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Abstract

As the quality of crucial entities can directly affect that of software, their identification and

protection become an important premise for effective software development, management,

maintenance and testing, which thus contribute to improving the software quality and its

attack-defending ability. Most analysis and evaluation on important entities like codes-

based static structure analysis are on the destruction of the actual software running. In this

paper, from the perspective of software execution process, we proposed an approach to

mine dynamic noteworthy functions (DNFM)in software execution sequences. First, accord-

ing to software decompiling and tracking stack changes, the execution traces composed of

a series of function addresses were acquired. Then these traces were modeled as execution

sequences and then simplified so as to get simplified sequences (SFS), followed by the

extraction of patterns through pattern extraction (PE) algorithm from SFS. After that, evalu-

ating indicators inner-importance and inter-importance were designed to measure the note-

worthiness of functions in DNFM algorithm. Finally, these functions were sorted by their

noteworthiness. Comparison and contrast were conducted on the experiment results from

two traditional complex network-based node mining methods, namely PageRank and

DegreeRank. The results show that the DNFM method can mine noteworthy functions in

software effectively and precisely.

Introduction

The identification of important entities (function, class, method, implement, etc.) has a

remarkable theoretical and practical significance for software designing, development, mainte-

nance and management. For instance, software reliability can be increased by special protec-

tion on influential nodes in software. Studies on these noteworthy entities can not only help

cut the workload of software testing but also help enhance the accuracy of software mainte-

nance, thus reducing the maintenance costs. Thus, to improve software maintenance and

development is an involved and costly task. According to Gartner, global software expendi-

tures for 2010 amounted to $229 billion, with large vendors such as Microsoft and IBM report-

ing multi-billion dollar costs for software development each year. Most of the development
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cost—an estimated 50 to 90 percent of the total costs—is due to software maintenance. Despite

the high costs, software is notoriously unreliable, and software bugs can wreak havoc on soft-

ware producers and consumers alike—a NIST survey estimated the annual cost of software

bugs to be about $59.5 billion. Therefore, knowledge on improving the maintenance by effec-

tively identifying which components to debug, test, or refactor motivated us to establish suit-

able model for software and design a method to mine dynamic noteworthy functions in

software system [1].

Today, complex network is always a research hotspot [2–4]. Many researchers study the

characteristics of complex network in software system [5–7]. Studies show that software sys-

tems have complex network phenomena, namely small-world effect [8] and scale-free prop-

erty [9]. With further research on software systems, the development and maturing of

complex network theory [10, 11] provides a series of classic ways [12–16] for software func-

tions analysis. It is worthy to be noticed that there have been many well-known researches in

this field before. Bonacich et al. [17] proposed an algorithm using degree centrality [18–21]

to evaluate the importance of nodes for the first time in 1972, seen from which the bigger

degree centrality is, the more important a node is. In addition, Brin and Page [22] presented

a PageRank algorithm where a Web page’s rank in search results is determined by the num-

ber of other pages link to it. Subsequently, methods based on betweenness [23, 24], closeness
[25], eigenvector [26] and other metrics appeared gradually. Almost all these methods model

software structure as complex networks, suggesting that a large number of complex links

among nodes make nodes noteworthy. Besides, many new algorithms also have been pro-

posed gradually, such as HITS [27], LeaderRank [28]], NodeRank [29]. Such algorithms are

all based on random-walk model. They take connectivity among nodes and the importance

of neighborhood nodes into consideration to determine the importance of nodes. And most

of them have been applied in undirected and unweighted network, which still has some cer-

tain limitations.

Mapping the software structure or execution traces to complex networks, on which the

mining of crucial nodes have certain effects and advantages. However, relevant methods are

only designed from a static point of view to analyze software network and to measure the

importance of nodes through dependency and connectivity among nodes, such as between-

ness, in-degree, out-degree [30]. What’s more, in the process of constructing the network

model, these will ignore some dynamic characteristics of the software in the execution process,

such as the order of functions, loop, recursion and other control forms, the length of function

set. Therefore, if the software structure is analyzed only from the perspective of complex net-

work, dynamic behavior characteristics of software execution process couldn’t be captured

accurately [31].

