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Abstract: Physiological selenium (Se) levels counteract excessive inflammation, with selenoproteins
shaping the immunoregulatory cytokine and lipid mediator profile. How exactly differentiation
of monocytes into macrophages influences the expression of the selenoproteome in concert with
the Se supply remains obscure. THP-1 monocytes were differentiated with phorbol 12-myristate
13-acetate (PMA) into macrophages and (i) the expression of selenoproteins, (ii) differentiation mark-
ers, (iii) the activity of NF-κB and NRF2, as well as (iv) lipid mediator profiles were analyzed. Se and
differentiation affected the expression of selenoproteins in a heterogeneous manner. GPX4 expression
was substantially decreased during differentiation, whereas GPX1 was not affected. Moreover, Se
increased the expression of selenoproteins H and F, which was further enhanced by differentiation
for selenoprotein F and diminished for selenoprotein H. Notably, LPS-induced expression of NF-κB
target genes was facilitated by Se, as was the release of COX- and LOX-derived lipid mediators
and substrates required for lipid mediator biosynthesis. This included TXB2, TXB3, 15-HETE, and
12-HEPE, as well as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid
(DHA). Our results indicate that Se enables macrophages to accurately adjust redox-dependent
signaling and thereby modulate downstream lipid mediator profiles.

Keywords: selenium; selenoprotein; macrophage; differentiation; inflammation; redox signaling;
NRF2; NF-κB; lipid mediators

1. Introduction

Selenium (Se) is an essential trace element that is important for human health. It is
required for various physiological processes including immune function and mammalian
development, as well as thyroid hormone metabolism, and Se deficiency has been im-
plicated in various pathologies including inflammation, heart disease, and cancer [1,2].
The biological effects of Se are mainly mediated by selenoproteins, which contain the
amino acid selenocysteine, the Se-containing analogue of cysteine, in their polypeptide
chain [2]. Most commonly, selenocysteine is part of the catalytic center and provides the
selenoproteins with unique chemical activities due to the superior reactivity of seleno-
cysteine. Accordingly, many selenoproteins regulate redox-dependent processes [3] and
adequate levels of Se and selenoproteins have been reported to be critical for proliferation,
differentiation, and inflammatory processes [4]. The impact of individual selenoproteins
is thereby dependent on the cell type and differentiation state. Hence, expression levels
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of selenoproteins largely differ between undifferentiated and differentiated cells, which
suggests that distinct selenoproteins inherit specific functions depending on the differentia-
tion state. Knock-down of selenoprotein (SELENO)H, for example, triggers proliferation of
undifferentiated human HT-29 colorectal carcinoma cells and decreases their differentia-
tion, while SELENOH is significantly downregulated in differentiated HT-29 cells [5]. In
contrast, thioredoxin reductases (TXNRDs) are upregulated in differentiated adiopocytes
and inhibit the differentiation process [6,7]. Moreover, various other selenoproteins, such
as glutathione peroxidases (GPXs), SELENOO, and SELENOK, have been shown to be
implicated in proliferation and differentiation of distinct cell types [4,8,9].

Macrophages, which are derived from circulating monocytes, are important cells of the
innate immune system [10]. Depending on the microenvironmental signals, macrophages
give rise to a variety of different tissue-resident-activated macrophage sub-populations,
including pro-inflammatory M1- or anti-inflammatory M2-type macrophages [11,12]. Two
redox-regulated transcription factors, nuclear factor κ-light-chain-enhancer (NF-κB) and
nuclear factor erythroid 2-related factor 2 (NRF2), are key regulators of inflammation and
oxidative stress-induced cellular responses in macrophages. These play pivotal roles in
host defense and inflammatory processes but are also important for tissue homeostasis
and repair [13,14]. While NF-κB mainly triggers gene expression of inflammatory proteins
like cyclooxygenase (COX)2 and tumor necrosis factor (TNF)α, thereby enhancing oxida-
tive stress, NRF2 activates the antioxidant response, which includes the upregulation of
TXNRD1, GPX4, superoxide dismutase (SOD)1, heme oxygenase (HMOX)1, and catalase
(CAT), as well as proteins involved in glutathione (GSH) homeostasis, including solute
carrier family 7 member 11 (SLC7A11), glutamate-cysteine ligase catalytic subunit (GCLC),
and glutamate-cysteine ligase modifier subunit (GCLM). The two pathways are cross-
linked by a complex network, thereby allowing fine-tuned inflammatory responses and
preventing exacerbated oxidative stress and inflammation [15]. Various studies suggest
that adequate Se levels limit excessive inflammation [2], and genetic inhibition studies iden-
tified specific functions of individual selenoproteins in the macrophage maturation process
(GPX1 and SELENOP), as well as in the limitation of the oxidative burst (SELENOK) [16].

In mammals, the hierarchy of selenoproteins ensures that indispensable selenoproteins
are expressed at the expense of less important ones when the Se supply is limited [17]. A
second hierarchical principle ensures the transport of Se to privileged tissues, e.g., the brain.
The expression pattern of selenoproteins is highly dynamic, tightly regulated, and fine-
tuned depending on the developmental stage, physiological conditions, and the availability
of Se [1,18,19].

Given that adequate expression of selenoproteins (i) depends on Se supply, (ii) varies
widely between different tissue types, (iii) can be altered by the differentiation process, and
(iv) is required for an appropriate inflammatory response, this raises the questions of how
the Se status affects monocyte/macrophage function and how selenoprotein expression
levels are regulated in macrophages during the differentiation process. Human THP-1
monocytes have been suggested to be a valuable model for macrophage differentiation be-
cause phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages resemble
the native monocyte-derived macrophages with regard to (i) morphology, (ii) expression of
membrane antigens and receptors, (iii) the release of secretory factors, and (iv) transient
induction of proto-oncogenes [20]. We established a THP-1 model to investigate the effect of
Se on (i) cell proliferation and differentiation of monocytes and (ii) the expression of seleno-
proteins in undifferentiated monocytes as compared to differentiated macrophages, as well
as (iii) the inflammatory response upon lipopolysaccharide (LPS) stimulation. Interestingly,
Se treatment neither significantly affected the proliferation of human THP-1 monocytes
nor the differentiation process itself. However, expression of almost all selenoproteins was
modulated by the differentiation state of THP-1 cells. Adequate levels of Se were moreover
important for the LPS-induced inflammatory response, resulting in an upregulation of
NF-κB target gene expression as well as increased biosynthesis of lipid mediators (LMs).
In conclusion, the tight regulation of the selenoproteome by both Se and differentiation
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processes together with the dependency of the inflammatory response on Se levels strongly
suggest that an adequate Se status is indispensable for proper functioning of macrophages.

2. Results
2.1. Se Does Not Affect Differentiation of THP-1 Cells into Macrophages

To investigate the effect of Se on the differentiation process of human THP-1 leukemic
monocytes into macrophages, we initially determined the Se concentration and incuba-
tion time required for adequate expression of Se-sensitive selenoproteins. Concentration-
dependent studies with 0–500 nM sodium selenite for 72 h confirmed a significant upregula-
tion of the protein expression levels of the Se-sensitive selenoproteins GPX1 and SELENOH
(Figure S1a,b), while expression of TXNRD1 was not affected (Figure S1c). Moreover,
protein expression of GPX1, SELENOH, and TXNRD1 was time-dependently upregulated,
reaching a maximum after 72 h (Figure S1d–f). Cell number was not significantly affected
up to 72 h by 50 nM Se treatment (Figure S1g). Pre-treatment with 50 nM Se for 72 h was
therefore used for subsequent experiments.

