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Ferroptosis is a recently discovered category of programmed cell death. It is much
different from other types of cell death such as apoptosis, necrosis and autophagy. The
main pathological feature of ferroptosis is the accumulation of iron-dependent lipid
peroxidation. The typical changes in the morphological features of ferroptosis include
cell volume shrinkage and increased mitochondrial membrane area. The mechanisms of
ferroptosis may be mainly related to lipid peroxidation accumulation, imbalance in amino
acid antioxidant system, and disturbance of iron metabolism. Besides, hypoxia-inducible
factor (HIF), nuclear factor-E2-related factor 2 (Nrf2), and p53 pathway have been
demonstrated to be involved in ferroptosis. At present, the molecular mechanisms of
ferroptosis pathway are still unmapped. In this review, an outlook has been put forward
about the crucial role of apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) in the
regulation of ferroptosis. APEX1 plays an important role in the regulation of intracellular
redox balance and can be used as a potential inhibitor of ferroptotic cell death.
Bioinformatics analysis indicated that the mRNA level of APEX1 is decreased in cases
of ferroptosis triggered by erastin. Besides, it was found that there was a significant
correlation between APEX1 and genes in the ferroptosis pathway. We have discussed the
possibility to employ APEX1 inducers or inhibitors in the regulation of ferroptosis as a new
strategy for the treatment of various human diseases.
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INTRODUCTION

Cell death plays an important role in the development, aging, tissue homeostasis, immunity, and
stress tolerance of all multicellular organisms. There are several types of cell death, such as
apoptosis, necrosis, and autophagy. These different types of cell death play an important role in the
progression of various diseases, such as cancer (1), neurodegenerative diseases (2), and
cardiovascular diseases (3). A variety of drugs has been used to target these types of cell death in
order to treat many human diseases. Ferroptosis is a novel type of cell death discovered by Dixon in
2012 (4). The mechanisms of ferroptosis are generally accompanied by the accumulation of large
amount of iron and lipid peroxide in cells. The main characteristics of ferroptosis include a
wrinkling of mitochondrial morphology and loss of mitochondrial cristae, while no nuclear
sequestration or chromatin border set is found. Also, in contrast to the classical autophagy
pathway, ferroptosis does not form any autophagic lysosome structure (4).
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Iron is an essential trace element found in all organisms and it
plays a key role in the smooth functioning of the body. Cellular
iron uptake is mediated mainly by transferrin (Tf) and
transferrin receptor1 (TfR1) (5). Under normal physiological
conditions, extracellular iron binds to Tf, and in turn Tf binds to
TfR1 that is present on the surface of the cell membrane to form
iron-Tf-TfR1 complex. Thus formed iron-Tf-TfR1 complex
enters the cell through endocytosis. Under the action of
divalent metal transporter 1 (DMT1), the extracellular iron
enters the cytoplasm forming labile iron pool (LIP) that can be
used by the mitochondria or it can also be used by the cytoplasm
itself. This intracellular iron also can be stored by ferritin or it
can be transported to the exterior of the cell through ferroportin
1 (FPN1) (6). Therefore, under pathological conditions,
intracellular iron overload is an important cause of ferroptosis.
Zhang et al. have reported that ferroptosis triggered by iron
overload plays an important role in Parkinson’s disease (7).
Besides, many studies have reported that excess free iron can
generate reactive oxygen species (ROS) through Fenton reaction
(8, 9). Iron circulates between the reduced and oxidized states,
resulting in the formation of free radicals. There is no doubt that
the occurrence of ferroptosis is directly related to the presence of
iron in the cell. Hence, level of iron present in the cell directly
determines the mechanism of ferroptosis.