Based on the above mentioned, we proposed a dynamic noteworthy functions mining

(DNFM) algorithm to help evaluate functions from the perspective of dynamic behavior

characteristics in software execution sequences. Firstly, we decompiled software, traced the

change of stack during software execution process so as to obtain original software execu-

tion traces formed by a series of function addresses. Then, we modeled these original traces

as execution sequences and simplified them by Repetitive patterns eliminating algorithm

[32], and designed a pattern extraction (PE) algorithm to extract patterns from SFS. After

that, we designed two metrics inner-importance and inter-importance which are aimed to

measure noteworthiness of functions in DNFM algorithm, followed by the categorization of

functions according to their noteworthiness. Finally, we did three groups of experiment,

and compared the results of DNFM with the results of two classic algorithms PageRank and

DegreeRank.
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Methods

Relevant definitions

DNFM approach analyzes the characteristics of software mainly at function level. Since the

execution process of software is mostly the mutual call procedure between functions, software

execution traces can be modeled as function call sequences expressed as follows.

S ¼< S1 . . . Si . . . Sn > ð1 < i < nÞ ð1Þ

In S, Si represents a feature vector including all information of a function in software execu-

tion process, which is expressed as< Flg, Fname >. Here, Flg is the entrance-exit flag to

marked functions. As the function is a caller, Flg can be denoted as E, otherwise be X. Fname is

the name of function. These processes are shown in Fig 1(a) and 1(b) in more detail.

The sequence S is composed of a series of continuous marked functions orderly. Thus, S
can accurately reflect the actual running process of software, especially the order of function

calling and the relationship between different functions. As shown in Fig 1(c), the original

traces are modeled as complex network, the weight on edges are only equal to the times of

function addresses with flag E appearing in traces. Seen from the network, the actual process

of function calling is not clear yet.

In S, there exist many execution-sequence-pattern (ESP), which are defined as follows.

Definition 1 ESP (execution-sequence-pattern) ESP for function call sequences is defined

as P(< Si, . . ., Sj>) where Si and Sj are the elements derived from sequence S, satisfies: Si. Flg
= E, Si.FName(fi) = Sj.Fname(fj), Sj.Flg = X. Besides, all flags and functions between Si and Sj
are in pair, for instance, sequence segments like < E, A>, < E, B>, < E, A>, < X, A>,

< X, B>, < X, A> is an ESP, but< E, A>,< E, B>,< E, A>,< X, A> isn’t, although it

meets the condition. Besides, one function call sequence can own many different ESP, and

each ESP can appear many times in S.
In practice, the relationship between different ESP is very complex. Due to loops, an execu-

tion trace may contain repeated interesting patterns. What’s more, different function call rela-

tions would result in different relationships between ESP. Suppose there exist ESP1 = Sp, . . .,

Sq(p< q) and ESP2 = Ss, . . ., St(s< t) in S, there may exist three relationships between these

two ESP which are shown below.

Fig 1. Modeling original Traces as function call sequence and network.

doi:10.1371/journal.pone.0173244.g001
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1. As S = S1, . . ., ESP1, ESP2, . . ., Sn, when ESP1 = ESP2, ESP1 and ESP2 are reciprocal Repeti-

tive-pattern.

2. As S = S1, . . ., ESP1, . . ., Sn, when ESP1� ESP2, ESP1 and ESP2 are reciprocal Contain-

Pattern.

3. As S = S1, . . ., ESP1, ESP2, . . ., Sn, when ESP1 6¼ ESP2, ESP1 and ESP2 are reciprocal Paral-

lel-pattern.

