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Abstract: The liver-heart axis is a growing field of interest owing to rising evidence of complex
bidirectional interplay between the two organs. Recent data suggest non-alcoholic fatty liver disease
(NAFLD) has a significant, independent association with a wide spectrum of structural and functional
cardiac diseases, and seems to worsen cardiovascular disease (CVD) prognosis. Conversely, the
effect of cardiac disease on NAFLD is not well studied and data are mostly limited to cardiogenic
liver disease. We believe it is important to further investigate the heart-liver relationship because of
the tremendous global health and economic burden the two diseases pose, and the impact of such
investigations on clinical decision making and management guidelines for both diseases. In this
review, we summarize the current knowledge on NAFLD diagnosis, its systemic manifestations,
and associations with CVD. More specifically, we review the pathophysiological mechanisms that
govern the interplay between NAFLD and CVD and evaluate the relationship between different CVD
treatments and NAFLD progression.

Keywords: non-alcoholic fatty liver disease; fatty liver; cardiovascular diseases; ischemic heart
disease; atrial fibrillation; pathophysiology; metabolic syndrome; non-alcoholic fatty liver disease
diagnosis; cardiovascular diseases prognosis; cardiovascular medications

1. Introduction

Non-Alcoholic Fatty Liver Disease (NAFLD) is currently thought to cause most cases
of chronic liver disease (CLD) worldwide, accounting for as high as 75% of them in some
studies [1]. NAFLD is currently recognized as the hepatic clinico-pathological manifes-
tation of metabolic syndrome (MetS)—which also includes abdominal obesity, arterial
hypertension, atherogenic dyslipidemia, and reduced insulin sensitivity, all of which were
subsequently shown to be closely associated with NAFLD [2–4]. The prevalence of NAFLD
is on the rise, with variable estimations ranging from 20% to 50% among adults in West-
ern countries [5–7]. This rise should not be surprising, due to NAFLD association with
MetS, and the current growing epidemics of MetS in the West [8]. Further strengthening
the association with MetS, it was shown that NAFLD prevalence rises to 70–75% among
individuals with type 2 diabetes (T2DM) and up to 95–99% in those with obesity [9,10].
Although NAFLD was initially identified as a fatty liver disease arising in the absence of
significant alcohol intake, it has subsequently been increasingly correlated to a glucose and
lipid metabolic derangement. Accordingly, an expert panel recently proposed to change
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nomenclature from NAFLD to ‘metabolic associated fatty liver disease’ (MAFLD) [11]. The
relationship of NAFLD with visceral obesity and alterations in glucose (insulin resistance,
diabetes mellitus) and lipid (hypertriglyceridemia, low HDL cholesterol, hypercholes-
terolemia) [12] metabolism implicates this disease in a large range of clinical conditions
relevant not only to liver disease, but also cardiovascular disease (CVD), diabetes, and
cancer, making NAFLD/MALFD an emerging topic in clinical medicine.

2. NAFLD Diagnosis: Current Approaches

NAFLD is a broad term comprising a wide spectrum of liver diseases, from simple
steatosis or liver fat accumulation—which usually occurs early in the disease course—to
more advanced stages of hepatic disease, including non-alcoholic steatohepatitis or NASH,
cirrhosis, and liver cancer. Simple steatosis can progress to inflammation and necrosis
(i.e., to NASH), and subsequently evolve into cirrhosis and hepatocellular carcinoma [13].
The diagnosis of NAFLD is that of exclusion and requires identification of hepatic steatosis
by histology (defined as liver fat infiltration comprising >5% of hepatocytes) or imaging
(bright liver echo-pattern), and exclusion of secondary causes of CLD, such as alcohol
(<30 g/day for men and <20 g/day for women), congenital or autoimmune diseases,
viruses, and hepatotoxic drugs [14].

The diagnosis of NAFLD can be achieved by several techniques. Although liver
biopsy and demonstration of steatosis and other histology hallmarks remain the gold
standard for NAFLD diagnosis, other less-invasive techniques such as ultrasonography
(US), computed tomography (CT), and magnetic resonance imaging are widely utilized
clinically because of a better safety profile and availability, lesser cost, and good sensitivity
and specificity compared to the gold standard [13,15,16]. Moreover, several European
associations, including the European Association for the Study of the Liver, recommend
US as the first-line diagnostic procedure for NAFLD in most patients [13]. However,
accounting for the limitations of each modality is crucial for proper NAFLD diagnosis.
For instance, the sensitivity of US for NAFLD decreases when <30% of hepatocytes are
involved, but this modality may also lose sensitivity in morbidly obese individuals [15,16].

Several newer noninvasive approaches have been investigated for the diagnosis of
NAFLD, and some of them have been introduced in clinical practice (Table 1).

Table 1. Current strategies to diagnose and stage NAFLD.

Test Type Invasiveness Accuracy ˆ in
Steatosis Detection

Liver Fat
Detection

Liver Fibrosis
Staging Reference

Liver biopsy Histology +++ >99% 3 3 [17]

MRI-PDFF Imaging - 98% 3 3 [18]

US Imaging - 91% *, 93% ** 3 3 [19]

DGE-MRI Imaging + 83% *, 94% *** 3 3 [20]

CT Imaging + 67% *, 90% *** 3 3 [20]

US-FLI Imaging - 90% 3 5 [21]

Fatty Liver Index
Score based on

biochemical
parameters

- 84% 3 5 [22]

NAFLD Fat Score
Score based on

biochemical
parameter

- 76% 3 5 [23]

CAP Imaging - 76% 3 5 [24]

Fib-4
Score based on

biochemical
parameters

- 90% 5 3 [25]
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Table 1. Cont.