Cystine/glutamate transporter (system XC-) is an important
transporter that mediates the exchange of extracellular cystine
(Cys2) and intracellular glutamate (Glu). It is composed of two
subunits, namely, solute carrier family 7 member 11 (SLC7A11)
and solute carrier family 3 member 2 (SLC3A2). The basic
function of system XC- is to absorb Cys2 and excrete Glu.
First, Cys2 is absorbed by system XC- and reduced to cysteine
(Cys). Next, Cys takes part in the synthesis of glutathione (GSH)
(10). Later, GSH can convert toxic lipid hydroperoxides (L-
OOH) into non-toxic lipid alcohols (L-OH) by using GSH
peroxidase 4 (GPX4) (11). Therefore, inhibition of GSH
synthesis will lead to oxidative damage, thereby resulting in
cell death. GPX4, (a member of the GPXs family), plays an
important role in ferroptosis. The main function of GPX4 is
promotion of decomposition of hydroperoxide and protection of
the structure and function of the cell membrane from oxidative
damage (12). Therefore, inhibition of GPX4 synthesis will lead to
oxidative damage or ferroptosis (13). It can be understood that
there is increasing evidence stating that the inducer of
ferroptosis, such as erastin (14), RSL3 (15), has a promising
future in the treatment of cancer. At the same time, the inhibitor
of ferroptosis such as ferrostatin-1 (16), liproxstatin-1 (17), etc.
can contribute to the treatment of various nervous system
diseases and cardiovascular diseases.

Apurinic/Apyrimidinic endodeoxyribonuclease 1 (APEX1),
also named as reduction-oxidation factor-1 (Ref1), belongs to the
DNA repair enzymes. It is a multifunctional protein and plays a
central role in the cellular response to oxidative stress. On the
other hand, APEX1 plays an important role in the repair of
oxidized and alkylated genomic DNA bases by identifying and
cleaving nucleotide chains at 5’ apurinic (AP) sites (18). APEX1
also exerts reversible nuclear redox activity to regulate DNA
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binding affinity and transcriptional activity of transcriptional
factors by controlling the redox status of their DNA-binding
domain. In this review, we mainly focus on the function of
APEX1 in antioxidant and regulating transcriptions. Previous
studies have reported that APEX1 overexpression enhances the
ability to resist oxidative stress and reduces the levels of ROS
(19, 20). Besides, Daniel et al. have demonstrated that the
accumulation of iron inhibits the activity of APEX1 (21). It has
been well researched and concluded that the accumulation of
iron and ROS is an important cause of ferroptosis (4). APEX1 is
originally identified as a DNA repair enzyme and shown to be
important for the base excision repair pathway (22, 23). In
addition, it was demonstrated that APEX1 reduces a redox-
sensitive cysteine residue of the transcription factor activator
protein-1 (AP-1) and thereby facilitates its DNA-binding and
transcriptional activities (24). There is increasing evidence that
APEX1 is widely involved in various diseases caused by oxidative
stress, such as Parkinson’s disease (20), ischemic stroke (25),
Alzheimer’s disease (26), and cancer (27). Besides, many studies
have proven that ferroptosis is involved in the occurrence as well
as the development of these diseases. Therefore, we suggest that
APEX1 may inhibit ferroptosis. However, further mechanistic
details of the APEX1-ferroptosis link remain to be unclear. In
this review, we highlighted the potential roles of APEX1 in
ferroptosis. We hope to further explore the ferroptosis
signaling pathway. It can be suggested that APEX1 is involved
in various diseases through ferroptosis pathway. In the future,
APEX1 will be an important target for the treatment of various
human diseases.
APEX1 AND LIPID PEROXIDATION IN THE
FERROPTOSIS PATHWAY