Let I< f1, f2, . . ., fm> be a set of functions which has appeared in S. When S is simplified

by the Repetitive patterns eliminating algorithm, SFS is obtained. According to the definition

of Frequency of function and Length of ESP, two indexes inner-importance and inter-impor-
tance for each function in set I can be calculated, which are used to measure the noteworthi-

ness of functions. The related definitions are as follows.

Definition 2 Frequency Frequency indicates how many times an ESP or a function occurs

in the simplified function call sequence. For an ESP, it is denoted as F(p), while for a function,

it is denoted as F(f).
Definition 3 Length of ESP Length of ESP is the number of vectors in a ESP, such as, the

length of pattern P(< S1, S2 . . ., Sm>), which is denoted by L(P), ism.

Definition 4 inner-importance (IN) INmeans the probability of function fiwhich appears

in SFS. It is defined as follows.

INðfiÞ ¼
FðfiÞ
LðSFSÞ

ð2Þ

Here, F(fi) is the frequency of function fi, and L(SFS) is the length of simplified function call

sequence SFS.
Definition 5 inter-importance (IT) In S, the function fimay appear in many different ESPs

such as P1, P2, P3. . .Pm, and each ESPmay appear many times. Thus, the inter-importance of

each function can be defined as below.

ITðfiÞ ¼
Pm

i¼1
ððFðPiÞ � LðPiÞÞÞ

LðSFSÞ � LðSFSÞ
ð3Þ

Here, F(pi) is the frequency of Pi, and L(pi) is the length of Pi, and L(pi) is the length of Pi.
Accordingly, L(SFS) is the length of simplified function call sequence SFS.

Definition 6 Noteworthiness The noteworthiness of function D(fi) is determined by the

combination of its inner-importance and inter-importance, which is defined as below.

DðfiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðINðfiÞÞ
2
þ ITðfiÞÞ

2

q
ð4Þ

Definition 7 Shared-node rate Shared-Node rate describes the possibility that a node in set ρ
occurs in set σ or τ. Let the number of elements in them all equate N, then Shared-Node rate

equals the number of nodes shared by ρ and σ [ τ divided by N, which is represented as follows.

Cðr; s; tÞ ¼
j r \ ðs [ tÞ j

N
ð5Þ

Similarly, the Node similarity can be defined as below.

Gðr; sÞ ¼
j r \ sÞ j

N
ð6Þ
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PageRank and DegreeRank

PageRank algorithm was created to rank web pages based on the number of other web pages

linking to it. The PageRank of one web page is defined as follows.

PageRankðpiÞ ¼
1 � q
N
þ q

X

pj2MðpiÞ

PageRankðpjÞ
LðpjÞ

ð7Þ

In formula (7), p1, p2, . . ., pN denote a series of pages,M(pi) is the set of pages which link to

page pi, and L(pj) is the set of pages to which pape pi links. N is the number of total pages, and

d(0< d< 1) is a decay factor. In addition, q denotes teleporting, which means that the user

maybe skip to another random web page from the current web page with a very low probabil-

ity, and there is no hyperlink between the two web pages. Considered that the user couldn’t

skip from the current web page to the random web page directly, q is designed to describe the

probability all out of pure mathematics sense.

The DegreeRank algorithm considers that the bigger the degree of note is, the more impor-

tant the node is. Suppose there is an undirected graph which is formed of g nodes. The degree

of node vi CD is the number of links between vi and nearest neighborhood nodes, which is

defined as below.

CDðNiÞ ¼
Xg

j¼1

xijði 6¼ jÞ ð8Þ

Where CD(Ni) is the degree of vi,
Pg

j¼1
xij is the number of links between vi and nearest neigh-

borhood nodes except the links between vi and itself.

