SHBG, a 
plasma biomarker for metabolic syndrome, T2DM, 
and NALFD. We provide evidence that FA and insulin 
resistance are both important determinants of HNF4α and 
thereby SHBG expression, but show that other yet to be 
discovered factors appear to also cause low SHBG levels. 
Neither FA side chain length nor saturation altered these 
relationships.
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