The abnormal metabolism of amino acids is closely related to
ferroptosis. Mounting evidences have reported that the absence
of cysteine leads to the decrease of GSH synthesis, thereby
resulting in the inactivation of GPX4 and the accumulation of
lipid peroxidation (28–30). There are two forms of glutathione,
namely reduced glutathione (GSH) and oxidized glutathione
(GSSG). The antioxidant function of GSH relies on its
sulfhydryl group, which is derived from cysteine. Therefore,
the levels of intracellular cysteine affect the activity of GPX4,
thereby affecting ferroptosis. The accumulation of lipid
peroxidation caused by the inactivation of GPX4 is one of the
important reasons to induce ferroptosis. Jie et al. have reported
that APEX1 overexpression inhibits the accumulation of ROS
and the decrease of GSH level (31). The decrease of GSH
expression affects the activity of GPX4, indirectly. Studies have
demonstrated that the lipid peroxidation and APEX1 expression
are significantly higher in the tumor tissue compared to the non-
tumor regions (32–36). We suggest that APEX1 overexpression
can inhibit the accumulation of lipid peroxidation, thereby
promoting the survival of the tumor cells. Due to the function
of APEX1, APEX1 may be related to the repair of DNA damage,
on the other hand, APEX1 is involved in activation of several
March 2022 | Volume 12 | Article 798304
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antioxidant transcription factors. Thioredoxin-1 (Trx-1) is an
important part of antioxidant system in cells (37). Earlier reports
have demonstrated that Trx-1 can associate directly with APEX1
in the nucleus (38, 39). Hirota et al. have suggested that AP-1
activation in response to ionizing radiation involves the passage
of redox signals through Trx-1 from the cytoplasm to the
nucleus, followed by interaction with APEX1 (40). Besides,
Ando et al. have found that APEX1, as a redox chaperone, can
regulate DNA-binding activities of various transcription factors
through promoting the reduction of their critical cysteine
residues by other reducing molecules such as GSH and Trx-1
(41). Trx-1 also can inhibit the accumulation of lipid
peroxidation (42, 43). Recently, Trx-1 has been proven to be
an inhibitor of ferroptosis (44, 45). Therefore, these results
suggested that APEX1 can inhibit the accumulation of lipid
peroxidation by regulating the expression of antioxidant
factors through the interaction with Trx-1.
APEX1 AND SYSTEM XC- IN THE
FERROPTOSIS PATHWAY

GPX4 and system XC- are considered to be the main signaling
pathways of ferroptosis (4). System XC- belongs to the family of
heterodimeric amino acid transporters. The main function of
system XC- is to exchange cystine with glutamate (46). It is well
known that cisplatin is a very effective and widely used
anticancer drug (47). Earlier reports have reported that the
mechanism of action of cisplatin is mainly through the
production of ROS, leading to apoptosis in osteosarcoma (48).
Recent studies have suggested that cisplatin is also an inducer of
ferroptosis (49–51). Tetsuro Sasada et al. have discovered the
cisplatin-resistant variants of HeLa cells and the cisplatin-
resistant cells also showed enhanced cystine uptake, which led
to a significant increase in the content of intracellular sulfhydryl
as well as GSH (52). Interestingly, overexpression of APEX1 can
inhibit the accumulation of ROS induced by cisplatin (48, 53).
Therefore, these findings suggested that APEX1 may play a
potential role in the inhibition of cisplatin-induced ferroptosis
through scavenging ROS. Also, APEX1 may be a key target in the
ferroptosis pathway.
APEX1 AND NRF2 IN THE
FERROPTOSIS PATHWAY

Nuclear factor-E2-related factor 2 (Nrf2) belongs to a small
family of transcription factors, which has the oxidation resistance
function. Kelch-like ECH-associated protein 1 (Keap1) binds to
Nrf2 and causes rapid ubiquitination and degradation. It then
inhibits the transcriptional activity of Nrf2. Under stressful
conditions, the cysteine residues of Keap1 get modified,
causing it to lose its ability to ubiquitinate Nrf2. This causes
Nrf2 to enter the nucleus and activate a series of downstream
target genes (54) (Figure 1). Recently, many studies have proven
that the Nrf2/Keap1 pathway is closely related to ferroptosis. Fan
et al. have suggested that activation of the Nrf2 pathway can
Frontiers in Oncology | www.frontiersin.org 3
upregulate the system XC- and overexpression of Nrf2 or
knockdown of Keap1 expression promotes resistance to
ferroptosis (55). Besides, there is increasing evidence
suggesting that inhibition of the Nrf2/Keap1 pathway by
targeting GPX4 could reverse the resistance towards ferroptosis
(56–58). In other words, the activation of the Nrf2 pathway can
induce the expression of antioxidant genes in the nucleus, thus
resisting ferroptosis. In immunoprecipitation reaction
experiment, Thakur et al. have found that APEX1 and Nrf2
physically interacts, which suggests that APEX1 mediates Nrf2
activation in lung cancer cells (59). Besides, Sriramajayam et al.
have demonstrated that APEX1 is required for the activation of
Nrf2 and subsequently activates the expression of antioxidant
responsive element (ARE). The relationship between APEX1 and
Nrf2 may be involved in the redox function of APEX1, which
might be directly regulating the ARE-mediated neuronal survival
(60) (Figure 1). To put it in other words, important oxidative
stress genes, including Txnrd1, Hmox1, and Gpx4, which are
involved in ferroptosis, will be expressed. These results implied
that the crucial functions of APEX1 interacting with Nrf2
activates the expression of ARE and then resists ferroptosis
induced by ROS. More importantly, many studies have
confirmed that the relationship between APEX1 and Nrf2 is
crucial for maintaining the homeostasis of ROS (60). It is now
known that the APEX1/Nrf2/Keap1 is involved in a variety of
human diseases and plays a significant role in Alzheimer’s
disease (61) and cancer (59). All of these diseases have been
reported to be closely related to ferroptosis. Therefore, APEX1
could possibly play a crucial role in the ferroptosis
pathway (Figure 1).
APEX1 AND P53 IN THE
FERROPTOSIS PATHWAY