Framework of DNFM approach

DNFM approach can capture the dynamic behavioral characteristics of software execution pro-

cess effectively, and in the meanwhile it can consider the properties of nodes and patterns in a

function call sequence. The whole process for DNFM is shown in Fig 2. At first, we decompiled

Fig 2. Framework of DNFM approach.

doi:10.1371/journal.pone.0173244.g002
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the software by different test cases to obtain the software execution traces, and mapped them

to function call sequences. In order to reduce the impact result from loop structures and

respective patterns on DNFM algorithm, we applied the Repetitive patterns eliminating algo-

rithm to simplify the function call sequence. After that, we extracted patterns from SFS.
Accordingly, we set two metrics inner-importance and inter-importance combined to measure

the noteworthiness of functions. At last, we sorted out functions by the noteworthiness and

formed a function ranking list.

Repetitive patterns eliminating algorithm

In general, the function call sequence is very complex and numerous. Due to loops, a trace can

have repeated patterns. That’s to say, this means that there exist a large number of repetitive

patterns, which will waste a lot of time during algorithm execution process. In order to

improve the efficiency of the algorithm and make the sequence clearer, it is essential to delete

continuous repeated patterns in S. The pseudo code of the Repetitive patterns eliminating

algorithm [24] is shown as below.

Algorithm 1: Repetitive patterns eliminating algorithm
Inputs:S;
Output:the simplifiedfunctioncall sequence(SFS);
1. for all ESP in S
2. if existsm Repetitivepatternsp, p1, p2, . . ., pm−1 in S
3. Delete(p1, p2, . . ., pm−1)
4. p! SFS
5. end if
6. end for

In Line 1, the algorithm scans the original function call sequence S in searching all continu-

ous repeated patterns. In Line 2 to Line 3, if there exist continuous repeated ESP, the algorithm

will judge whether all flag have been matched so as to ensure all functions’ entrance-flag are

matched to its corresponding exit-flag, and then the repeated patterns are deleted. As shown

in Line 4, an ESP p is left for SFS. At last, the SFS is generated.

Suppose a function call sequence is shown as Fig 3(a), there exist obviously repetitive pat-

terns because the ESP< (E ngx_regex_init), (Xngx_regex_init) > is executed three times con-

tinuously. Repeated ESPwould waste a lot of time during algorithm execution process and

increase noteworthiness of function ngx_regex_init, we need to delete those repeated ESP.

Thus we obtain the simplified function call sequence which is shown as Fig 3(b).

Fig 3. An example about simplifying S to SFS.

doi:10.1371/journal.pone.0173244.g003
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Pattern Extraction algorithm

Seen from the definitions of inner-importance and inter-importance, we know that the note-

worthiness of functions is related to ESP, including its frequency F(P) and its length L(P).

However, the elements in SFS are mainly function vectors like< Flg, Fname >, thus in this sec-

tion, we designed a Pattern Extraction algorithm to extract all patterns from SFS, of which the

pseudo codes are shown as follows.

Algorithm 2: Pattern Extraction algorithm
Inputs:SFS
Output:ESP set Pset
1. for each vectorSi in SFS
2. if (Si.flag== ‘E’)
3. for each vectorsSj(i < j) in SFS
4. if (Sj.flag== ‘X’ and Si.Fname= = Sj.Fname)
5. if (checkEX(Si,Sj)) //checkwhetherflagsof entrance-exitare
matched
6. ESP P(Si, Sj)
7. end if
8. if (CheckPattern(ESP,Pset)) //checkwhetherthereexistthe same
pattern
9. F(P)++;//frequencyof the patternadds 1
10. else
11. add_pattern(ESP,Pset); // save the patternin Pset
12. end if
13. end if
14. end for
15. end if
16.endfor

Line 1 to Line 3 of algorithm 2 traverse the elements in the whole simplified function call

sequence. For a vector Si in SFS, if its entrance-exit flag is in pairs and correspond function

name Sj. Fname is the same as the Fname of Si, from which it can be judged that the sequence

between Si and Sj can form an ESP, these processes are shown from Line 4 to Line 6. Then, in

Line 8 to Line 9, as the pattern exists in Pset, the frequency of the pattern increases one. Other-

wise, the pattern ESP is put into Pset in Line 11. In the whole process, each vector in SFS can be

checked and all patterns can be obtained to form Pset.