Test Type Invasiveness Accuracy ˆ in
Steatosis Detection

Liver Fat
Detection

Liver Fibrosis
Staging Reference

VCTE Imaging - 89% 5 3 [26]

NAFLD Fibrosis Score
Score based on

biochemical
parameters

- 86% 5 3 [27]

APRI
Score based on

biochemical
parameters

- 48%, 66% 5 3 [28]

APRI, AST to Platelet ratio index; CT, Computed tomography; DGE-MRI, dual gradient echo magnetic resonance imaging; US, Ultrasonogra-
phy; MRI-PDFF, MRI-based proton-density fat fraction; US-FLI, ultrasonographic fatty liver indicator; VCTE, Vibration-controlled transient
elastography; CAP, Fibroscan Controlled Attenuation Parameter. ˆ Accuracy was calculated as Accuracy = ((Sensitivity) * (Prevalence)) +
((Specificity) * (1 − Prevalence)) based on data derived from the referenced publications. * detection of ≥5% of steatosis ** detection of
≥10% of steatosis *** detection of ≥30% of steatosis.

The fatty liver index (FLI) [22] is calculated based on levels of triglycerides, body
mass index (BMI), waist circumference, and γ-glutamyl-transpeptidase. A FLI < 30 rules
out NAFLD whereas a FLI ≥ 60 rules in hepatic steatosis. Scores between 30 and 59 are
considered undetermined. The ultrasound fatty liver index (US-FLI) [29] is a different
score based on US parameters: a score > 2 suggests the presence of steatosis. Another
accurate method to quantify hepatic steatosis is represented by assessment of the controlled
attenuation parameter (CAP) on hepatic Fibroscan [30]. In NAFLD, Fibroscan has also
been used to assess liver stiffness, a measure of liver fibrosis, by transient elastography
(TE). The NAFLD Fat Score is another score that can be used to predict NAFLD and liver
fat content (AUROC = 0.88) [23]. It is based on presence of MetS, T2DM, fasting serum (fs)
insulin, fs-aspartate aminotransferase (AST), and AST/alanine aminotransferase ratio.

Staging of fibrosis in NAFLD can also be accurately estimated using the NAFLD
fibrosis score (NFS) [27] calculated on the combination of several parameters: age, BMI,
altered glucose metabolism, AST/ALT ratio, platelet count, and albumin levels. Significant
liver fibrosis (equivalent to F3-F4 fibrosis on liver biopsy) is highly suspected when the NFS
is >0.675. This measurement needs a diagnosis of NAFLD done with other tests/assays.
Two other methods have been used to assess probability of cirrhosis in NAFLD, including
the AST to Platelet ratio index (APRI test) [31,32] and the FIB-4 test [25,33].

3. NAFLD as a Systemic Disorder

As numerous compelling evidence shows NAFLD is a systemic disease, rather than
confined to the liver, the increasing clinical and economic burden of NAFLD stems from
both hepatic and extrahepatic complications. The hepatic complications of NAFLD include
NASH, cirrhosis, and hepatocellular carcinoma, and hence it currently represents the
second main indication for liver transplantation, projected to become the main one over the
next ten years [34,35]. NAFLD affects many other systems and has been shown to increase
the risk of developing a number of diseases, including many cardiovascular diseases (CVD),
as well as T2DM, chronic kidney disease, and colorectal and other cancers [36–41].

CVDs represent the main cause of mortality in patients with NAFLD, accounting for
40–45% of total deaths, followed by extrahepatic cancers (20%) and liver-related complica-
tions (10%) [36,42–45].

4. NAFLD and Cardiovascular Disease: Current Understanding

The relationship between NAFLD and CVD is complex (Figure 1). For instance,
NAFLD is associated with many CVDs and the total CVD risk is almost double in patients
with NAFLD compared to those without [46]. Moreover, as both conditions share many risk
factors, most notably T2DM, dyslipidemia, and obesity, it could be conferred that the same
factors account for both diseases and the association being merely a result of these common
risk factors [47,48]. However, there is ample evidence showing that a direct mechanistic
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relationship exists between NAFLD and CVD, and that the former is an independent risk
factor for the latter [36,41,42,46,48–50]. Due to the association with CVD, recent European
clinical practice guidelines mandate screening of the CV system in all patients with NAFLD,
at least by detailed risk factor assessment and a comprehensive clinical exam [13].

Figure 1. Summary of Mutual Exacerbation of Hepatic and Cardiac Disease Severity. Nonalcoholic
fatty liver is associated with several cardiac diseases, including heart failure, cardiomyopathy,
ischemic heart disease, and arrythmias. In contrast, there is a paucity of studies evaluating cardiac
diseases leading to hepatic dysfunction.