THP-1 differentiation into macrophages can be induced by PMA and is associated with
increased cell size and adherence [21,22]. Concentration–response studies (0–100 nM PMA)
showed that treatment with low (5 nM) PMA concentrations for 48 h was not sufficient
to induce complete differentiation, as indicated by loosely attached cells with monocytic
morphology (Figure S1h). Incubation with 25 nM for 48 h induced a pronounced adherence
of the cells, with significantly increased cell sizes (Figure S1h). Higher concentrations of
PMA (100 nM) did not further increase adherence or cell size. Recent studies indicate
that high PMA concentrations induce a rather pro-inflammatory type of macrophage
which is less responsive towards stimuli [22,23]. Hence, 25 nM of PMA was used for
differentiation. In addition, the cell cycle inhibitor p21WAF1/Cip1 was induced by PMA
reaching a maximum at 25 nM PMA (Figure 1a). This effect was independent of Se
treatment. Time-dependent studies (2–72 h) with 25 nM PMA confirmed a progressive
increase in relative cell adherence, reaching a maximum after 48 h (Figure 1b). To further
explore the influence of Se on the PMA-induced THP-1 differentiation process, cellular
autofluorescence and granularity, as well as extracellular CD68 levels, were analyzed.
All three differentiation markers increased with PMA treatment, whereas Se did not
significantly affect differentiation (Figure 1c–e). In summary, differentiation of monocytes
into macrophages was not significantly affected by the Se status of the cells.
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Figure 1. Selenium does not affect differentiation. THP-1 monocytes were pre-treated for 72 h with or without 50 nM
sodium selenite (selenite) and differentiated into macrophages by 25 nM PMA or the indicated concentration with or
without 50 nM selenite for the indicated time points (b) or for 48 h (a,c–e). (a) Protein expression of p21 was normalized to
β-actin. -PMA/-selenite samples were set to 1. A representative blot is shown. (b) The relative adherence was calculated as
(number of adherent cells/total number of cells) × 100. (c–e) The autofluorescence (c), intracellular granularity (d), and
extracellular CD68 (e) were determined using flow cytometry. Data are given as means + SD (n = 3–4). Two-way ANOVA
with Bonferroni’s post-test. Significant outliers were determined by Grubbs’ test (α = 0.05). * p < 0.05, ** p < 0.01, *** p < 0.001
vs. cells without PMA (PMA effect); & p < 0.05, && p < 0.01, &&& p < 0.001 vs. 2 h PMA.

2.2. PMA-Induced Differentiation of Monocytes to Macrophages Alters the Selenoprotein
Expression Profile

To investigate whether selenoprotein expression is affected by differentiation in com-
bination with varying Se supply, we analyzed the protein levels of selenoproteins under
Se-deficient, as well as Se-adequate, conditions at increasing PMA concentrations. As
expected, selenoprotein expression was upregulated in Se-treated cells, as shown for GPX4,
SELENOH, SELENOS, and SELENOF (Figure 2a–d). Most pronounced Se-dependent
effects were obtained for SELENOF in undifferentiated THP-1 monocytes with a 12-fold up-
regulation, followed by SELENOS and SELENOH. GPX4 expression was only moderately
affected, being upregulated by 1.8-fold in Se-treated cells. In contrast, PMA substantially
reduced expression levels of the selenoproteins SELENOH, SELENOS, and GPX4 in both
Se-treated as well as untreated cells (Figure 2a–c). However, the protein expression of
SELENOF increased upon PMA-induced differentiation (Figure 2d), while other seleno-
proteins, such as GPX1, SELENOO, TXNRD1, and TXNRD2, were almost unaffected by
PMA-induced differentiation (Figure S2a–d). Accordingly, total activities of the TXNRD
and GPX selenoprotein families were also not modulated by PMA (Figure S2e,f).
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Figure 2. Expression of selenoproteins as well as proteins involved in selenoprotein biosynthesis during differentiation.
THP-1 monocytes were pre-treated for 72 h with or without 50 nM sodium selenite (selenite) and differentiated into
macrophages using 5–400 nM PMA (a–d) or 25 nM PMA (e,f) with or without 50 nM sodium selenite treatment for 48 h.
(a–d) Protein expressions of GPX4 (a), SELENOH (b), SELENOS (c), and SELENOF (d) were normalized to β-actin. -PMA/-
selenite samples were set to 1. Representative blots are shown. (e) Heatmap of mRNA expression of different selenoproteins
and proteins involved in the biosynthesis of selenoproteins analyzed by qRT-PCR. The color scale indicates the mean
difference as fold change (FC) of target genes vs. -PMA/-selenite (FC = 1). (f) Se content of the cells. -PMA/-selenite
samples were set to 1. Data are given as means + SD (n = 3–4). Two-way ANOVA with Bonferroni’s post-test. Significant
outliers were determined by Grubbs´ test (α = 0.05). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. cells without PMA (PMA effect);
# p < 0.05, ## p < 0.01, ### p < 0.001 vs. cells without selenite (Se effect).
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As changes in selenoprotein expression upon PMA treatment can be regulated at either
the transcriptional or translational levels, we investigated mRNA levels of the selenopro-
teins in untreated and PMA-differentiated THP-1 cells. Interestingly, mRNA levels were not
related to protein expression. The only selenoprotein which was downregulated by PMA
on mRNA level was SELENOO (Figure 2e). Significant upregulation of mRNA levels was
observed for all other selenoproteins investigated, with SELENOM showing the strongest
effect with a 20-fold increase in macrophages as compared to monocytes (Figure 2e). More-
over, mRNA levels of Se-binding protein 1 (SELENBP1), a non-selenocysteine-containing
protein that covalently binds Se [24,25], were downregulated by PMA (Figure 2e), which
was also observed upon differentiation of other cell types [26,27].

Based on this discrepancy between mRNA and protein expression of selenoproteins,
the mRNA levels of proteins involved in selenoprotein synthesis were analyzed. While
expression of genes responsible for the biosynthesis of selenocysteine at the t-RNA[Ser]Sec

(e.g., selenophosphate synthetase 2 (SEPHS2), phosphoseryl-tRNA kinase (PSTK), sep
(o-phosphoserine) tRNA:sec (selenocysteine) tRNA synthase (SEPSECS)) were significantly
upregulated, mRNA expression of proteins involved in selenoprotein translation (SECIS
binding protein 2 (SECISBP2) and eukaryotic elongation factor, selenocysteine-tRNA spe-
cific (EEFSEC)) were less affected by PMA treatment (Figure 2e). Interestingly, eukaryotic
translation initiation factor 4A3 (EIF4A3), which inhibits the biosynthesis of Se-sensitive
selenoproteins, was significantly upregulated by PMA (Figure 2e). Moreover, cellular Se
levels were independent from the differentiation state and upregulated by Se treatment by
1.5-fold in undifferentiated and differentiated cells, which excludes the possibility that Se
availability limited protein expression of selenoproteins in PMA-treated cells (Figure 2f). In
conclusion, PMA-induced differentiation downregulated selenoprotein expression of GPX4,
SELENOH, and SELENOS but upregulated SELENOF, indicating differentiation-induced
shifts of the selenoproteome.