Tumor suppressor protein p53 (TP53) plays an important role in
cellular stress response to DNA damage and hypoxia (62). Low
levels of stress can trigger the activation of p53, which induces cell
cycle arrest, DNA repair, and survival of the cell. Downregulating
intracellular ROS, p53 can protect the cells from oxidative stress-
induced DNA damage and cell death. On the contrary, high levels
of stress lead to the activation of p53, which induces apoptosis and
cell death (62). In the recent past, p53 has been identified as a
novel regulator in ferroptosis (63–65) and it has been identified to
inhibit SLC7A11 gene transcription in ferroptosis (66) (Figure 2).
Celia R. Berkers et al. have proposed that p53 inhibits the fatty acid
synthesis and promotes fatty acid oxidation, thus playing a
negative regulatory role in lipid synthesis (67). Ou et al. have
proven that p53 can induce ferroptotic responses by directly
activating its target gene SAT1, which is correlated with the
expression level of arachidonate 15-lipoxygenase (ALOX15) (68)
(Figure 2). Silencing of ALOX15 significantly decreases both
RSL3-induced and erastin-induced ferroptosis in vitro (69).
Activation of p53 significantly decreases system XC- expression
(70). Upregulated p53 expression by Tanshinone IIA results in the
destruction of cysteine import, which reduces glutathione
March 2022 | Volume 12 | Article 798304
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production and promotes ROS mediated ferroptosis (71). Besides,
it is known that p53 can enhance ferroptosis by promoting
glutaminase 2 (GLS2). Knockdown of GLS2 expression inhibits
ferroptosis through control of glutaminolysis (72) (Figure 2).
Additionally, a large number of studies have shown that there is
an important regulatory relationship between APEX1 and p53.
Zhu et al. have found that Genistein stabilizes p53 through
targeting interaction between APEX1 and p53. The interaction
between APEX1 and p53 can promote p53 degradation.
Interestingly, under oxidative stress condition, APEX1 will be
oxidized by ROS and dissociate from the p53, and thus to
stabilizing p53 (73). According to the above research, the
possible role of APEX1 as an oxidative stress sensor may inhibit
ferroptosis by interacting p53 protein. Additionally, Cun et al.
have proven that downregulation of APEX1 can enhance the
sensitivity of p53 mutant tumor cells to radiotherapy in-vitro and
in-vivo. In other words, the possible mechanism of APEX1
regulating p53 represented that APEX1 is involved in the
development of ferroptosis. Several studies have proven that
APEX1 is overexpressed in many human tumors (74). In
addition, tumor tissues also exhibit increased levels of ROS than
Frontiers in Oncology | www.frontiersin.org 4
normal tissues (75, 76). However, under sustained oxidative stress,
tumor tissues become well-adapted to such stress through a series
of mechanisms, and it often has defects in the mechanism of cell
death, which is one of the primary reasons for drug resistance.
Therefore, we realize that overexpression of APEX1 in tumor cells
may be a protective mechanism to resist the accumulation of lipid
peroxidation and make tumor cells survival. APEX1
overexpression in tumor cells could be owing to the following
reasons: one is to resist the high levels of ROS; the other is to
prevent the death of tumor cells by resisting apoptosis and
ferroptosis by interacting p53 protein. This may be the reason
for the high expression of APEX1 in tumor cells.
APEX1 AND HYPOXIA-INDUCIBLE
FACTOR-1 (HIF-1) IN THE
FERROPTOSIS PATHWAY

