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Abstract: In this paper, we ask whether the structure of investor networks, estimated using share-
holder registration data, is abnormal during a financial crises. We answer this question by analyzing
the structure of investor networks through several most prominent global network features. The
networks are estimated from data on marketplace transactions of all publicly traded securities ex-
ecuted in the Helsinki Stock Exchange by Finnish stock shareholders between 1995 and 2016. We
observe that most of the feature distributions were abnormal during the 2008-2009 financial crisis,
with statistical significance. This paper provides evidence that the financial crisis was associated
with a structural change in investors” trade time synchronization. This indicates that the way how
investors use their private information channels changes depending on the market conditions.

Keywords: investor networks; financial crisis; complex networks; network theory; network topology;
stock markets

1. Introduction

Market dynamics and investor behavior are inseparable: The state of markets can
affect investor co-behavior in certain ways, and, on the other hand, investor behavior
ultimately drives the price dynamics in stock markets. The financial literature provides
strong evidence on overreactions in stock markets, even among professional analysts [1-3].
According to Shiller [4], “bubbles are essentially subtle social-psychological phenomena”.
From this point of view, it is crucial to understand the extent to which investors’ co-
behavior and mutual connections, and thus the use of private information channels, vary
over different market conditions. Particularly, the question is if the ways in which investors
mutually share and use private information differ across different market conditions.

Intuitively, investors may follow different peers in bull versus bear markets. In addi-
tion, it is possible that investors receive, perceive, and utilize received private information
differently under different market circumstances. Moreover, investors may share informa-
tion they possess with their fellow investors differently under different conditions. In all of
these cases, investor networks estimated from shareholder registration data, which serve
as proxies for information networks [5], should show different properties under different
market conditions.

In this paper, we address the question of if and how investor networks change around
financial crises. Our methodological framework comes from complex network theory,
which has been successfully applied to model investors’ behavior and interactions in stock
and FX markets. There are various estimation techniques used with rich sets of shareholder
registration data [5-15]. The research on investor networks sheds light on investor’s trade
timing synchronization, which is closely related to herding behavior. On the other hand,
according to Ozsoylev et al. [5], an investor network is a valid proxy for an information
network, describing private information channels between investors see also [11]. From
this point of view, network techniques not only describe investors” co-behavior but also
identifies the mutual private information channels of the traders.

There are considerably many papers analyzing topological changes of economic
and financial networks, especially of interbank and bank-asset networks [16-20] (for a
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methodological review on the statistical detection of structural patterns in real-world
networks, see [21]). At the same time, to our best knowledge, this is the first paper
that statistically investigates whether investor network topology changes across market
conditions, which is the main contribution of this paper. Our question is motivated by the
existing empirical evidence that investors are clustered and that the clusters of investors
change over time [6,10,12]. Indeed, the literature has barely addressed how investor
networks’ structure reflects market conditions. In this regard, one welcomed exception
is [14], which is one of the most closely related articles to this one. It investigates the
dynamics of the investor spanning trees constructed from their trading correlations in
Nokia stock around the dot-com bubble (January 1998 to December 2002). The paper
observes changes in the mean weights of the spanning tree links. However, it provides a
pure exploratory analysis without statistical tests, and only single security is analyzed.

We conduct statistical tests with an extensive shareholder data set containing infor-
maiton about transactions in hundreds of securities, particularly focusing our attention
around the financial crisis of 2008-2009. We analyze the structure of annual investor net-
works inferred using all marketplace transactions of all securities executed in the Helsinki
Stock Exchange by all stockholders between 1995 and 2016. These 22 annual periods
represent a wide range of different market conditions. In this paper, we analyze investor
networks for the investor categories instead of individual investors. Similarly to [9], we
categorize investors into 122 groups based on their economic and social attributes. In
this regard, households are categorized based on their age, postal code, gender, while
institutions and corporations are based on the sector codes, and postal code. There are
multiple advantages to using investor categories. First, the network size is smaller, which
allows us to employ structural measures that would not be suitable to analyze in large
networks with thousands of individual investor nodes that trade in the entire stock market.
Second, the size of the network remains the same when using investor categories instead of
individual investors that can enter and leave the stock market. Third, the issue of the sparse
investor trading observations is eliminated by combining trades of multiple investors into
categories. Moreover, the advantage of using investor categories over individual investors
lies in the ability to make socio-economic interpretations about the behavior of (investor)
nodes of the networks.

By leveraging the hypergeometric test [6,7] we infer 22 annual investor category
networks, and estimate a set of topological features for each one of them. After this,
we conduct a statistical analysis to compare the distribution of network features for all
pairs of periods. We find that investor networks during the 2008-2009 financial crisis
period have statistically different empirical network feature distributions compared to
other periods. This indicates that investors behaved abnormally at this time. Furthermore,
their co-behavior was different.