2.3. PMA and Se Treatment Modulate the Cellular Redox Status and the Activity of the
Redox-Sensitive Transcription Factors NRF2 and NF-κB

Based on the observed changes in selenoprotein expression induced by PMA differ-
entiation together with the well-known impact of many selenoproteins on the regulation
of the cellular redox homeostasis [18,19], we wondered whether Se treatment affects the
redox status in PMA-differentiated THP-1 macrophages. Surprisingly, total GSH levels
decreased from PMA-induced differentiation independent of the Se status (Figure 3a).
NRF2 and NF-κB are two transcription factors which are well-known to be regulated in a
redox-dependent manner and to activate gene expression of antioxidant and inflammatory
proteins, respectively [28]. The activity of NAD(P)H quinone oxidoreductase 1 (NQO1), a
NRF2 target gene, was significantly upregulated in differentiated compared to undiffer-
entiated cells (Figure 3b), which hints towards a putative activation of the transcription
factor NRF2 in differentiated cells. To induce inflammatory conditions and activate the
NF-κB signaling pathway, we included LPS stimulation for further experiments. NF-κB
activation was studied by nuclear translocation of the subunit p65. In macrophages, NF-κB
was activated by LPS stimulation in Se-treated but not in Se-deficient cells (Figure 3c). The
mRNA expression of the NF-κB target genes COX2 and TNFα was increased by PMA-
induced differentiation and further enhanced in LPS-stimulated THP-1 macrophages, with
more pronounced effects under Se treatment (Figure 3d). Se effects were present in neither
the release of TNFα nor COX2 protein levels (Figures 3e and S3a). Moreover, proteins
that are involved in the biosynthesis of prostaglandins (e.g., prostaglandin E synthase
(PGES) and thromboxane (TX)A synthase 1 (TXAS1)), as well as leukotriens and resolvins
(arachidonate 5-lipoxygenase (ALOX5) and arachidonate 15-lipoxygenase (ALOX15)), were
upregulated by PMA but not affected by Se (Figure 3d). Interestingly, ALOX5 mRNA ex-
pression was significantly upregulated in undifferentiated THP-1 cells and downregulated
in the differentiated cells by LPS. Otherwise, LPS did not significantly affect the protein
expression of the two selenoproteins GPX4 and SELENOF (Figure S3c,d).
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Figure 3. Redox-dependent regulation of NF-κB and NRF2 target gene transcription in THP-1 monocytes and macrophages.
THP-1 monocytes were pre-treated with or without 50 nM sodium selenite (selenite) for 72 h and differentiated into
macrophages with 25 nM PMA with or without 50 nM selenite treatment for 48 h. Cells were stimulated with 1 µg/mL
lipopolysaccharide (LPS) (c–i) for 1 h (c), 6 h (d,f), or 24 h (e,g–i). (a) Total GSH content. The GSH synthesis inhibitor
buthionine-sulfoximine (0.25 mM, BSO) was used as positive control. (b) NQO1 activity. (c) The protein expression of
nuclear p65 was normalized to Ponceau staining. The -selenite/-LPS sample was set to 1. (d) Heatmap of mRNA expression
of NF-κB target genes and enzymes involved in the LM biosynthesis investigated by qRT-PCR. mRNA expression of genes is
given as fold change (FC) vs. +PMA/-selenite/-LPS (FC = 1). The color scale indicates the mean difference as the FC of target
genes vs. +PMA/-selenite/-LPS (FC = 1). (e) TNFα release was analyzed by ELISA. (f) Heatmap of mRNA expression of
NRF2 target genes investigated by qRT-PCR. mRNA expression of genes is given as fold change (FC) vs. +PMA/-selenite/-
LPS (FC = 1). The color scale indicates the mean difference as the FC of target genes vs. +PMA/-selenite/-LPS (FC = 1).
(g–i) The protein expressions of CAT (g), SOD1 (h), and GCLC (i) were normalized to β-actin. The +PMA/-selenite/-LPS
samples were set to 1. The data of (a–c,e,g–i) are given as means + SD (n = 3–4). Two-way ANOVA (a–c) or three-way
ANOVA (d–i) with Bonferroni´s post-test. Significant outliers were determined by Grubbs´ test (α = 0.05). * p < 0.05,
** p < 0.01, *** p < 0.001 vs. cells without PMA (PMA effect); # p < 0.05, ### p < 0.001 vs. cells without selenite (Se effect);
§ p < 0.05, §§ p < 0.01, §§§ p < 0.001 vs. cells without LPS (LPS effect).
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For mRNA levels, PMA treatment upregulated most NRF2 target genes (GCLC, GCLM,
glutathione synthetase (GSS), HMOX1, NQO1, SOD1, TXNRD1, SRXN1) with the exception
of SLC7A11, CAT, and GPX4 (Figure 3f). The strong PMA-dependent downregulation of
SLC7A11, a subunit of the cystine/glutamate antiporter system Xc

- that is essential for
the intracellular supply with cysteine and subsequent GSH biosynthesis, might explain
the decreased levels of GSH in the PMA-differentiated cells, although mRNA levels of the
proteins of GSH biosynthesis (GCLC, GCLM, GSS) were upregulated. Notably, Se treat-
ment makes THP-1 macrophages more responsive to LPS-induced NRF2 gene expression,
with up to threefold higher mRNA levels of NRF2 target gene expression (e.g., HMOX1)
under Se-treated conditions as compared to Se-deficient conditions. Protein expressions of
NRF2 target proteins CAT, SOD1, and GCLC were not affected by LPS stimulation and Se
treatment (Figure 3g–i). However, CAT expression was significantly downregulated and
GCLC was upregulated by PMA, whereas no pronounced PMA effects were observed on
SOD1 expression (Figure 3g–i).