HIF-1 is a transcriptional complex that plays an important role
in the regulation of gene expression by oxygen. It was first
FIGURE 1 | APEX1 inhibits ferroptosis by regulating Nrf2/ARE pathway. APEX1 induces the expression of ARE by regulating the activity of Nrf2. Trx-1 and GSH
resist the accumulation of lipid peroxidation through its sulfhydryl group.
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identified as a transcriptional activator, binding to the hypoxia
response element (HRE) in the promoter region of
erythropoietin (77). HIF consists of a constitutively present b
subunit and oxygen-regulated a subunit. HIF subunits can be
divided into three types: HIF-1a, HIF-2a, and HIF-3a. Among
them, HIF-1a is the most widely studied a isoforms and
expressed in all human cell types. Recently, studies have
demonstrated that HIF-1 is involved in many diseases by
regulating ferroptosis pathway, such as stroke (78), cancer (79)
and some other neurological diseases (80). The rapid growth of
tumor will lead to local hypoxia. HIF-1a can activate the
expression of downstream target gene vascular endothelial
growth factor (VEGF), induce tumor cells to generate blood
vessels, and bring oxygen and nutrients to tumor cells. Inhibitors
of HIF-1a can suppress the proliferation, growth, metastasis and
invasion of tumor cells. More importantly, current studies have
reported that HIF-1a can limit ferroptosis by influencing lipid
metabolism and storing lipids in droplets (81), thus attenuating
peroxidation-mediated damage (82). Moreover, recent studies
have demonstrated that HIF-1a can activate the Nrf2 pathway to
Frontiers in Oncology | www.frontiersin.org 5
protect from ischemia-reperfusion cardiac (83) and skeletal
muscle injuries (84). Heme oxygenase-1 (HO-1) is one of the
HIF target genes (85). Lately, it has been reported that HO-1 has
a dual role in ferroptosis (86, 87) (Figure 3). Feng et al. have
reported that ferrostatin-1, a ferroptosis inhibitor, can resist
ferroptosis induced by diabetic nephropathy by regulating
HIF-1a/HO-1 pathway (88) (Figure 3). Besides, in the brain,
M30, as an iron chelator, can stabilize HIF-1a (89). This leads to
the ability of iron chelators to stabilize HIF-1a thereby adding to
the protective effects, through their ability to prevent the
accumulation of lipid peroxide via the Fenton reaction.
Interestingly, Bianchi et al. have reported that the iron
deprivation can stimulate TfR transcription by regulating HIF-
1a (90). These results confirmed that HIF-1a is a key factor in
ferroptosis. Stabilizing of HIF can probably inhibit the
accumulation of lipid peroxide and promote the expression of
VEGF, which contributes to survival of tumor. In other words, it
may inhibit ferroptosis, indirectly. Latest researchers have
mentioned that ferroptosis is involved in many nervous system
diseases and inhibition of HIF can lead to neuronal cell death.
FIGURE 2 | The relationship between APEX1 and p53 in the control of ferroptosis. p53 plays an important role in the regulation of lipid peroxidation in ferroptosis.
p53 can promote ferroptosis through the inhibition of system XC- expression or the induction of SAT1 and GLS2 expression. APEX1 is involved in the development
of ferroptosis by regulating p53.
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Regulating the expression of HIF may be a potential target in
ferroptosis. APEX1 can promote DNA binding activity by
regulating a variety of transcription factors, including HIF (91).
Huang et al. have demonstrated that overexpression of APEX1
significantly potentiates hypoxia-induced expression of a
reporter construct containing the wild-type HIF-1 binding site
(92). Logsdon et al. have reported that APEX1 interacts with
HIF-1a under hypoxia and inhibition of APEX1 will result in
decreased HIF-1a–mediated induction of carbonic anhydrase
IX, which will inhibit viability of cancer cells (93). At present, no
HIF-1-specific inhibitors currently exist, so targeting APEX1
regulate HIF activity is a promising method to modulate
ferroptosis signaling in tumor. Interestingly, a previous in-vitro
study has proven that an inhibitor of APEX1, E3330, lead to
tumor growth inhibition (94). Besides, E3330 exposure promotes
endogenous ROS formation in pancreatic cancer cells, thereby
inhibiting cancer cell growth and migration (95). Based on the
above research findings, it can be mentioned that APEX1 acts as
an endogenous antioxidant factor in response to acute and
chronic oxidative stress conditions by regulating HIF pathway.
The accumulation of ROS and HIF pathway are involved in
ferroptosis, however, there has been no reports that whether
APEX1 plays a key role in regulating ferroptosis. These results
Frontiers in Oncology | www.frontiersin.org 6
indicated that APEX1 may be involved in ferroptosis by
regulating transcription factors through its antioxidant capacity.
DISCUSSION