This paper contributes to the literature by proposing and validating techniques for
comparing investor networks. Numerous network comparison techniques have been used
and proven successful in various other scientific disciplines [22]. However, in particu-
lar, investor networks may have different characteristics, requiring tailored methods for
comparing them. For example, investor networks are inherently dynamic as they depend
on the investor executed transactions in the network estimation period, i.e., its structure
can vary over time. We want to test the key topological features here: Network density,
global clustering, the size of the largest connected component, average path length, and
global efficiency. Moreover, the topological indices suggested by [23,24] can be used to
compare networks. In this regard, the Wiener index, defined as the sum of the shortest
path lengths between all pairs of nodes, is used to capture the graph topology. We also test
a series of global network features that leverage the concept of centrality [25,26]. For exam-
ple, Di Cerbo and Taylor [27] recently adopted the degree-based network-level centrality
measure to investigate the dynamics of the stock correlation networks, which we also use,
among other features.
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2. Materials and Methods
2.1. Data Set and Network Inference

The data used in this study come from the central register of shareholdings for Finnish
stocks from the Finnish central depository provided by Euroclear Finland. Detailed descriptions
of the data set can be found in [6,9,12,14,28,29]. Our sample data consist of all marketplace
transactions executed in the Helsinki Stock Exchange by all stock shareholders from 1 January
1995 to 31 December 2016. This includes more than 1.2 million investors and roughly 37,000
exchange-traded securities over the 22-year period.

Instead of focusing on individual investor networks, in this paper, we analyze the net-
works of investor categories. Following [9], we group investors into categories based on
their economic and social attributes. Each investor in the data set is assigned to a sector cate-
gory: Non-financial corporations, financial-insurance corporations, government institutions,
non-profit institutions, EU institutions, non-EU institutions, and households. Households are
further divided into five age groups: Under-aged (0,18), young (18,30), middle-aged (30,50), ma-
ture (50,64), and retired (64, +o00). Moreover, all of these groups are further divided into smaller
groups based on postal codes of 11 geographical regions. Additionally, there is a separate
category for foreign investors. In total, this makes N = 122 distinct investor categories.

The majority of investors in the stock market belong to the household sector, e.g., 52,356
were households out of 58,000 investors who traded in 1995 or 266,175 out of 286,022 who
traded in 2016. The second-largest group of investors is the non-financial corporations, e.g.,
4565 non-financial corporations in 1995 traded in the Helsinki stock exchange, and in 2016
there were 12,473, see Table 1. Even though households are the most abundant investor group
in the stock market, the majority of them are rather passive investors making infrequent trades
in few securities [30]. This makes the estimation of investor networks for the whole population
an unfeasible task. Instead, if the individual investors are grouped into categories based on
their socioeconomic attributes, most of the categories have an ample basket of observations for
the inter-category relationships to be established, see Table 2.

Table 1. Distribution of active investors across different sectors. The columns representing different investor sector types are

as follows: European Union institutions (EU), financial and insurance corporations (F.&I.), government institutions (Gov.),

households (House.), non European Union institutions (n.EU), non-financial corporations (n.E), non-profit institutions

(n.Prof.), and foreigner accounts (For.).

EU E&I. Gov. House. n.EU n.F n.Prof. For. Total
1995 74 214 106 52,356 6 4565 667 12 58,000
1996 51 287 118 63,425 6 4816 774 27 69,504
1997 68 340 122 91,306 5 6395 987 35 99,258
1998 90 339 129 129,276 3 8043 1213 69 139,162
1999 95 440 148 182,874 3 10,425 1556 368 195,909
2000 336 528 178 272,843 29 14,368 1664 509 290,455
2001 728 417 139 200,442 179 10,455 1382 760 214,502
2002 641 409 147 144,504 216 8205 1229 693 156,044
2003 997 456 139 147,467 466 8439 1198 539 159,701
2004 998 441 290 163,798 603 8822 1413 613 176,978
2005 1031 608 132 182,679 390 9445 1382 222 195,889
2006 1084 445 179 176,352 424 9768 1359 423 190,034
2007 1412 421 116 194,991 964 9948 1398 702 209,952
2008 629 402 94 153,957 216 8818 1010 598 165,724
2009 536 392 128 194,298 181 9635 1667 312 207,149
2010 830 527 108 217,414 406 12,117 1432 630 233,464
2011 981 532 100 247,829 558 12,489 1470 600 264,559
2012 1292 515 109 230,791 1128 11,397 1415 553 247,200
2013 2025 509 124 267,791 1996 12,534 1613 512 287,104
2014 2051 526 131 279,515 1894 12,901 1823 330 299,171
2015 2100 540 158 267,429 2327 12,849 1761 478 287,642
2016 2169 514 131 266,175 2535 12,473 1575 450 286,022
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Table 2. Average network node statistics in a given year. ‘avg. inv. tr.” indicates the average number
of trades executed by an investor belonging to a given investor category. 'n. inv.” indicates the
average number of investors in a given category. 'n. trades’ indicates the average number of trades
by a given investor category. ‘n. sec.” indicates the average number of securities investors in a given
category have traded. 'n. inv. sec.” indicates the average number of securities an investor trades in a
given category.