A number of studies suggest NAFLD association with subclinical and clinical CVD,
both closely related to atherosclerosis and inflammation. Subclinical CVD is commonly
inferred from carotid intima-media thickening (CIMT), increased coronary calcium score
(CAC), and abdominal aortic calcification (AAC), whereas clinical CVD includes most
commonly ischemic heart disease (IHD) and atrial fibrillation (AF) [41]. In one metanalysis
with 3497 subjects, NAFLD was found to be significantly associated with CIMT and NAFLD
patients demonstrated a 13% increase in CIMT compared to controls [51]. Similarly, in a
large cohort study with 8020 adult men without carotid atherosclerosis (CA) at baseline
followed up for eight years, NAFLD regression was associated with a decreased risk of
subclinical CA development (HR 0.82) compared to those with persistent NAFLD [52]. The
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authors explained this association by metabolic factors, which could mediate the effect
of NAFLD [52].

Several studies demonstrated an association between NAFLD and CAC, thus implying
an increased risk of coronary events in patients with NAFLD [53–60]. In one meta-analysis
of 16 cross-sectional studies with 16,433 NAFLD patients and 41,717 controls, it was shown
that NAFLD was significantly associated with CAC > 0 and CAC > 100 independent of
traditional risk factors [61]. In a second study on 4731 participants with no history of CVD
or liver disease and approximately 4 years of follow-up, NAFLD was shown to be associated
with CAC development independent of metabolic or CV risk factors [62]. These associations
were further established in a recent large meta-analysis on 85,395 participants (including
29,493 patients with NAFLD), where NAFLD was associated with an increased risk of
CIMT (OR 1.74), arterial stiffness (OR 1.56), CAC (OR 1.4), and endothelial dysfunction
(OR 3.73) [42].

Clinical CVD, most importantly IHD, is the leading cause of death in patients with
NAFLD [45,63]. NAFLD patients seem to be at a higher risk of developing IHD [56].
In one study with 445 patients, high risk coronary plaques—assessed by coronary CT
angiography—were more likely to occur in patients with NAFLD compared to controls
(59.3% vs. 19.0%, respectively) [56]. Similar results were observed in other studies, which
concluded higher prevalence of coronary plaques among NAFLD patients independent
of other metabolic risk factors [64–66]. A striking finding was the observation that higher
NAFLD severity directly correlated with higher CVD risk [67]. In one study involving
360 patients with ST-segment elevation myocardial infarction (STEMI), higher NAFLD
grade (as assessed by liver US) correlated with higher in-hospital and three-year mortal-
ity rates, and the authors concluded recommending NAFLD screening in patients with
STEMI [68]. In another study examining 186 non-diabetic patients with STEMI undergone
percutaneous coronary intervention (PCI), NAFLD was associated with higher odds of
myocardial reperfusion failure, no ST-segment resolution, and higher in hospital major
adverse cardiac events (MACE) [69].

AF is the most common sustainable cardiac arrhythmia [36]; the health and economic
burden of atrial fibrillation is mainly due to its association with stroke and increased
mortality [50]. AF was shown in many studies to be associated with NAFLD [70–73]. For
instance, Targher et al. demonstrated, over a 10-year follow-up, an increased incidence
of AF in patients with T2DM and NAFLD compared to patients with T2DM without
NAFLD (OR 4.49) [72]. These results were confirmed by a cohort study by Käräjämäki et al.
involving 958 hypertensive patients, where they found higher odds of developing AF in
patients with NAFLD, independent of T2DM (adjusted OR 1.88) [74].

Several studies suggested NAFLD association with other CVD, including structural
and functional cardiac dysfunction and heart valve sclerosis [75]. Some studies reported
that NAFLD patients had thicker left ventricular walls during both systole and diastole [76],
lower early diastolic relaxation velocity and higher left ventricle (LV) filling pressures [77]
and greater LV myocardial mass [78] than patients without NAFLD. In one study assess-
ing cardiac function of 606 T2DM patients according to NAFLD presence, LV diastolic
dysfunction was significantly more prevalent in those with NAFLD (59.7% vs. 49%),
with stronger association in patients with liver fibrosis independent of insulin resistance
and other metabolic risk factors [79]. Moreover, several studies indicated an association
between NAFLD and valvular heart disease [80], most commonly aortic valve sclerosis
(AVS). In one study with 2212 participants, it was found that patients with NAFLD had
32% higher odds of having AVS than patients without NAFLD, after adjusting for major
confounders [81]. This finding was also replicated in T2DM patients with no history of
liver or cardiac disease [82,83].

5. NAFLD and Cardiovascular Disease: Pathogenic Mechanisms

Data on possible mechanisms underlying the interplay between liver and heart in NAFLD
are limited and still not completely understood (Figure 2) [84]. Endothelial damage was
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demonstrated to be an early step towards atherosclerosis, and a number of studies showed that
NAFLD is associated with endothelial dysfunction [85,86]. Possible mechanisms for endothelial
dysfunction include increased levels of asymmetric dimethyl arginine (ADMA), which is an
endogenous antagonist of nitric oxide synthase, which in turn is protective against CVD [87,88].
Moreover, levels of endothelial progenitor cells (EPCs)—which participate in endothelial repair—
were shown to be reduced, and attenuated in function, in NAFLD [89].