Ferroptosis is a new type of cell death found in recent years. It is
involved in a variety of molecular expression and signaling
pathways. The metabolic imbalance of iron and the
accumulation of lipid peroxide are the primary mechanisms of
ferroptosis. Since the discovery of ferroptosis, the specific
molecular mechanism still remained unmapped. However,
many studies have confirmed that ferroptosis pathway is
involved in the occurrence and development of many human
diseases such as cancer (96), kidney diseases (97), and brain
diseases (98). With the development of drug research, we have
also identified several highly effective drugs that can be used in
the targeting of ferroptosis to treat various diseases such as
acetaminophen, sulfasalazine, and so on. Potential mechanisms
of drugs used in the treatment of diseases by targeting ferroptosis
are shown in Table 1. In this review, the possible molecular
mechanisms of ferroptosis signaling pathways have been focused,
and it is observed that the expression and activity of APEX1 play
FIGURE 3 | APEX1 inhibits ferroptosis by regulating the HIF pathway. APEX1 regulates regulate ferroptosis by interacting with HIF. HO-1 has a dual role in ferroptosis.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Guo et al. APEX1 Is Involved in Ferroptosis
a vital role in regulating ferroptosis pathways, including system
XC-, lipid peroxidation, Nrf2, p53 and HIF. APEX1 is a dual-
function protein containing a redox domain and a DNA repair
domain. Besides, APEX1 also can act as an essential transcription
factor to regulate gene expression (18). Okazaki et al. have
proven that APEX1 functions as a trans-acting factor that
binds to negative calcium response elements (nCaRE) complex
in the human PTH gene promoter (131). In addition, recent
studies have reported that APEX1 plays a key role in the
regulation of apoptosis (132) and autophagy (133). In this
review, we report the possible mechanisms of APEX1
regulating ferroptosis, and these mechanisms beckon further
in-detail studies. At least, we indicate that APEX1 may inhibit
ferroptosis by regulating redox balance through regulating
transcription factors. A previous study has demonstrated that
Trx-1 inhibits 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced ferroptosis by upregulating the expression of
GPX4 (45). Besides, Evijola Llabani et al. have proven that the
Trx-1 inhibitor can cause the occurrence of ferroptosis, directly
(44). Importantly, we highlight that there is an interaction
between APEX1 and Trx-1. In other words, APEX1 may be an
important molecule in the ferroptosis pathway by inhibiting the
accumulation of lipid peroxidation. In addition, APEX1 may
affect ferroptosis by regulating other pathways. Owing to the role
of APEX1 in many signaling pathways, the inducer or inhibitor
of APEX1 may be a more effective drug for the treatment of
various clinical diseases. For example, APEX1 can inhibit both
apoptosis and ferroptosis, so it may be more effective than other
drugs in the treatment of various diseases. At present, the
inhibitor of APEX1, E3330, has been used to inhibit tumor
migration in pancreatic cancer and non-small cell lung cancer
cells (134). Previous studies have reported that Parkinson’s
disease can cause neuronal ferroptosis (135, 136). Importantly,
Kang et al. have demonstrated that APEX1 overexpression
inhibits the increase of ROS induced by Parkinson’s disease
model (20). Therefore, APEX1 may be a promising target to treat
cancer and nervous diseases by regulating ferroptosis.