2.4. Effects of LPS Treatment on LM profiles in THP-1 Monocytes and Macrophages

Given that Se-treated PMA-differentiated macrophages were more responsive to LPS-
induced NF-κB activation, we speculated that an adequate Se status might also affect LM
biosynthesis. A metabolipidomics approach was employed to investigate the impact of
Se on LPS-induced changes on the LM profile. Similar to what we observed for mRNA
expression of COX2 and TNFα (Figure 3d), nuclear translocation of the p65 subunit of
NF-κB (Figure 3d), and the expression of NRF2 target genes (Figure 3f), Se supported
the production of COX- and LOX-derived LMs as well as the release of the fatty acid
substrates required for LM biosynthesis, reaching significance for the COX-derived LM
TXB2 as well as docosahexaenoic acid (DHA) in differentiated macrophages. Interestingly,
in undifferentiated Se-deficient cells, almost all lipid mediators were downregulated by
LPS by trend but upregulated by Se with significant effects on COX-derived TXB2 and
TXB3, and the LOX-derived products 15-hydroxyeicosatetraenoic acid (15-HETE) and 12-
hydroxypentaenoic acid (12-HEPE), as well as arachidonic acid (AA), eicosapentaenoic
acid (EPA), and docosahexaenoic acid (DHA) (Figure 4). Together, our data clearly indicate
that Se facilitates LM biosynthesis by modulating the enzymes for LM biosynthesis.
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Figure 4. Effect of Se, PMA-induced differentiation, and LPS on lipid mediator (LM) profiles. THP-1
cells were pre-treated with or without 50 nM sodium selenite (selenite) for 72 h and differentiated into
macrophages by treatment with 25 nM PMA in co-treatment with or without 50 nM sodium selenite
(selenite) for 48 h and with or without 1 µg/mL lipopolysaccharide (LPS) for an additional 24 h. LM
profiles of the supernatant were analyzed by UPLC-MS/MS. The heatmap organizes LM according
to key biosynthetic enzymes (n = 4). The values in the columns give the concentrations of LMs in
pg/mg protein (COX, 5-LOX, 12/15-LOX, SPMs, others) or ng/mg protein (free PUFAs). The color
scale indicates the mean difference as fold change (FC) of control cells vs. LPS and/or selenite-treated
cells (FC = 1). Two-way ANOVA with Bonferroni´s post-test. Significant outliers were determined by
Grubbs´ test (α = 0.05). # p < 0.05, ### p < 0.001 vs. cells without selenite (selenite effect); §§ p < 0.01,
§§§ p < 0.001 vs. cells without LPS (LPS effect). AA, arachidonic acid; COX, cyclooxygenase; DHA,
docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; HDHA, hydroxy-
docosahexaenoic acid; HEPE, hydroxypentaenoic acid; HETE, hydroxyeicosatetraenoic acid; HODE,
hydroxyoctadecadienoic acid; LOX, lipoxygenase; LT, leukotriene; MaR, maresin; PD, protectin D;
PG, prostaglandin; PUFA, polyunsaturated fatty acid; Rv, resolvin; SPM, specialized pro-resolving
mediator; TX, thromboxane.
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3. Discussion

Since Se was recognized as an essential trace element, the role played by its adequate
supply has been intensively studied. Various studies have shown that adequate levels
of Se are important for the immune function and are able to prevent excessive inflamma-
tion [3]. Hence, Se was found to limit the expression of pro-inflammatory cytokines under
inflammatory conditions in vitro at relatively high concentrations of 2 µM [29–31]. In vivo
effects of Se are more distinct [32,33]. While long-term treatment of mice with 0.6 mg/kg
Se (which was given as sodium selenite and corresponded to approximately four times the
adequate intake) had no effects on dextran sulfate sodium (DSS)-induced colitis, short-term
treatment with 0.6 mg/kg Se actually enhanced inflammation scores, as well as TNFα and
COX2 mRNA expression. Notably, 0.6 mg/kg Se given in the form of selenomethionine
had no effect [32]. Otherwise, rats that received 0.2–20 µg/kg organic selenocompounds
during pregnancy developed less severe Staphylococcus aureus-induced mastitis with lower
NF-κB activation and TNFα mRNA expression [33]. Within the innate immune system,
macrophages inherit key functions in neutralizing pathogens and regulating inflamma-
tory processes and individual selenoproteins have been shown to affect the macrophage
maturation process (GPX1 and SELENOP) and limit oxidative burst (SELENOK) [34–38].
However, little is known about how Se deficiency impacts redox-dependent proliferation,
differentiation and signaling cascades in monocytes and differentiated macrophages, nor
about how selenoprotein expression affects these processes.

Human THP-1 monocytes were used as a model system under Se-deficient as well as
Se-adequate conditions and were differentiated into macrophages by PMA. Interestingly,
the hierarchy of selenoprotein expression seems to be different in monocytes/macrophages
as compared to other cell types, such as epithelial cells. While the Se-sensitive selenoprotein
SELENOH was significantly upregulated in a time- and concentration-dependent manner,
with fourfold higher expression levels at 500 nM Se, the expression of another Se-sensitive
selenoprotein, GPX1, was only slightly affected by Se, being upregulated by 1.5-fold
(Figure S1a,b). Notably, the protein expression of GPX1 and of the protein family member
GPX4, which ranks higher in hierarchy, were comparably upregulated by 1.5–1.8-fold by
Se, which indicates that GPX1 is more indispensable in THP-1 monocytes compared to
other cell types (Figures 2a and S2a). This might be due to the absence of another GPX
isoenzyme in monocytes, GPX2 [35], which has been previously shown to have overlapping
functions with GPX1 in limiting the redox-dependent activation of the NF-κB pathway
and LM biosynthesis in human epithelial-derived cancer cells [29]. It is therefore tempting
to speculate that the absence of the epithelial GPX2 makes GPX1 more indispensable in
THP-1 monocytes, thereby advancing GPX1 in hierarchy.

Interestingly, the PMA-induced differentiation process was also not significantly
affected by Se status, as suggested from cell adherence, granularity, autofluorescence,
and surface marker expression (Figure 1b–e). However, the differentiation process had a
strong impact on the protein expression levels of various selenoproteins (Figures 2 and S2).
Expression of the two GPX isoenzymes GPX1 and GPX4 was differently regulated by PMA.
Whereas GPX1 protein expression was not affected by PMA treatment (Figure S2a), GPX4
protein expression was downregulated under both Se-deficient as well as Se-adequate
conditions by PMA-induced differentiation (Figure 2a). Notably, mRNA expression levels
of selenoproteins did not correlate with protein expression levels and were upregulated by
PMA treatment for all selenoproteins except for SELENOO (Figure 2e). We could exclude
(i) Se levels, (ii) impaired selenocysteine biosynthesis, and (iii) selenoprotein translation
as limiting variables for the PMA-induced reduction of several selenoproteins since the
cellular Se content as well as mRNA expression of proteins responsible for selenocysteine
biosynthesis and selenoprotein translation were not affected or even upregulated by PMA
(Figure 2e,f). We therefore speculate that the upregulation of selenoprotein mRNAs is due
to the special M0 state of macrophages, which has to be considered as a transitional rather
than a terminal stage. Depending on the milieu in the tissue, M0 macrophages polarize
into various subpopulations with either pro- or anti-inflammatory properties. Hence,
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mRNA levels of the selenoproteins might be kept at relatively high levels to rapidly adapt
the protein expression of selenoproteins to the requirement of the respective macrophage
subtype after maturation.

GPX4 has been shown to inhibit NF-κB activation [39], and the downregulation of
GPX4 in differentiated THP-1 macrophages might be essential to enable inflammatory re-
sponses in these cells. Accordingly, NF-κB target genes TNFα and COX2 were upregulated
by PMA (Figure 3d). Moreover, TNFα and COX2 mRNA expression as well as the release
of COX-derived PGE2 and PGF2α were increased by LPS stimulation in macrophages,
with more distinct effects under Se treatment (Figures 3 and 4). However, the Se effect
on TNFα and COX2 expression was not present for protein levels (Figures 3e and S3a).
Possibly, Se effects on protein expression are only visible within another time frame which
was not captured by our study (24 h). Essentially, previous studies indicate that the Se
effects on biosynthesis of pro-inflammatory cytokines differ at different time points [30,40].
Importantly, a rapid and adequate secretion of inflammatory cytokines upon bacterial or
viral infection is essential in pathogen removal and to prevent sustained inflammation.
Optimal Se supply might be important to maintain homeostasis between the formation
of inflammation-dependent production of reactive oxygen species and the antioxidant
NRF2 system, thereby enabling cells’ fast upregulation of inflammatory response upon
stimulation, and to prevent chronic inflammation [41]. Inversely, physiological changes
in Se levels as studied herein only moderately impacted on NF-κB signaling and LM
biosynthesis, which indicates that THP-1 cells are able to compensate for the reduced
expression of selenoproteins. Otherwise, expression of selenoproteins that are important
for the regulation of inflammatory signaling might be less dependent on Se in macrophages,
as demonstrated for GPX1 and TXNRD1 (Figure S2a,c).