avg. inv. tr. n. inv. n. trades n. sec. n. inv. sec.
1995 42.15 542.06 3117.70 66.70 3.75
1996 38.44 637.65 4321.51 78.32 4.23
1997 44.67 919.06 6370.85 87.13 415
1998 35.47 1276.72 8454.65 97.32 417
1999 22.09 1797.33 13,043.98 116.59 4.47
2000 21.19 2593.35 21,874.32 124.41 4.43
2001 24.16 1932.45 16,758.54 136.21 4.39
2002 24.17 1431.60 13,944.69 160.52 4.47
2003 22.20 1478.71 14,091.56 172.62 4.70
2004 21.78 1608.89 16,226.59 202.10 451
2005 29.90 1749.01 19,354.29 238.31 5.38
2006 30.56 1727.58 22,532.95 318.73 5.41
2007 30.42 1874.57 24,952.73 372.95 5.42
2008 31.38 1506.58 24,809.50 354.93 5.36
2009 25.59 1866.21 26,793.68 280.45 5.10
2010 36.27 2122.40 33,096.51 394.26 6.21
2011 37.32 2405.08 32,940.02 512.27 6.06
2012 30.82 2332.08 29,387.09 534.23 5.48
2013 32.55 2708.53 33,650.18 617.48 5.94
2014 37.09 2719.74 33,143.83 712.45 5.90
2015 35.27 2688.24 36,139.37 886.69 6.25
2016 37.06 2624.06 36,650.42 758.92 6.28

Next, to infer the annual investor category networks we follow the methodology used
in [6,10]. First, for each security k, for each investor category i and each trading day t we
calculate the net-scaled-volume as:

Bitx — Sitk
Vith = oo 1)
Bk + Stk

where B;;  and S; ; ; respectively are the total purchased and sold volumes in some security
k of investor category i on day t respectively. Based on the net-scaled volumes we assign
one of two trading states—b (primarily buying, when v; ; , > 6 with 6 = 0.05) or s (primarily
selling, when v; ; , < —6 with 6 = 0.05).

Separately for each security, using the assigned trading states in a given year, we
link two investor categories if both of them have been in the same trading state at least
once during that year, thus creating annual security-specific networks. To validate the
links of a given annual security network for each investor category pair, we perform a
hypergeometric test to check whether we can reject the null hypothesis of random trading
state co-occurrence. Here we look for the same trading state co-occurrences P € {b,s}, i.e.,
we check if both investor categories have been primarily buying or selling on the same
days. To calculate the associated p-value we calculate the number of days when investor
categories i and j have been in a trading state P in total and in the intersection, N lP o N ]P k7
and N z{Jj,k respectively. Then, if the total number of trading days in security k in a given year
is defined as Tj, the probability of observing X co-occurrences among Tj observations is
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defined by the hypergeometric distribution H(X|Tj, N, IP o N ]P ) and corresponding p-value
for a link between two investor categories i and j, defined as:
NP -1
ij,
P (Nil,)j,k) =1- H(X|Tk/ Nil,jk’ le,)k)f )
X=0

Nipk Tk*NiI,)k
() (%)
Ty '
(ka>

The null hypothesis of the hypergeometric test in this context is that investor categories
i and j time their transactions randomly and independently. That is, if we reject the null
hypothesis with a relatively low p-value, then it is unlikely that the trade synchronization
of two investor categories, observed from actual trading data, can be explained by random-
ness. In that case, we say that the two investor categories in question are connected in the
network with statistical significance.

In the literature on financial networks, alternative estimation techniques have been
used, including partial correlation [31,32], correlation threshold networks [33], and cross-
correlation function (CCF)-based Granger causality to test spillover effects [20,34]. Different
network inference methods can be combined with network filtering procedures such as the
minimum spanning tree or the planar maximally filtered graph (PMFG) method [35-37],
among others (for an extensive review of the inference methods on financial networks,
see [38]). Moreover, there are entropy-based approaches introduced in [39,40]. In addition,
numerical techniques, such as the conservative causal core network with bootstrapping [9]
could be used. Overall, there are many alternative techniques, but in this paper, we focus
on using the hypergeometric test for two important reasons: (i) It can be used with sparse
data, and (ii) it is not sensitive to outliers. Moreover, to our best knowledge, the method
introduced in [6] is the one of the most widely used methods to estimate investor networks
(see, for example, [10-13]).