Figure 2. Summary of suggested pathophysiological mechanisms underlying the cardio hepatic
interactions in NAFLD, ischemic hepatitis and congestive hepatopathy with cardiovascular diseases.
ADMA, asymmetric dimethyl arginine; CCL3, chemokine ligand 3; CO, cardiac output; CRP, C-
reactive protein; EPCs, endothelial progenitor cells; HDL, high-density lipoproteins; HF, heart failure;
HTN, hypertension; IL-1, interleukin 1; IL-6, interleukin 6; LDL, low-density lipoprotein; M1/M2,
macrophage phenotype 1/2 ratio; NAFLD: non-alcoholic fatty liver disease; OxLDL oxidized low-
density lipoprotein; sICAM, soluble intracellular adhesion molecule; TG, Triglycerides; TNF-α, tumor
necrosis factor α; VLDL, very low-density lipoproteins.
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In addition, NAFLD is associated with increased oxidative stress and altered lipid
profile, which in turn may contribute to CVD development [84,90]. It was shown that
patients with NAFLD have elevated levels of homocysteine [91–93]. Homocysteine, in turn,
triggers oxidative stress and endothelial dysfunction, impairs redox status, and enhances
platelet activation, all contributing to CV effects [94]. NAFLD severity associates with the
extent of serum lipid profile changes, with greater alterations in NASH [84]. Patients with
NAFLD have abnormally high triglyceride (TG), very low-density lipoprotein (VLDL),
and low-density lipoprotein (LDL) levels, as well as decreased high-density lipoprotein
(HDL) levels [95–97], a combination resulting in more atherogenic lipid ratios [98]. Similar
but more pronounced reduction in HDL and increase in LDL levels were found in NASH,
as compared to NAFLD, which hints at similar CV risks [99]. In addition to their levels,
lipid composition, subclass, surface apolipoproteins, and phospholipids are important
mediators of CV risk [100] and NAFLD severity [97]. Individuals with NASH were shown
to have lower levels of larger LDL (LDL1) but increased small dense LDL (LDL3 and LDL4),
as compared to those with NAFLD [97].

Insulin resistance, which associates with both CVD and NAFLD, comprises the ability
of adipocytes to store fat, resulting in release of free fatty acids into the circulation, and
thus exposes the liver to higher levels of free fatty acids [101]. These fatty acids are taken
up by the hepatocytes by FATP5 and CD36 receptors, which also get upregulated in obe-
sity [102,103], leading to higher triglyceride synthesis and impaired insulin signalling [104].
Hepatocytes contribute themselves to steatosis accumulation by de novo lipogenesis (DNL),
the enzymes of which are upregulated by insulin and glucose [105]. DNL can contribute
as much as 25% of the hepatic lipid stores and is believed to be an important contributor
of NAFLD development [106,107]. Specifically, 40% of the lipid that builds up in steatosis
derive from dietary sugar and fat with the remaining 60% deriving from dysfunctional
adipose tissue [106].

The liver is an essential player in systemic inflammation and immunity. For instance,
it harbors the largest number of resident macrophages along with a high number of sev-
eral other immune cells [108]. It also generates and interacts with various inflammatory
hormones/cytokines secreted from places like visceral adipose tissue, macrophages, and
endothelial cells, which are associated with CVD initiation and progression [109,110].
Higher pro-inflammatory states associate with worse metabolic, histological, and hemody-
namic features in NAFLD [111]. C-reactive protein (CRP), an inflammatory marker mostly
produced in the liver, has been implicated as an independent risk factor for CVD in many
studies [112]. Compared to patients with no steatosis, patients with NASH were found to
have significantly higher levels of CRP, fibrinogen, and plasminogen activator inhibitor-1
(PAI-1) activity. NASH severity on histology correlated independently of other variables
with levels of these markers [113].

Diseased liver was shown to secrete increased levels of cytokines systemically, which
are associated with CVD and drive systemic inflammation [84,114]. Indeed, patients with
NAFLD were shown to have increased markers of systemic inflammation including inter-
leukin 6, high sensitivity CRP, interleukin 1b, tumor necrosis factor [TNF]-α, chemokine
[C-C motif] ligand 3, soluble intracellular adhesion molecule 1, and macrophage phenotype
1/2 ratio [M1/M2] [111,115–118]. Systemic inflammation increases CVD risk by causing
endothelial dysfunction and oxidative stress, and altering vascular tone [114,119]. In one
study, NASH patients were found to have increased expression of several genes linked to
inflammation and plaque formation, as compared to simple steatosis [120].

Overall, these studies show that the observed systemic inflammation and immune
dysfunction are directly contributed to by the liver, and this chronic inflammation drives
CVD initiation and/or progression.

Similarly, the liver is a very important, if not exclusive, source of both pro- and
anticoagulant factors [121]. Several studies demonstrated increased pro-coagulant and
decreased anticoagulant factor production in NAFLD [122,123], which is one mechanism
postulated to link CVD and NAFLD. Kotronen et al. demonstrated that the activity of
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factors VIII, IX, XI, and XII were increased in patients with NAFLD, independent of other
variables like BMI and age, as compared to those without NAFLD [122].