Interestingly, the release of other COX-derived products was enhanced neither by
PMA nor by LPS (Figure 4), which indicates that LM biosynthesis is efficiently channeled
into PGE2 and PGF2α production. Notably, previous studies reported that Se treatment
decreased the expression of pro-inflammatory cytokines such as TNFα and the release of
LMs including PGE2 in macrophages [29–31,33,40,42,43]. Differences in the study outcomes
might have been related to different experimental settings. While our study used human
THP-1 macrophages treated with physiological concentrations of Se (50 nM), previous
studies employed murine RAW264.7 and bone marrow-derived macrophages (BMDM)
treated with 2 µM Se (given as sodium selenite). Hence, even striking differences in the
Se-dependent regulation of COX2 expression are observed in RAW264.7 and BMDM cells
under similar experimental conditions (2 µM Se), with strong effects of Se (2 µM) on COX2
expression in RAW264.7 and noticeably less pronounced effects in the BMDM cells [30].
Moreover, another study showed that TNFα mRNA expression in Staphylococcus aureus-
stimulated RAW264.7 macrophages was significantly reduced by 2 µM Se (given as sodium
selenite) and unaffected by 1–1.5 µM [40], which underlines the concentration dependency
of the Se effects. Notably, while an adequate supply with Se is supposed to have antioxidant
properties via the upregulation of selenoproteins, Se given at concentrations that exceed
the dosage required to maximize selenoprotein expression most likely does not exert its
effects via selenoproteins and can even have pro-oxidant effects, which underscores the
necessity of a well-balanced Se status [44–46]. Another critical aspect of an appropriate
immune reaction might be that related to an accurate time-dependent regulation of the
inflammatory response. While an upregulation of COX2 expression after infection is
required to remove pathogens, an excessively prolonged activation might result in chronic
inflammation. Overall, it appears that moderate changes in the Se supply do not overtly
change the expression of NF-κB-responsive proteins and thus the immune response of
THP-1 monocytes and M0 macrophages.

Analog with NF-κB, mRNA expression levels of NRF2 target genes were increased
by LPS stimulation and were dependent on adequate Se levels in macrophages (Figure 3f).
The increase of NRF2 target gene transcription by LPS is in line with a previous report
which also observed an upregulation of NRF2 upon activation of the toll-like receptor 1/2
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with Pam3CSK4 in THP-1 cells [47]. Given that the NF-κB and NRF2 signaling pathways
are interconnected via a complex signaling network, the coordinated increase in NF-κB
and NRF2 target gene expression upon LPS stimulation by Se hints towards an important
function in maintaining a balance of NF-κB-dependent reactive oxygen species/reactive
nitrogen species formation and NRF2-dependent hydrogen peroxide detoxification in
THP-1-derived macrophages. Otherwise, Se downregulated most of the NRF2 target genes
under unstimulated conditions in macrophages, reaching significance for GCLC (Figure 3f).
This is in line with a previous in vivo study which found that mRNA expression of the
NRF2 target genes GCLC, NQO1, SOD1, and SRXN1 was significantly downregulated
in mice that received a Se-adequate diet (0.15 mg/kg) compared to mice with a Se-poor
diet (0.086 mg/kg) [48]. Notably, while most of the NRF2 target genes were upregulated
by PMA-induced differentiation, the two target genes CAT and SLC7A11 were down-
regulated (Figure 3f). NRF2-dependent target gene expression is regulated by complex
mechanisms, which include: (i) different cysteine sensors within the NRF2 regulatory pro-
tein KEAP1 (Cys151, Cys257, Cys273, Cys288, and Cys297) that can be targeted by distinct
endogenous and exogenous ligands, (ii) phosphorylation of NRF2, and (iii) transactivation
via dimerization with different transcription factors (e.g., activating transcription factor
4 (ATF4), ATF3 or CREB binding protein (CBP)) and nuclear receptors (e.g., peroxisome
proliferator-activated receptor gamma (PPARγ), estrogen receptor α, and retinoic X recep-
tor α (RXRα)) [15]. How exactly PMA stimulates NRF2 activation is not known. However,
a similar controversial regulation of NRF2 target gene subsets has also been observed with
other small molecule inducers of NRF2, such as Bay 11-7085 [49] and sulforaphane [50],
which stimulate ferroptosis and induce a strong upregulation of HMOX1 with concomitant
downregulation of other NRF2 target genes like GPX4 and SLC7A11, respectively. De-
pending on the point of attack, small molecule inducers of NRF2 might therefore reveal a
specific profile of NRF2 target gene regulation.

In conclusion, we anticipate that adequate Se levels as well as differentiation impact on
selenoprotein expression, whereas the Se status only moderately affected NF-κB signaling
and biosynthesis of inflammatory LMs. Of particular interest are the discrepancies with
previous findings that indicated an inhibitory effect of Se on NF-κB-dependent inflam-
matory signaling; our results indicate that Se facilitates LPS-induced NF-κB activation.
We speculate that differences arise from (i) different Se concentrations and (ii) timing and
maybe even the species (e.g., human vs. mouse). Notably, PMA, which was used for
differentiation, had significant effects on NF-κB as well as NRF2 that might have impacted
the overall effects of Se in our THP-1 model system. However, the well-known effects of
physiological Se levels for a fine-tuned adaptive immune response upon bacterial and viral
infections [51,52], as well as during inflammation resolution [53–55], might be mediated
by other mechanisms as well. Further concentration- and time-dependent studies on in-
flammatory responses upon inflammatory stimulation are required, as are investigations
in primary cells which more closely reflect in vivo conditions and research on the function
of specific selenoproteins in order to address these issues.

4. Materials and Methods
4.1. Materials

Materials are listed in Table S1.

4.2. Cell Culture

Human THP-1 acute monocytic leukemia cells (monocytes, ATCC® TIB-202™) were
grown in RPMI completed with 10% (v/v) FCS, 1% (v/v) penicillin-streptomycin and 1%
GlutaMAX at 37 ◦C in 5% CO2 and sub-cultured every three to five days. Cell treatment:
THP-1 monocytes were incubated with different concentrations of Se (0–500 nM) for 72 h or
for varying incubation times (0–96 h) with 50 nM Se. THP-1 monocytes were differentiated
with different PMA (0–400 nM) concentrations as indicated or with 25 nM PMA for 48 h
or as indicated. THP-1 monocytes were preincubated for 72 h with or without 50 nM
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Se, seeded at densities of 0.5 × 105 cells/mL THP-1 monocytes (DMSO control) and
2.5 × 105/mL for PMA-induced differentiation with or without Se (50 nM) treatment, and
harvested after 48 h. LPS (1 µg/mL) stimulation was performed with undifferentiated
and differentiated THP-1 cells with or without Se treatment for 1 h (nuclear extracts for
Western blot analysis), 6 h (quantitative real-time PCR analysis) or 24 h (Western blot and
LM analysis). The protein content of the cell lysates was measured using Bradford analysis
(Bio-Rad Laboratories).