DNFM algorithm

During the above process, the simplified function call sequence SFS and ESP set Pset are

obtained. After that, the inter-importance and inner-importance are computed and the Note-
worthiness for each functions in I is got as well. Then, the noteworthiness of functions can be

sorted by its Noteworthiness. Here, we propose a DNFM algorithm to conduct it. The pseudo-

code is described as follows.

Algorithm 3: DNFM algorithm
Inputs:SFS; Pset; I
Output:functionrank list
1. for each fi in I
2. for each Si in SFS
3. if (Si.Fname= = fi)
4. F(fi)++;
5. F(pi)++;
6. end if
7. end for
8. INi = calculateIN(F(fi), L(SFS));
9. for each pi in Pset

Mining dynamic noteworthy functions in software execution sequences
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10. if(fi in pi)
11. Lt+ = F(pi)�L(pi)
12. end if
13. end for
14. ITi = calculateIT(Lt, L(SFS));
15. D(fi) = Calculate(INi, ITi);//calculatethe Noteworthiness
16. end for
17. functionrank list Sort(Noteworthiness);//sortfunctionsby
Noteworthiness
18. returnfunctionrank list;

First, in order to calculate the inner-importance of each function, the algorithm analyzes

each vector in SFS and counts the frequency of each function and its corresponding patterns,

which are shown in Line 4 and Line 5. Then, the algorithm calculates the inner-importance for

each function according to the definition 4 in Line 8. Suppose that there is a function fi whose

frequency is 6 according to the execution result of the algorithm and the length of SFS is 100,

thus, the INi should be 6 divided by 100 on the basis of formula of inner-importance.
Then the inter-importance is computed. For each function f in set I, there might exist more

than one ESP whose frequency and length are different. Assume that function fi in ESP p1, p2,

whose length and frequency are 5, 1 and 10, 2 respectively, thus ITj is equal 0.0025 according

to the definition 5 in Line 14. IT is actually an accumulative value. When the algorithm scans a

new ESP, the amount of ITmight be accumulated until all ESP have been found.

After that, the DNFM algorithm calculates the Noteworthiness for each functions by com-

bining its inner-importance and inter-importance in Line 15. Finally, all functions can be sorted

by Noteworthiness in line 17, thus we can obtain the top-k noteworthy functions in function

rank list. It is noted that the higher a function ranks, the more noteworthy a function is.

Results

Objects and data

In this section, three software are used for the experiments. (1) Nginx- a lightweight web server

reverse proxy server and e-mail (imappop3) proxy server using bsd-like agreement. (2) Dead-

beef-a good music player which can play cue, mp3, ogg, flac, ape music file and so on. (3)

Cflow- a tool to analyze a collection of C source files and print a graph, charting control flow

within the program. We decompile the software and trace the change of stack after processing

different operations on them so as to obtain some complete software execution traces from

three different software. Accordingly three algorithms including DNFM, PageRank and

DegreeRank were performed on the model established by these complete software execution

traces for analyzing complex software structure and finding most noteworthy functions.

Comparative analysis

In this part, we compare the DNFM algorithm with PageRank and DegreeRank, the two classic

algorithms on mining important nodes based on complex network. Thus, we perform the

three algorithm on the three open source software Nginx, Deadbeef and Cflow, and do the con-

trast analysis on experiment results.

The experiments are conducted on 64 bit Windows 7 ultimate, Xeon CPU E5-2603
@1.80GHz, 16G of RAM and Ubuntu14.04. The length of original data sequence (LOS) and

simplified sequence (LSS), and time consumption(TC) for removing adjacent repetitive pat-

terns in experiments are listed in Table 1.