So how APEX1 regulates the transcription factors? Previous
study has reported that the redox function of APEX1 depends
primarily on a buried cystine residue. Cys65, Cys93, and Cys99 are
Frontiers in Oncology | www.frontiersin.org 7
necessary for its redox activity, which relates to a redox cycle
through the formation of intermolecular disulfide bonds. Among
them Cys65 functions as the nucleophilic cysteine, while the
others are involved in resolving disulfide bonds that are formed
in APEX1 (137). Xanthoudakis et al. have given insight that
APEX1 can stimulate AP-1 DNA-binding activity through the
conserved Cys residues in Fos and Jun, which may regulate
eukaryotic gene expression (138). Cardoso et al. have proven
that the binding of signal transducer and activator of transcription
3 (STAT3) to DNA is regulated by the redox function of the
APEX1, directly (139). APEX1 inhibition decreased the expression
of HIF-1a (93). Nishi et al. have demonstrated that APEX1 can
reduce Cys p62 of p50, resulting in the activation of NF-kB DNA
binding (140). APEX1 redox function was required for GSK-3b-
mediated APEX1 regulation of Nrf2 in Barrett’s related esophageal
adenocarcinoma cells (60). Therefore, these transcription factors
may be activated by APEX1, presumably through the same redox
process. Besides, in order to further illustrate the potential
molecular mechanism of APEX1 in ferroptosis, we analyzed
transcriptome datasets downloaded from NCBI [GSE104462
(141) and GSE154425 (142)]. It was found that under the action
of special ferroptosis inducer erastin, the mRNA level of APEX1
was decreased compared to control group in HepG2 cells
(GSE104462) (Figure 4A). Also, the mRNA level of APEX1 was
decreased compared to control group in HCC38 cells
(GSE154425) (Figure 4D). Volcano plots showed visualizing
expression of different genes screening and cluster analysis
(Figures 4B, E). Spearman’s correlation of any of two genes was
calculated. The genes with a significant correlation (P < 0.05) were
found to be the coordinated expression. If two genes resulted in a
negative correlation then one gene was concluded to be
downregulated, while the other to be upregulated. If two genes
resulted in a positive correlation, then they are confirmed either to
be down-regulated or up-regulated. Figure 4C exhibited that
APEX1 had significant Spearman’s correlations with genes in
the ferroptosis pathway, including GPX4, SLC7A11, SLC11A2,
voltage dependent anion channel (VDAC2), glutamate-cysteine
ligase modifier subunit (GCLM), poly (rC) binding protein 1
(PCBP1), PCBP2, STEAP3 metalloreductase (STEAP3),
microtubule associated protein 1 light chain 3 beta 2
TABLE 1 | Potential mechanisms of drugs in the treatment of diseases by targeting ferroptosis.

Type Name Target Application Reference

Inducer Erastin System XC- Lung cancer, Melanoma, Breast cancer, Gastric cancer, Ovarian cancer (14, 99–102)
Sorafenib System XC- Hepatocellular carcinoma (58)
Sulfasalazine System XC- Breast cancer, Head and neck cancer, Pancreatic cancer (103–105)
RSL3 GPX4 Colorectal cancer, Head and neck cancer, Cardiomyocytes (56, 106, 107)
ML-162 GPX4 Head and neck cancer (56)
Acetaminophen GPX4 Lung cancer, Liver injury (14, 108)
Withaferin A GPX4 Neuroblastoma (109)
Artesunate Iron Liver fibrosis, Head and neck cancer, hepatocellular carcinoma (50, 110, 111)
Cisplatin GSH Head and neck cancer, Gastric cancer, Kidney injury (50, 112, 113)