Furthermore, several studies investigated plasminogen inhibitor activator 1 (PAI-1)
level, which is secreted by the liver and functions to inhibit fibrinolysis and thus activate
the coagulation system, leading to an increased atherosclerotic state [123]. Liver steatosis
was shown to be an independent determinant of PAI-1 levels, with levels of this factor pro-
gressively rising with increasing degrees of steatosis [124]. Another study by Verrijken et al.
showed that fibrinogen, factor VII, von Willebrand factor and PAI-1 were increased, while
antithrombin III was decreased. Interestingly, PAI-1 levels were significantly correlated
with histological severity of NAFLD [125]. In another study by Song et al., the authors
suggested a direct association between PAI-1 levels and coronary heart disease risk [126].
Increased pro-coagulant and decreased anti-coagulant factors boost risk for atherosclerosis
and CVD [127].

Recent evidences point to a significant role of the intestinal microbiota in NAFLD
pathogenesis and progression. In their study, Loomba et al. analyzed the gut microbiota
of 86 patients with biopsy-proven NAFLD and demonstrated a positive association of
specific bacterial species, such as Proteobacteria phylum, with progression of NAFLD from
mild/moderate to advanced fibrosis. They also used data to construct a robust model that
was able to accurately (AUROC 0.936) diagnose advanced fibrosis [128]. Other studies
similarly demonstrated increased Proteobacteria phylum with increased Enterobacteriaceae
and decreased Rikenellaceae and Ruminococcaceae families in patients with NAFLD or
NASH compared with healthy controls [129]. Moreover, the gut microbiome can systemi-
cally secrete several molecules such as secondary bile-acids, trimethylamine (TMA), and
short chain fatty acids [84]. These molecules were demonstrated to affect energy balance
and insulin sensitivity and thus could affect both NAFLD and CVD [130]. A clearer link
is found between CVD, NAFLD, and trimethylamine-N-oxide, which is thought to be a
pro-atherogenic compound [131,132]. Furthermore, incretins such as glucagon like peptide
1 (GLP-1) are hormones secreted by the gastrointestinal tract and function in regulating
postprandial glucose metabolism [84]. The cardioprotective effects of GLP-1 are well
described [133] and GLP-1 agonists such as exenatide were shown to improve NASH,
vessel inflammation, and plaque size [134]. Despite these results, large discrepancies are
found with divergent results for phylum, family, genus, and species across many studies
investigating microbiome and NAFLD [129].

Genetic polymorphisms were also studied as predisposing factors for NAFLD, and sev-
eral alleles were found to be associated with NAFLD and the progression of hepatic fibrosis.
In one meta-analysis by Singal et al., a single nucleotide polymorphism—PNPLA3—was
associated with increased risk of fibrosis (OR 1.23) and HCC (OR 1.67) in patients with
NAFLD [135]. In another study, Liu et al. demonstrated an association between NAFLD
and the stage of hepatic fibrosis with TM6SF2 allele, independent of PNPLA3 [136]. Other
genetic variants including MBOAT7 and glucokinase regulatory protein were suggested to
be associated with increased risk of steatosis, NASH and increased fibrosis stage [137,138].
Much less is known regarding the association of these alleles with CVD. In one twin study
investigating heritability of NAFLD and associated CVD, a correlation was established be-
tween hepatic steatosis and monozygotic, rather than dizygotic twins, even after adjusting
for other possible confounders [139]. However, another twin study failed to demonstrate
heritability of NAFLD or its associated CVD [140]. Moreover, in several studies, mutation
in TM6SF2 was associated with LDL, VLDL, and TG reduction [141–145]. Indeed, in a
recent large exome-wide association study including >300,000 individuals, both polymor-
phisms in TM6SF2 and PNLPA3 were associated with lower lipid levels and a lower risk
of CAD, but an increased risk of fatty liver and T2DM [146]. A finding also confirmed
with a 4081 adult cohort followed up for 11.3 years, where PNPLA3 allele was found to
be associated with a fourfold increase in the hazard of liver disease-related mortality but
reduced risk of death from CVD and overall mortality [147].
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6. Nonclinical Experimental Studies on CVD and NAFLD Association

The associations between heart disease and metabolic steatosis were also demonstrated
in animal models. In rodents, a high-fat diet resulted in hepatic steatosis and up-regulation
of NF-kB, which increased hepatic production of inflammatory cytokines such as IL-6,
IL-1β, and TNF-α, along with activation of Kupffer cells and macrophages [148]. The role
of TNF-α in NAFLD initiation and progression was also investigated in mice. For that
purpose, Kakino et al. analyzed NAFLD progression in TNF-α knockout NAFLD mice
models, where they found that these mice significantly regressed steatosis and fibrosis
and improved glucose tolerance at 20 weeks, as compared to wild NAFLD mice [149].
Moreover, the effect of IL-1β on steatosis was also studied, where in one study, IL-1
depletion from liver Kupffer cells in obese mice significantly reduced hepatic steatosis,
triglyceride levels, and lipogenic enzyme expressions with similar results achieved with
utilizing IL-1 receptor antagonists [150].

Moreover, and similar to data from clinical studies, plasma PAI-1 levels in mice
with NAFLD were shown to be significantly elevated and associated with the degree of
steatosis and hepatic expression of PAI-1 [151]. It was also shown that PAI-1 modulates the
development of atherosclerosis in mice [152,153] and that obese mice had around 2-fold
higher PAI-1 liver expression than lean mice [154]. Other mechanisms of cardiac disease in
NAFLD spectrum includes changes in collagen isoforms expression in the heart. One study
demonstrated that cirrhotic rats had increased type 1 collagen content, leading to increased
ventricular stiffness and diastolic dysfunction, as compared to sham animals [155].