In Table 1, the Repetitive patterns eliminating algorithm is effective to eliminate the adja-

cent repetitive patterns, however, it is a waste of time. As the software execution sequence

Mining dynamic noteworthy functions in software execution sequences
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length increases, execution time becomes longer. Despite of this, what we concerned about is

to mine dynamic noteworthy functions efficiently.

Before performing PageRank and DegreeRank algorithm, the software execution traces

need to be modeled as complex network G =< V, E,W>. If there exists an edge between

node Vi and Vj, the weight is assigned as 1, otherwise is 0. The networks are similar with the

network displayed in Fig 4. What’s the different are the number of nodes and edges for differ-

ent software networks. Here, Table 2 gives these parameters for different software complex

networks.

Based on software complex network and function call sequence, the functions were ranked,

which are shown in Tables 3, 4 and 5. Here, we treat the result of DNFM algorithm as bases,

and list top 15 functions compared with the top 15 functions in the ranking list got by PageR-
ank and DegreeRank algorithm. 00−00 means the function is not in the top 15 function list of

PageRank or DegreeRank. The number represents the order of a function in top 15 function

list of DNFM.

Fig 4. Software Complex Network.

doi:10.1371/journal.pone.0173244.g004

Table 1. LOS, LSS and TC in each trial for different software.

Nginx Deadbeef Cflow

LOS 6450 13048 7276

LSS 2680 5110 3914

TC 106.336s 461.275s 224.787s

doi:10.1371/journal.pone.0173244.t001

Table 2. The parameters of software complex networks.

Nginx Deadbeef Cflow

Nodes 244 162 100

Edges 517 436 144

doi:10.1371/journal.pone.0173244.t002
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In Table 3, the experiment results show that there exist 8 functions which appeared in two

top 15 function lists of DNFM and PageRank and 8 functions which appeared in two top 15

function lists ofDNFM andDegreeRank, in which the Share-node rate for DNFM algorithm is

equal to 10/15. As is shown in Table 4, forDeadbeef, there exist 9 functions which appeared in

the experiment results ofDNFM and PageRank, and 9 functions which appeared in the experi-

ment results ofDNFM andDegreeRank, in which the Share-node rate reaches 13/15. As the

experiment result of Cflow is shown in Table 5, there exist 5 functions which appeared in

Table 3. Results of three algorithms performed on Nginx.

Fname Noteworthiness DNFM PageRank DegreeRank

ngx_palloc 0.185821 No.1 No.1 No.9

ngx_pcalloc 0.086567 No.2 No.2 No.2

ngx_array_push 0.081343 No.3 No.5 No.3

ngx_pnalloc 0.045522 No.4 No.10 -

ngx_http_merge_locations 0.032836 No.5 - No.7

ngx_array_init 0.029104 No.6 No.8 No.10

ngx_strlow 0.026119 No.7 - -

ngx_hash_key 0.022388 No.8 - -

ngx_conf_read_token 0.021642 No.9 - -

ngx_http_merge_servers 0.020896 No.10 - No.8

ngx_hash_add_key 0.020149 No.11 - -

ngx_alloc 0.017164 No.12 No.7 -

ngx_conf_handler 0.013437 No.13 - No.11

ngx_cpystrn 0.013433 No.14 No.13 -

ngx_http_add_variable 0.010448 No.15 No.9 No.14

Node similarity (Γ) 8/15 8/15

Shared-Node Rate (Ψ) 10/15

doi:10.1371/journal.pone.0173244.t003

Table 4. Results of three algorithms performed on Deadbeef.