Inhibitor Deferoxamine Iron Spinal cord injury, Chronic obstructive pulmonary disease, Primary neurons Hypoxia, Pancreatic cancer (114–118)
Ferrostatin-1 Lipid peroxidation Lung injury, Cardiomyopathy, Cell model of Parkinson’s disease, Intracerebral hemorrhage, Epilepsy (16, 119–122)
Liproxstatin-1 Lipid peroxidation Morphine tolerance, Ischemia/reperfusion injury, Acute renal failure (123–125)
Vitamin E Lipid peroxidation Hepatocellular degeneration, Sepsis, cognitive impairment (126–128)
Baicalein Lipid peroxidation Traumatic brain injury, Posttraumatic Epileptic Seizures (129, 130)
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(MAP1LC3B2), MAP1LC3C, lysophosphatidylcholine
acyltransferase 3 (LPCAT3), glutamate-cysteine ligase catalytic
subunit (GCLC), prion protein (PRNP), and acyl-CoA synthetase
long chain family member 1(ACSL1) (GSE104462). Also,
Figure 4F exhibited that APEX1 had significant Spearman’s
correlations with genes in the ferroptosis pathway, including
SLC7A11, STEAP3, GCLC, heme oxygenase 1 (HMOX1),
ACSL4, and MAP1LC3C. The above data indicated that APEX1
expression decreased significantly in ferroptosis induced by
erastin. APEX1 correlated with genes in the ferroptosis pathway.
APEX1 may be involved in ferroptosis, however, the specific
mechanisms need further study. Through this review, further
understanding of the possible signaling pathways of ferroptosis
are undertaken. APEX1 inhibitors or knockdown of APEX1
expression to promote tumor cell death by regulating the
ferroptosis pathway can be utilized in the treatment of cancer.
Alternatively, we can use APEX1 inducer or overexpression of
APEX1 to resist several neurological diseases by inhibiting the
ferroptosis pathway. Therefore, we propose that APEX1 may be a
potential target for regulating ferroptosis.

Here, we have majorly reviewed the possible regulatory
mechanisms of APEX1 in the ferroptosis pathway. So far, there
has been no direct evidence that APEX1 can regulate the
ferroptosis pathway. The bioinformatics analysis proved that
the mRNA level of APEX1 was decreased in HepG2 cells and
HCC38 cells in ferroptosis induced by erastin (Figures 4A, B).
Frontiers in Oncology | www.frontiersin.org 8
Through analysis of existing literature, it can be concluded that
APEX1 must be involved in ferroptosis through its antioxidant
domain. There is an interesting phenomenon: the expression of
APEX1 in tumor cells is increased compared to the non-tumor
regions, that can resist ROS induced apoptosis. However, the
DNA repair function of APEX1 was masked by tumor cells.
Therefore, it is worthwhile to explore the role of APEX1 in
regulating ferroptosis, especially in the area of cancer. In
summary, APEX1 is a multifunctional protein with both
important DNA repair and redox capabilities. APEX1 plays
key roles in regulation of the ferroptosis pathway, and it is an
important potential target for the treatment of various
ferroptosis related diseases. We hope that in the future, APEX1
can be used to treat patients and help in improving the condition
of the patients suffering from various types of diseases.
CONCLUSION

In this review, we highlighted the potential roles of APEX1 in the
regulation of ferroptosis. We found that APEX1 plays a vital role in
regulating the pathways like system XC-, lipid peroxidation, Nrf2,
HIF, and p53. In other words, APEX1 has the potential to regulate
cancer, nervous system diseases, and other diseases through
ferroptosis. Bioinformatics analysis revealed that the mRNA
level of APEX1 was decreased in ferroptosis induced by erastin.
A B C

D E F

FIGURE 4 | Bioinformatics analysis for APEX1 transcriptional expression. (A) The relative mRNA level of APEX1 in HepG2 cells. (GSE104462) (***P < 0.001, n = 3).
(B) Volcano plot showed significantly differentially expressed genes. (GSE104462). (C) APEX1 correlated with genes in the ferroptosis pathway. (GSE104462). (D) The
relative mRNA level of APEX1 in HCC38 cells. (GSE154425) (*P < 0.05, n = 3). (E) Volcano plot showed significantly differentially expressed genes. (GSE154425).
(F) APEX1 correlated with genes in the ferroptosis pathway. (GSE154425).
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APEX1 correlated with genes in the ferroptosis pathway.
Therefore, we have put forward such a panoramic view of
APEX1 acting as an inhibitor of ferroptosis.
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