The effect of some medications was also investigated in animals with steatosis. In
one such study, angiotensin-II receptor blocker (ARB) Losartan’s effect was studied in
mice models of NASH. Results showed that after eight weeks of treatment, ARB inhibited
liver fibrosis development along with suppression of activated hepatic stellate cells and
TGF-β and also suppression of TLR4 and NF-κB expressions [156]. In another study,
the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) was investigated in mice
NASH models. After six months of treatment, mice who received Aspirin had significantly
reduced steatosis, and all four tested NSAIDs (meclofenamate, mefenamate, flufenamate,
and aspirin) were able to stop steatosis progress to steatohepatitis [157].

7. Effect of Cardiovascular Diseases and Their Treatments on NAFLD

Emerging data on the interplay between NAFLD and CVD show a complex two-way
relationship between the two conditions [158–161]. On one hand, and as previously stated,
NAFLD was suggested to be a major risk factor for many CVD [44,45,52,66]. On the other
hand, other studies investigated the reverse relationship: the effect of cardiac pathology,
mainly acute and chronic heart failure, on hepatic disease [158–161]. Liver disease caused
by heart failure includes congestive hepatopathy, or chronic hepatic passive congestion,
and cardiogenic ischemic hepatitis, a rapid and acute cardiogenic liver injury [159].

Due to the strong association between NAFLD and CVD, and the increased risk of
mortality from CV events of patients with NAFLD, a number of primary and secondary
prevention strategies were recommended by the American College of Cardiology, the
American Heart Association, the European Association for the Study of the Liver, and the
Italian Association for the Study of the Liver. Primary prevention strategies for NAFLD also
target the traditional risk factors for CVD: healthy dietary pattern, moderate or vigorous
exercise, and optimal body weight achievement [13,162,163].

Lifestyle modifications remain a cornerstone in both the treatment of NAFLD and
the prevention of CV complications, considering that there is a lack of definitive treat-
ments [164]. For instance, in one prospective study on 293 patients with NASH, lifestyle
modifications that are beneficial for CVD (decrease in calorie intake and increase in exercise)
achieved regression of fibrosis and resolution of steatohepatitis in 19% and 25% of patients,
respectively [165]. To date, a number of drugs have been studied as possible treatments of
NAFLD and secondary prevention of CV complications [164]. For example—whose CV
benefits are clearly established—were shown to be inversely correlated with NAFLD and
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liver fibrosis (OR 0.57 and 0.47, respectively) [166]. In another study with 1600 patients
over three years, atorvastatin was shown to improve liver function tests and decrease
cardiovascular events (from 10 to 3.2 events per 100 patient-years) in NAFLD patients who
took it compared to those who did not [167].

Other drugs including metformin, thiazolidinediones (TZD), and aspirin have been
investigated as potential NAFLD treatments. In one meta-analysis of randomized con-
trolled trials (RCTs) involving a total of 417 participants, metformin was shown to improve
liver function in patients with NAFLD, but failed to significantly improve histological
response [168]. Moreover, metformin was shown to be significantly associated with weight
loss, improved insulin sensitivity [169] and lipid profiles (decreased LDL and increased
HDL levels) in NAFLD patients [170,171], which might in turn decrease the CV risk related
to NAFLD.

In another meta-analysis including 8 RCTs and a total of 516 patients evaluating TZD
effect on histology of biopsy-proven NASH, TZD treatment (5 RCTs evaluating pioglitazone;
3 evaluating rosiglitazone) was associated with improved fibrosis (OR 3.15) and NASH
resolution (OR 3.22)—a trend seen in patients with or without T2DM [172]. However, TZD
therapy was associated with weight gain and limb edema [169,172], and because of the
short duration of the trials, there was no report of congestive heart failure or increased CV
mortality [169]. RCTs on TZD therapy, in general, had small sample sizes, short duration,
and evaluated the impact of TZD on histological rather clinical response [172,173].

In a recent prospective cohort study with 361 adults with biopsy-confirmed NAFLD,
with nine-year follow-up, daily aspirin use was associated with significantly lower odds
for NASH (OR 0.68) and fibrosis (OR 0.54), with greatest benefit with at least four years of
aspirin use—an association not seen with other non-aspirin NSAIDs [174]. Furthermore,
a cross-sectional study including 11,416 patients showed an inverse correlation between
regular aspirin use (defined as ≥15 times in the prior month) and prevalent NAFLD
(OR 0.62), although this was limited to older men (>60 years) [175]. Aspirin, and not
ibuprofen use, showed association with lower indices of liver fibrosis among adults with
chronic viral hepatitis, suspected alcoholic liver disease, and NAFLD [176]. The suggested
mechanisms of action of platelets in NAFLD stem from the growing evidence of the active
role of platelets in liver disease and inflammation [177–179]. Indeed, in a model of viral
hepatitis, activated platelets were found to contribute to cytotoxic T-lymphocyte-mediated
liver damage [180,181]. Moreover, blocking platelet activity with drugs such as aspirin or
clopidogrel hampered T cell influx and subsequent liver damage and tumorigenesis in viral
hepatitis [182]. Another recently suggested role for platelet inhibition by aspirin in NAFLD
is activation of the PPARδ-AMPK-PGC-1α pathway, which in turn inhibits lipid synthesis
and elevates catabolic metabolism, and modulation of mannose receptor and CCR2 in
macrophages, all of which are suggested to ameliorate NAFLD and atherosclerosis [183].
Despite the favorable results these studies show, further investigations with larger sample
sizes are required to assess the impact of these drugs, among others, on NAFLD inception
and progression.