4.3. Determination of Adherence, Morphology and Cell Number

Adherence of PMA-treated THP-1 cells was determined at the indicated time points.
Cells were harvested by trypsinization and resuspended in RPMI. The cell number was
determined using 0.4% trypan blue staining with a Vi-Cell XR Cell Viability Analyzer
(Beckman Coulter, Brea, CA, USA). To determine the relative adherence, adherent cells
were collected and percentage adherence was calculated as the number of adherent cells
divided by the starting cell number and multiplied by 100.

Images of cells were collected with an Eclipse Ti-S microscope (Nikon GmbH, Tokyo,
Japan) equipped with a Nikon Digital Sight DS-Fi1c color camera (Nikon GmbH) and a
20× objective (NA = 0.45, S Plan Fluor, Nikon GmbH) or a 10× objective (NA = 0.3, Plan
Fluor, Nikon GmbH).

4.4. Flow Cytometry

For flow cytometry experiments, cells were treated as described above and harvested.
Granularity was measured using forward and side scatter light and autofluorescence
analyzed in unstained cells in the FL-1 channel (blue laser, excitation 488, emission 525/40).
For detection of the cell surface marker CD68, cells were resuspended in ice cold primary
antibody solution (containing phosphate-buffered saline (PBS, 140 mM NaCl, 10 mM
Na2HPO4, and 2.99 mM KH2PO4, pH 7.4) with 10% FCS and 1% NaN3), fixed with PBS
and 0.01% formaldehyde (diluted in PBS) for 15 min, and washed with primary antibody
solution. Cells were resuspended in primary antibody solution with 0.5% (v/v) Tween®

20 and incubated with primary antibody mouse anti-CD68 (1:200) for 30 min. Samples
were centrifuged for 3 min at 500× g and washed twice in primary antibody solution and
once in secondary antibody solution (containing PBS with 3% BSA and 1% NaN3) with
the same centrifugation steps in between. Samples were incubated with the secondary
antibody (anti-mouse IgG Alexa Fluor® 594 Conjugate (1:1000)) for 30 min protected from
light. Analysis was performed on a CytoFLEX flow cytometer (Beckman Coulter, excitation:
488 nm; emission: 525/40 nm) and data were analyzed using CytExpert software version
2.2 and version 2.3 (Beckman Coulter).

4.5. Nuclear Isolation

The nuclear lysates of 3.0 × 105/mL PMA-differentiated macrophages were harvested
after 1 h of LPS stimulation. Lysis buffer I (10 mM HEPES, 1.5 mM MgCl2, 10 mM
KCl, 0.5 mM DTT, 0.5 mM PMSF, and 0.1% NP-40 Alternative, pH 7.9) was used. After
incubation for 7 min at 4 ◦C under shaking, cells were centrifuged for 1 min at 4 ◦C and
6800× g. Thereafter, NaCl (5 M) was added to the lysis buffer II (40 mM HEPES, 400 mM
KCl, 10% glycerol, 1 mM DTT, and 0.1 mM PMSF, pH 7.9) and the cell pellet was lysed by
ultrasonic treatment (80% amplitude, 0.5 s cycle), and centrifuged for 30 min at 4 ◦C and
20,000× g to obtain nuclear lysates. The protein content was measured and the nuclear
lysate was used for Western blot analysis.

4.6. Western Blot

Harvested THP-1 monocytes and macrophages were lysed with RIPA buffer (50 mM
Tris, 150 mM NaCl, 2 mM EDTA, 0.5% sodium deoxycholate, 0.1% SDS, and 1% NP-40
Alternative, pH 7.7 with 0.1% (v/v) protease inhibitor) for 15 min at 4 ◦C and 1200 rpm
using the ThermoMixer® (Eppendorf AG, Hamburg, Germany). The samples were cen-
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trifuged for 15 min at 4 ◦C and 14,000× g, and protein concentration was determined in
the supernatant. Samples were mixed with loading buffer (1×; 41.7 mM Tris pH 6.8, 10%
glycerin, 2% SDS, 0.125% bromophenol blue, and 2.5% β-mercaptoethanol) and heated
for 5 min at 95 ◦C. Proteins were separated on SDS polyacrylamide gels (10–15%) and
immunoblotted on Amersham™ Protran® nitrocellulose membrane. Membranes were
incubated for 2 min in Ponceau S solution (0.2% (w/v) with 3% (w/v) trichloroacetic acid)
and bands were recorded by a ChemiDocTM MP Imaging System (Bio-Rad Laboratories).
Subsequently, membranes were blocked in 5% (w/v) non-fat dry milk in Tris-buffered saline
(5 mM Tris, 15 mM NaCl) with 0.1% (v/v) Tween® 20 (T-TBS) for 1 h at room temperature
and incubated with primary antibodies overnight at 4 ◦C in T-TBS: Mouse anti-γ-GCSc
(H-5) (1:10,000), mouse anti-mPGES1 (1:300); rabbit anti-beta actin (1:10,000); rabbit anti-
oxidative stress defense (catalase, SOD1) (1:500); rabbit anti-COX2 (D5H5) XP® (1:1000);
rabbit anti-GPX1 (1:5000); rabbit anti-GPX4 (1:5000); rabbit anti-NF-κB p65 (D14E12) XP®

(1:4000); rabbit anti-p21WAF1/Cip1 (12D1) (1:1000); rabbit anti-SEP15 (1:3000); rabbit
anti-SELH (1:1000); rabbit anti-SELO (1:2500); rabbit anti-VIMP (D1D1M)) (1:1000); rabbit
anti-TXNRD1 (1:10,000); and rabbit anti-TXNRD2 (1:1000). HRP-coupled goat anti-rabbit
IgG (1:50,000) or HRP-coupled horse anti-mouse IgG (1:3000) were used as secondary anti-
body. Protein bands were detected using SuperSignalTM West Dura and band intensities
were densitometrically quantified using a ChemiDocTM MP Imaging System (Bio-Rad Lab-
oratories) and data analyzed using Image Lab software version 5.0 (Bio-Rad Laboratories).
Protein expression was normalized to ß-actin or Ponceau S staining as indicated.

4.7. Quantitative Real-Time PCR

Total mRNA of THP-1 cells was isolated using the Dynabeads™ mRNA DIRECT™
Purification Kit according to the manufacturer’s protocol. The SensiFAST™ cDNA Synthe-
sis Kit was used for cDNA transcription. For real-time PCR, cDNA were combined with
Master mix (PerfeCTa SYBR Green Supermix, forward and reverse primer (each 250 nM
final concentration)) in a 96-well plate as previously described [56]. Primer sequences are
given in Table 1. PCR was performed on a real-time PCR system (MX3005P, Agilent, Santa
Clara, CA, USA) with heat cycle to 95 ◦C for 3 min, 40 cycles of denaturation at 95 ◦C for
15 sec, annealing at 60 ◦C for 20 s, and elongation at 72 ◦C for 30 sec. Standard curves from
diluted PCR products were used for quantification and all samples and standards were
measured in triplicate. For normalization, sample values were normalized to a composite
factor based on the reference genes RPL13a and RPS9. MIQE guidelines served as reference
for the quantification procedure.

Table 1. Human-specific primers for quantitative real-time PCR.