Fname Noteworthiness DNFM PageRank DegreeRank

mutex_lock 0.168689 No.1 No.2 No.6

mutex_unlock 0.167906 No.2 No.1 No.10

pl_lock 0.081409 No.3 No.3 No.4

pl_unlock 0.081409 No.4 No.4 No.3

conf_unlock 0.060274 No.5 No.5 No.12

conf_lock 0.060274 No.6 No.6 No.8

conf_get_str_fast 0.045010 No.7 No.9 No.15

conf_get_int 0.025832 No.8 - No.7

plt_unref 0.015656 No.9 - -

plt_ref 0.015656 No.10 - -

plug_get_output 0.014873 No.11 - -

tf_compile_plain 0.013699 No.12 No.12 -

conf_get_str 0.009393 No.13 - No.13

conf_set_str 0.009393 No.14 No.10 -

tf_compile_field 0.009002 No.15 - -

Node similarity (Γ) 9/15 9/15

Shared-Node Rate (Ψ) 13/15

doi:10.1371/journal.pone.0173244.t004
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experiment results ofDNFM and PageRank and 5 functions which appeared in experiment

results ofDNFM andDegreeRank, and the Shared-node rate of Cflow equals 9/15. TheNode simi-
larity of each software is all lower than its Shared-node rate. All the above experiment data prove

thatDNFM algorithm based on software function call sequence has more advantages than the

algorithms based on complex software network in finding noteworthy functions. Compared the

functions obtained by PageRank with those byDegreeRank algorithm, it can be found that func-

tions got byDNFM algorithm contain those which can be got by PageRank algorithm (such as,

functions like ngx_palloc, ngx_http_merge_locations and ngx_conf_handler inNgnix, mutex_lock,
mutex_unlock, conf_unlock and plt_unref inDeadbeef, and tokpush, get_symbol, add_reference

and expression in Cflow) but cannot be got byDegreeRank algorithm, or vice versa. Therefore,

the method proposed in this paper, for it combines the advantages of those classic methods as

PageRank algorithm andDegreeRank algorithm, is of higher efficiency and accuracy, and its

results are more representative.

Discussion and conclusions

In this paper, by taking functions as nodes and function calling as the order, we mapped soft-

ware execution traces as function call sequences, and proposed a DNFM algorithm to find

noteworthy functions in software sequences by analyzing those function call sequences. Firstly,

we exploited an Eliminate Repetitive patterns algorithm to simplify initial function call

sequences so as to reduce the influence from ring structure on mining noteworthy functions,

and then generated patterns set from SFS by a designed pattern extraction algorithm. Secondly,

after considering the frequencies and lengths of relevant ESPs and functions, we introduced

two important evaluation indicators, because in the process of experiment, what the most

important is to evaluate the impotence of each function. Thus we defined a new index Note-
worthiness to measure the noteworthiness of functions. Finally, we compared DNFMwith

another two classic algorithms, namely, PageRank and DegreeRank algorithms which are con-

ducted on complex network. The complex network weakly represents the software executions.

It cannot reflect the sequence of function calls, which only describes whether there exists

Table 5. Results of three algorithms performed on Cflow.

Fname Noteworthiness DNFM PageRank DegreeRank

nexttoken 0.139499 No.1 No.4 No.2

get_token 0.094022 No.2 - -

yylex 0.094021 No.3 - No.9

tokpush 0.094021 No.4 - -

hash_symbol_hasher 0.072049 No.5 No.10 -

hash_symbol_compare 0.065406 No.6 No.11 -

lookup 0.063362 No.7 No.12 No.8

putback 0.043945 No.8 - No.15

ident 0.037813 No.9 - -

get_symbol 0.023505 No.10 - -

add_reference 0.021972 No.11 - -

cleanup_stack 0.021972 No.12 - -

reference 0.017374 No.13 - -

expression 0.014308 No.14 - No.12

mark 0.014308 No.15 No.14 -

Node similarity (Γ) 5/15 5/15

Shared-Node Rate (Ψ) 9/15

doi:10.1371/journal.pone.0173244.t005
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relationships between two functions. Comparing the results from these traditional algorithms

mostly applied on complex network, the proposed model and method in this paper are much

suitable for software analysis. The results also verify that the DNFM algorithm can identify

noteworthy functions most effectively, and that the shared-Node rate of DNFM algorithm is

highest in different software, even though the Node similarity between them is lower. For

instance, the Node similarity of software Cflow is about 5/15 = 33.3%, but the Shared-Node rate
achieves 9/15 = 60%. All of these prove that the DNFM algorithm can work on different soft-

ware dynamic execution process and can identify noteworthy functions successfully, effectively

and precisely. However, it should be noted that there is a disadvantage of theDNFM algorithm,

that is, it will waste a lot of time in simplifying mega function call sequence, which needs to be

solved in the near future.
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18. Chen D, Lü L, Shang MS, Zhang YC, Zhou T. Identifying influential nodes in complex networks. Fuel &