Another interesting topic to be addressed is the effect of newer anti-diabetes and
anti-hypertensive drugs on NAFLD inception or progression, with or without concomitant
CVD. GLP-1 receptor agonists (GLP-1Ras) and Renin-Angiotensin-Aldosterone System
Inhibitors (angiotensin converting enzyme inhibitors (ACEi) and angiotensin receptor
blockers (ARBs)) were investigated as potential treatments for NAFLD. Early studies
demonstrated decreasing and normalizing AST levels in T2DM patients receiving exe-
natide with elevated AST levels at baseline, compared to those who did not receive it [184].
Recent meta-analyses showed association of GLP-1Ras, mainly exenatide and liraglutide,
with reduced body mass index (BMI) and waist circumference (WC) [185,186], and liver
fat fraction [185]. Moreover, in subgroup analyses, patients receiving exenatide had im-
provements in liver enzyme levels (AST and ALT) [185]. In a recent clinical trial, the LEAN
(Liraglutide Efficacy and Action in NASH) by Armstrong et al., 52 overweight patients
with NASH were randomized to receive liraglutide or placebo (26 in each group). The
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results of this small pilot study showed that patients in the experimental treatment arm
had 4.3 times higher chance of histologically-proven NASH resolution [187].

SGLT2 inhibitors are another class of diabetes and CVD drugs with recent implica-
tions in NAFLD treatment. In one phase III randomized controlled trial by Frías et al.,
695 patients with T2DM were randomized to receive exenatide plus placebo, dapagliflozin
plus placebo or a combination of the two drugs and followed up for 28 weeks. The results
of this study showed that all groups had a decrease in the traditional CV risk factors, such
as blood pressure, HbA1c and glucose levels, that were more pronounced and superior
in the group receiving both drugs [188]. A recent post hoc analysis of the same study
evaluated the effects of the tested therapies on non-invasive markers of hepatic steatosis
(FLI, NAFLD Fat Score, FIB-4 index, NAFLD Fibrosis Score and liver enzymes) and found
that both drugs had stronger effects than each drug alone in ameliorating markers of
hepatic steatosis and fibrosis in patients with T2DM [189]. Another study showed that
NAFLD patients with T2DM who received dapagliflozin alone had a significant decrease in
CAP, liver stiffness, and AST and GGT levels compared with controls [190]. Other studies
also demonstrated the potential of dapagliflozin monotherapy to reduce liver fat assessed
by MRI, liver injury biomarkers such as enzyme levels [191], and achieve histological
improvement with fibrosis regression [192] in NAFLD patients with T2DM.

RAAS activation was shown to be upregulated in NAFLD [193] and to play a role
in development of inflammation and insulin resistance [194], both of which are possible
risk factors for NAFLD. Pellusi et al. studied the effect of ACEi and ARBs in an observa-
tional cohort of 118 diabetic patients with a median follow-up of 36 months. The authors
found that treatment with ACEi or ARBs was associated with decreased histological fi-
brosis progression [195]. Other studies employing ARBs found improvement in both
AST levels and histological stage of patients with NAFLD [196,197]. Moreover, authors
investigated the role of selective mineralocorticoid receptor (MR) antagonists, such as
spironolactone and eplerenone. Indeed, some clinical trials found that combined low-dose
spironolactone plus vitamin E decreased NAFLD liver fat score, an index of steatosis,
along with insulin levels and homeostasis model assessment of insulin resistance (HOMA-
IR) [198,199]. In addition, eplerenone was suggested to prevent NASH development and
improve metabolic abnormalities in mice by inhibiting inflammatory responses in both
Kupffer cells and macrophages [199,200].

Beta blockers (BB)—a heterogeneous class of drugs—are commonly used for multi-
ple CVD and other medical indications. BB are known to worsen metabolic parameters:
increase weight [201], fasting glucose levels, TG, LDL, and decrease HDL and energy
expenditure [202–209] with most of these adverse events observed with the conventional
non-selective BB with no intrinsic sympathomimetic activity [210,211]. However, these
adverse metabolic side-effects were not shown in newer generation BB with vasodilator
properties such as carvedilol and nebivolol [212,213]. The role of BB in NAFLD remains
unclear and inconclusive due to scarcity of data. In one study on mice as NASH models,
propranolol seemed to enhance liver injury as evident by higher necrosis scores in mice
that took it and activate the cell-death pathway by increasing the release of lactate dehydro-
genase, FAS-L, and TNF-α [214]. In another study on rats as NAFLD models, carvedilol
was shown to improve liver enzymes, lipids, and histology [215].