Gene RefSeq-ID Sequence (5′→3′)

ALOX15 (arachidonate 15-lipoxygenase) NM_001140.3 TGGAGCCTTCCTAACCTACAG
TCCACATACCGATAGATGATTTCC

ALOX5 (arachidonate 5-lipoxygenase) NM_000698.3 GCTGCAACCCTGTGTTGATCC
AAATGTTCCCTTGCTGGACCTC

CAT (catalase) NM_001752.4 CCTATCCTGACACTCACCGCCA
GAGCACCACCCTGATTGTCCTG

COX2 (cyclooxygenase 2;
prostaglandin-endoperoxide synthase 2 (PTGS2)) NM_000963.2 CCCAGCACTTCACGCATCAG

CTGTCTAGCCAGAGTTTCACCGT
EEFSEC (eukaryotic elongation factor,

selenocysteine-tRNA-specific) NM_021937.3 CCCTAGAGAACACCAAGTTCCGAG
TCAATGAGCTCTGGAATGCCCT

EIF4A3 (eukaryotic translation initiation factor 4A3) NM_014740.3 AAAGAAAGGTGGACTGGCTGACGG
ACTCCTTCATGATGGACTCCCGCT

GCLC (glutamate-cysteine ligase catalytic subunit) NM_001498.3 TGCTGTCTCCAGGTGACATTCCA
GGAGATGCAGCACTCAAAGCCA

GCLM (glutamate-cysteine ligase modifier subunit) NM_002061.3 GTTGACATGGCCTGTTCAGTCCT
CCCAGTAAGGCTGTAAATGCTCCA

GPX1 (glutathione peroxidase 1) NM_000581.2 TACTTATCGAGAATGTGGCGTCCC
TTGGCGTTCTCCTGATGCCC
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Table 1. Cont.

Gene RefSeq-ID Sequence (5′→3′)

GPX3 (glutathione peroxidase 3) NM_002084.5 GTCGAAGATGGACTGCCATGGT
AGCTGGCCACGTTGACAAAGAG

GPX4 (glutathione peroxidase 4) NM_002085.3 AGGCAAGACCGAAGTAAACTACAC
TCTCTTCGTTACTCCCTGGCT

GSS (glutathione synthesis) NM_000178.2 CCAAGTGCCCAGACATTGCCA
CCTTCTTCACCCACATCCAGTGAG

HMOX1 (heme oxygenase 1) NM_002133.2 CAACAAAGTGCAAGATTCTGCCC
CTACAGCAACTGTCGCCACC

NOX2 (NADPH oxidase 2) NM_000397.3 TCACCAAGGTGGTCACTCACCC
TGCCACTCCAGCTTGGACAC

NQO1 (NAD(P)H quinone oxidoreductase 1) NM_001025434.1 CATCACAGGTAAACTGAAGGACCC
CTCTGGAATATCACAAGGTCTGCG

PGES (prostaglandin E synthase) NM_004878.3 ACGCTGCTGGTCATCAAGATG
TGGCAAAGGCCTTCTTCCGC

PSTK (phosphoseryl-tRNA kinase) NM_153336 TTTGAGGCCCAGTCTTGCTACC
GCCCAACGAATATTTCCGAGCC

RPL13a (ribosomal protein L13a) NM_012423.4 GAGGTTGGCTGGAAGTACCAGG
TGTTTCCGTAGCCTCATGAGCTG

RPS9 (ribosomal protein S9) NM_001013.4 CCATATCAGGGTCCGCAAGCA
GGCCCTTCTTGGCATTCTTCCT

SECISBP2 (SECIS-binding protein 2) NM_024077.4 TGAAGAGCCACCAGGCACAG
GCATCTGGCTGCAGTAATCCCT

SELENBP1 (selenium-binding protein 1) NM_009150.3 TTCCCTTGGAGATCCGCTTCCT
ACTGACCATGTACCTCCCTCGT

SELENOF (selenoprotein F) NM_203341.1 TGATCTTCTCGGACAGTTCAACCT
CACGGACATACTTGGACTTGAGGG

SELENOH (C11orf31, chromosome 11 open reading
frame 31; selenoprotein H) NM_170746.2 GCTTCCAGTAAAGGTGAACCCGA

TCAGGGAATTTGAGTTTGCGTGG

SELENOI (selenoprotein I) NM_033505.4 ATGCCTCAGCACCAGGTCAC
GTTCTGCGAGCTTGCTTTCCGT

SELENOK (selenoprotein K) NM_021237.3 GATGATGGAAGAGGGCCACCAG
CGCATGTCCGGTTGTCTGCT

SELENOM (selenoprotein M) NM_080430.2 TGAAGGCTTTCGTCACGCAG
AGTGGGATGCGCTCTAGTTCCT

SELENON (selenoprotein N) NM_206926.2 TGTGATGTTCCGGATCCATGCC
TGTGGTTGGGCACGAAGAGC

SELENOO (selenoprotein O) NM_031454.1 TGACGCCGAGTTCCAAAGGCA
TTGTGAAGTCGGCACCGGTCAG

SELENOP (selenoprotein P) NM_005410 GAAACTCCATCGCCTCATTACCAT
CTGCCTATGCTGACCCTTGTG

SELENOS (selenoprotein S, VIMP) NM_203472.1 GCTGCATCCTTCTCTACGTGGTC
CAACAACATCAGGTTCCACAGCA

SELENOT (selenoprotein T) NM_016275.3 CGATCATAGCACCACCTATCAGCA
GAGCCTGCCAAGAAAGCATCTG

SEPHS2 (selenophosphate synthetase 2) NM_012248.4 GACGGTTTGGGCTTCTTCAAGG
TCCACAATGCCAACGATCCAC

SEPSECS (sep (o-phosphoserine) tRNA:sec
(selenocysteine) tRNA synthase) NM_016955.3 CTAGTGCTCCCGCTTATTCGCC

CTGGACACTTGCCCTTCTCCAG

SLC7A11 (solute carrier family 7 member 11) NM_014331.3 TGCTCTTCTCTGGAGACCTCGAC
ACAGTGGCACCTTGAAAGGACG

SOD1 (superoxide dismutase 1) NM_000454.4 TACAGCAGGCTGTACCAGTGCA
TCGGCCACACCATCTTTGTCAG

SRXN1 (sulfiredoxin 1) NM_080725.1 CTCAGTGCTCGTTACTTCATGGTC
GTTTGGCCCTTCCTCTTCCTCC

TNFA (tumor necrosis factor α) NM_000594.2 AGCCCATGTTGTAGCAAACCCT
GGAGTAGATGAGGTACAGGCCC
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Table 1. Cont.

Gene RefSeq-ID Sequence (5′→3′)

TXAS1 (thromboxane A synthase 1) NM_001061.4 CCTGAAAGGTTCACGGCTGAG
CAACTTGACCTCAAGCAGCCCT

TXNRD1 (thioredoxin reductase 1) NM_182742.1 GTGTTGTGGGCTTTCACGTACTG
TGTTGTGAATACCTCTGCACAGAC

TXNRD2 (thioredoxin reductase 2) NM_006440.5 GTTCCCACGACCGTCTTCAC
GTGATAGACCTCAACATGCTCCTG

4.8. ELISA

Incubation medium from seeded cells was collected and the content of TNFα was
determined according to the manufacturer’s protocol using a microplate reader (Synergy
H1, BioTek, Bad Friedrichshall, Germany). A Human TNFα Pre-Coated ELISA Kit was
used. The incubation medium of THP-1 monocytes (DMSO control) was diluted 1:2
and for PMA-induced differentiated macrophages 1:50. A standard curve was used to
generate a four-parameter logistic curve-fit and to calculate the content of TNFα which
was normalized to the protein content of the cells.