Energy Abstracts. 2012; 391(4):1777–1787. doi: 10.1016/j.physa.2011.09.017

19. Liu Y, Wei B, Du Y, Xiao F, Deng Y. Identifying influential spreaders by weight degree centrality in com-

plex networks. Chaos Solitons & Fractals. 2016; 86:1–7. doi: 10.1016/j.chaos.2016.01.030

20. Lan W, Zhou K, Feng J, Chi Z. Research on Software Cascading Failures. IEEE. 2010:310–314. doi:

10.1109/MINES.2010.214

21. Hou G, Wang X, Zhou K. Network Model Construction and Cascading Effect Analysis for Software Sys-

tems. Software Engineering. IEEE. 2012:9–12. doi: 10.1109/WCSE.2012.10

22. Brin BS, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks &

Isdn Systems. 2012. doi: 10.1016/j.comnet.2012.10.007

23. Alsayed A, Higham DJ. Betweenness in time dependent networks. Chaos Solitons & Fractals. 2015;

72:35–48. doi: 10.1016/j.chaos.2014.12.009

24. Zhang XZ, Zhao GL, Lv TY, Yin Y, Zhang B. Analysis on Key Nodes Behavior for Complex Software

Network. Information Computing and Applications, Springer Berlin Heidelberg.; 2012; 7473:59–66.

25. Du Y, Gao C, Chen X, Hu Y, Sadiq R, Deng Y. A new closeness centrality measure via effective dis-

tance in complex networks. Chaos. 2015; 25(3):440–442. doi: 10.1063/1.4916215 PMID: 25833434

26. Bonacich P. Some unique properties of eigenvector centrality. Social Networks. 2007; 29(4):555–564.

doi: 10.1016/j.socnet.2007.04.002

27. Kleinberg JM. Authoritative sources in a hyperlinked environment. Journal of the ACM. 1999; 46

(5):604–632. doi: 10.1145/324133.324140

Mining dynamic noteworthy functions in software execution sequences

PLOS ONE | DOI:10.1371/journal.pone.0173244 March 9, 2017 13 / 14

http://dx.doi.org/10.1209/0295-5075/109/30005
http://dx.doi.org/10.1209/0295-5075/109/30005
http://dx.doi.org/10.1142/S0129065717500058
http://www.ncbi.nlm.nih.gov/pubmed/27832712
http://dx.doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1038/nphys1746
http://dx.doi.org/10.1109/MC.2013.75
http://dx.doi.org/10.1016/j.physa.2013.10.047
http://dx.doi.org/10.1016/j.physa.2013.10.047
http://dx.doi.org/10.1016/j.physa.2013.04.037
http://dx.doi.org/10.1016/j.physa.2014.02.032
http://dx.doi.org/10.1016/j.physa.2011.09.017
http://dx.doi.org/10.1016/j.chaos.2016.01.030
http://dx.doi.org/10.1109/MINES.2010.214
http://dx.doi.org/10.1109/WCSE.2012.10
http://dx.doi.org/10.1016/j.comnet.2012.10.007
http://dx.doi.org/10.1016/j.chaos.2014.12.009
http://dx.doi.org/10.1063/1.4916215
http://www.ncbi.nlm.nih.gov/pubmed/25833434
http://dx.doi.org/10.1016/j.socnet.2007.04.002
http://dx.doi.org/10.1145/324133.324140
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