Bariatric surgery—an effective treatment strategy for severe obesity—has been shown
to cause a significant decrease in liver transaminases and histology improvement in NAFLD
patients [216]. Moreover, in one prospective study on 109 morbidly obese patients with
NASH who underwent bariatric surgery, NASH disappeared in 85% of them and levels of
liver transaminases significantly decreased [217]. Moreover, bariatric surgery was shown to
improve the traditional CV risk factors. In a systematic review of 73 studies including a total
of 19,534 patients with about 58 months of follow-up, 73% of subjects had improvement in
T2DM, 65% in hyperlipidemia, and 63% in hypertension [218].

Vitamin E was also studied as a potential treatment for NAFLD due to its anti-oxidative
properties. In one meta-analysis of three trials analyzing vitamin E supplementation
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in 242 patients with NASH, vitamin E use was associated with improved ALT levels,
steatosis, lobular inflammation, and ballooning but not fibrosis of the liver [219]. However,
vitamin E supplementation was shown in other studies to have no apparent effects on
CV outcomes [220].

Other drugs, including obeticholic acid, saroglitazar, and elafibranor are currently being
investigated for NAFLD in large clinical trials. Obeticholic acid is a bile acid derivative that
can bind to and activate farnesoid X receptors, which in turn can increase insulin sensitivity,
decrease hepatic gluconeogenesis, and protect against cholestasis liver injury [221,222]. In
one trial on 283 patients with NASH, those taking obeticholic acid were more likely to have
improved liver histology than those taking placebo at 72 weeks (RR 1.9) [223].

Elafibranor is a dual PPAR-α/δ agonist—both receptors being implicated in the activa-
tion of inflammatory changes within the liver [224,225]. In a preliminary study, Ratziu et al.
observed that elafibranor resolved NASH without fibrosis worsening [226]. Saroglitazar
is a dual PPARα/γ agonist indicated mainly for the treatment of diabetic dyslipidemia
and hypertriglyceridemia not controlled by statins [227]. This drug is currently being
investigated as a potential treatment for NAFLD in an ongoing phase 2 trial [224]. Further
studies are needed before more stringent recommendations can be done on the use of
obeticholic acid, saroglitazar, and elafibranor.

The relationship between CVD treatments and NAFLD can also encompass a po-
tentially detrimental effect of some molecules on liver disease inception or progression.
Indeed, several CV drugs have been linked to hepatic steatosis, both microvesicular and
macrovesicular. Drugs potentially causing microvesicular steatosis include aspirin, nons-
teroidal anti-inflammatory drugs (NSAIDS), and valproic acid, among others, which can
lead to lipid accumulation in hepatocytes and subsequent steatosis [228]. On the other
hand, drugs implicated in macrovesicular steatosis include amiodarone, a frequently used
antiarrhythmic agent with a wide range of hepatic and thyroid adverse events. Up to
30% of patients taking amiodarone can develop elevated liver enzymes, with a propor-
tion of 1–2% developing overt steatohepatitis [228]. Furthermore, a recent meta-analysis
concluded that patients taking amiodarone have a higher risk of hepatic adverse events
(RR 2.27), even at low doses, as compared to placebo [229].

8. Effect of NAFLD on Progression of CVD

In addition to the association of NAFLD with CVD onset, a role has been hypothesized
for NAFLD on the progression of CVD, in terms of development of cardiomyopathy (both
ischemic and tachycardia-related cardiomyopathy), heart failure (HF) and worsening
HF stage.

Despite the growing evidence showing association of NAFLD with CVD, the rela-
tionship is still uncertain for many reasons [48,53]. First, a number of studies, two of
which carried out by Kim et al. and Lazo et al., featuring a large number of participants
(n = 11,154 and 11,371, respectively), concluded that there was no association between
increased CV mortality and NAFLD [230,231]. Second, conclusions of meta-analyses have
been questioned because of the variability of the included articles in these studies, mostly
related to the different diagnostic modalities utilized for NAFLD diagnosis [232]. Moreover,
the observational nature of the individual studies demonstrating association between CVD
and NAFLD leaves room for confounding bias; and thus interpreting these results require
caution and does not allow to draw definitive causal inferences [43,232].

Lastly, and to our knowledge, no study questioned the risk of developing NAFLD in
patients presenting with a first episode of IHD or AF. Meanwhile, articles focusing on liver
disease caused by cardiac pathology included only congestive hepatopathy and ischemic
hepatitis, both well described in the literature. Moreover, we could not find a study quanti-
fying the de novo incidence of NAFLD in patients with IHD as most articles investigate
the reverse relationship: incidence of IHD/CVD in patients with known NAFLD.
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9. Conclusions

The association of NAFLD with the CV system is quite complex and incompletely
understood. NAFLD is suggested to be implicated in many CVDs and seems to worsen the
prognosis of patients with CVD. On the other hand, the effect of CVD on liver pathology is
not well studied. No studies to our knowledge investigated a possible relationship between
NAFLD inception and progression due to CVD or the incidence of NAFLD in patients
with CVD. Moreover, as there is no definitive treatment for NAFLD yet, many CV drugs
show promising results in NAFLD treatment both biochemically and histologically with
fibrosis regression; others were shown to be associated with increased steatosis. Despite the
suggested results, further studies are needed to better understand the two-way liver-heart
interplay and the roles of drugs in the pathophysiology and treatment of NAFLD.
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