4.9. Trace Element Analysis by Total Reflection X-ray Fluorescence (TXRF) Spectroscopy

TXRF was used to determine the intracellular levels of Se. Harvested THP-1 monocytes
and macrophages were collected and lysed as described in Section 4.6. Cellular debris was
removed by centrifugation for 10 min at 4 ◦C and 15,000× g. Trace elements analysis was
performed using the supernatant (S2 Picofox™, Bruker Nano GmbH, Berlin, Germany),
and 1 mg/L yttrium was used as internal standard. Ten microliters of each sample was
placed on a siliconized quartz glass carrier and dried for 30 min at 40 ◦C. Samples were
measured randomized in triplicate for 1000 s respectively. The Se content was normalized
to the protein content of the samples.

4.10. GSH Assay

For the measurement of the total GSH content, cells were harvested, resuspended
in 150 µL ice-cold 10 mM HCl, and lysed by ultrasonic treatment (80% amplitude, 0.5 s).
Cellular debris was removed by centrifugation for 30 s at 8000× g at room temperature.
Then, 30 µL (w/v) 5% SSA was added to the supernatant, incubated for 10 min, and
centrifuged for 15 min at 4 ◦C and 8000× g at 4 ◦C, and supernatant was used for GSH
measurement. After addition of 10 mM DTNB, the formed 2-nitro-5-thiobenzoic acid (TNB)
was measured on a microplate reader (Synergy H1) at 412 nm for 5 min with path-length
correction, as previously described [57]. BSO (0.25 mM) was used as control for GSH
depletion and added 24 h before the cell harvest. A standard curve was used to calculate
the total GSH content, which was normalized to the protein content of the samples.

4.11. Enzyme Activities

Cells were homogenized with a TissueLyser II (Qiagen, Hilden, Germany) in Tris
buffer (100 mM Tris, 300 mM KCl, pH 7.6 with 0.1% (v/v) Triton X-100, and 0.1% (v/v)
protease inhibitor) twice for 60 s at 30 Hz and centrifuged for 10 min at 4 ◦C and 14,000× g.
The enzymatic activity was normalized to the protein content of the samples.

NQO1 activity was measured via menadione-dependent reduction of MTT as pre-
viously described [58]. Briefly, cell lysates were mixed with reaction buffer. Incubation
mixtures contained 25 mM Tris, pH 7.4, 0.665 mg/l BSA, 0.01% Tween® 20, 5 µM FAD,
1 mM D-glucose-6-phosphate, 35 µM NADP, 0.72 mM MTT, 0.3 U/mL glucose-6-phosphate
dehydrogenase, and 50 µM menadione. Absorbance was measured at 590 nm for 5.5 min
using a microplate reader (Synergy H1) with path-length correction. Differences between
the MTT reduction rates with and without dicumarol (final concentration 60 µM in phos-
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phate buffer (1 mM KH2PO4, pH 7.4 and 0.1% DMSO) were used for calculation of NQO1
activity (ε590 nm = 11.961 mM−1 × cm−1). Data are given as mUnit(mU)/mg protein.

GPX activity was measured by a GR-coupled test with NADPH consumption using
H2O2 as substrate. Briefly, cell lysate was mixed with reaction buffer. Incubation mixtures
contained Tris buffer (96 mM Tris, 4.8 mM EDTA, 960 µM NaN3, pH 7.6) with 0.11% Triton
X-100, 224 µM NADPH, 3.37 mM GSH, and 78 mU/mL GR and were incubated for 10 min
at 37 ◦C. Ten microliters H2O2 (0.00375%) was added and the reaction was monitored
for 2 min at 340 nm and 37 ◦C using a microplate reader (Synergy H1) with path-length
correction. Data are given as mU/mg protein (ε340 nm = 6.22 mM−1 × cm−1).

TXNRD activity was assessed using DTNB. Cell lysates were mixed with reaction
buffer. Incubation mixtures contained 185 µL phosphate buffer (92.5 mM KH2PO4, 1.85 mM
EDTA, pH 7.4) and 15 µL DTNB (3.75 mM in DMSO)). Twenty-five microliters NADPH (fi-
nal concentration of 200 µM in phosphate buffer) was used to start the reaction, and
TNB formation was monitored at 412 nm for 5 min using a microplate reader (Syn-
ergy H1) with path-length correction. TXNRD-independent formation of TNB was de-
termined in the absence of NADPH and was subtracted. Data are given as mU/mg
protein (ε412 nm = 13.6 mM−1 × cm−1).

4.12. Solid Phase Extraction of LMs

LMs were extracted from cell culture medium as previously described [29]. Briefly,
medium was mixed with a twofold amount of ice-cold methanol containing deuterium-
labeled internal standards (200 nM d8-5S-HETE, d4-LTB4, d5-LXA4, d5-RvD2, d4-PGE2,
and 10 µM d8-AA). Proteins were precipitated at −20 ◦C overnight and clear supernatant
was collected after centrifugation (10 min, 1200× g, 4 ◦C). LMs were extracted from super-
natant as previously described [59]. Briefly, the supernatant was acidified with water, pH
3.5, and LMs were purified by solid phase extraction (Sep-Pak® Vac 6 cc 500 mg/6 mL C18;
Waters, Milford, CT, USA) using MilliQ water and n-hexane for washing steps. LMs were
eluted with methyl formate, eluates were evaporated to dryness using nitrogen (TurboVap
LV, Biotage, Uppsala, Sweden), and LMs were resolved in 100 µL methanol/water (50/50)
for UPLC-MS/MS analysis [29].

4.13. LM Analysis by UPLC-MS/MS

Separation of LMs was performed at 50 ◦C on an Acquity UPLC® BEH C18 column
(1.7 µm, 2.1 × 100 mm; Waters, Eschborn, Germany) with an Acquity™ UPLC system
(Waters) as described previously [29]. In brief, methanol-water-acidic acid was used as
mobile phase starting at a ratio of 42:58:0.01, which was gradually changed to 86:14:0.01
over 12.5 min and then to 98:2:0.01 over 3 min using a flow rate of 0.3 mL/min. LMs were
analyzed on a QTRAP 5500 ESI tandem mass spectrometer (AB Sciex, Darmstadt, Germany)
which was coupled to the LC system. After electrospray ionization operated in negative
mode, multiple reaction monitoring was performed in the negative ionization mode with
parameters adjusted as previously described [59]. External standards were used to confirm
the retention time, and calibration curves for each analyte were prepared. For quantification
of LMs, analyte levels were normalized by calculating the ratio of internal standard and
directly measured deuterium-labeled standards to account for loss of analytes during
purification and measurement, as reported previously [60], and they were normalized to
the protein content of the cells.

4.14. Statistics

Data are given as means + SD of independent experiments. The statistical analysis
was performed with GraphPad Prism 8.4.3 Software (San Diego, CA, USA) using one-way,
two-way or three-way analysis of variance (ANOVA) with Bonferroni´s post-test. Outliers
were determined by Grubbs’ test, with significance level α = 0.05. p-values < 0.05 (*), (#),
(§), (&), ($), (+); p < 0.01 (**), (##), (§§), (&&), ($$), and for p < 0.001 (***), (###), (§§§), (&&&),
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($$$), (+++) were considered as statistically significant. Figures were created with GraphPad
Prism 8.4.3 Software.
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