In this paper we have used the statistical significance & = 0.05, which is further adjusted
using the false discovery rate (FDR) multiple test correction [41], where the number of tests
is fixed for each network and equal to ngests = N X (N — 1). First, we sort the p-values of
all nests statistical tests from the lowest to the largest (investor category pairs that are not
linked are assigned a p-value of 1.)—p; < p» < ... < Py Then, we retain the links
that satisfy p; < a -1/nests, Where i = 1,..., fests. We then find the largest [max such that
Plowx < & * lmax /Niests and select the links by rejecting the null hypothesis for the tests with
P1,P2,---, Pl This procedure is done separately for the two types of trading states (b, s),
after which security-specific annual networks are obtained by taking the union of the links
over the buying and selling behavior networks. Finally, we keep only the networks with at
least 5 nodes in the largest component for the network feature analysis. For the numbers of
inferred networks see Figure 1 and Table Al in the Appendix A.

Alternatively to FDR, other methods for multiple comparisons, such as Bonferroni
correction, could be used. In comparison to Bonferroni, FDR, however, has some advan-
tages. With Bonferroni, the adjusted threshold a/nests is applied to all the links, being
very conservative. It is a simultaneous test of a ‘universal’ null hypothesis against an
omnibus alternative hypothesis [42]. For that reason, Bonferroni increases type II errors
(false negative) [43], that is, actual links can be accidentally removed. Nevertheless, for the
robustness check, we compare the results with both FDR and Bonferroni.

where

H(X|Ty, Nfy, Nf}) =
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Figure 1. The number of security-specific networks in a given year with a different link validation:
(i) Networks with at least one non-validated link (black curve with diamond-shaped markers), (ii)
networks with at least one link with a p-value lower than 0.05 (red bars), (iii) networks with at least
one link remaining after the false discovery rate (FDR) multiple test correction (MTC) was applied
(yellow bars), and (iv) networks with more than five nodes in the largest connected component after
the FDR MTC was applied (green bars). See also Table A1 in the Appendix A.

2.2. Network Features

In this paper, the investor networks are analyzed in light of the most prominent
network features typically found in economic and financial network research [25]. The goal
is to observe if the distributions of certain network features change over the years, with a
particular focus on the crisis period in the years 2008 and 2009.

For all inferred networks, we calculate the set of investigated global network features.
Those include—the number of links L, density p, and average degree (k) in the network:

1 N
ij
2L
P—m, 4)
1 Y 1 YN 2L
K =~Y k=YY a,=25 5)
NERENL LAY

where N is the number of nodes in a network (N = 122), k; is the degree of node i, and A is
the adjacency matrix of an unweighted, undirected network, without self-loops. Here, the
network density p is computed as the total number of links divided by all possible links in
a given network. That is, density measures how many of all possible links exist in a given
network. The average degree of an investor category (k) describes the average number
of connections it has to other categories in the network. Since the network density and
average degree are linearly dependent on the number of links, the results will be reported
only for the latest. These basic features can be used to measure the overall connectedness
in the network. In terms of investor networks, they measure the level of synchronization in
investor trade timing associated with their herding behavior.

Additionally, the size of the largest connected component Nj ., the number of con-
nected components N, and the global clustering coefficient C are used to quantify the
level of investor category herding tendency. The larger the giant component, the more
widespread the dominant behavior in the market. Similarly, the fewer components there
in the network, the more homogeneous the trading strategies of different investor groups.
The global clustering coefficient is calculated as the percentage of closed triplets from the
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total number of nodes’ triplets. A triplet is three nodes connected by either two (open

triplet) or three (closed triplet) links:

c_ Yoijk AijAjAki
Yiki(ki—1)

Furthermore, we use the path-based measures such as average path length [, Wiener index
W, and the average global efficiency E to capture the features of investor category networks:

(6)

1 ..
=y B ’
W= 2 Y dG), ®)
i#j
1 1
E= . —, 9
n-(n—1) f;d(z,]) ©)

where d(i, j) is the length of the shortest path between nodes i and j. The average path
length I is computed as the average length of all of the shortest paths, while the Wiener
index W is defined as the sum of the shortest-path distances between each pair of nodes.
The small size of the shortest path length indicates the emergence of investor hubs that
make the average paths shorter. Hubs make networks better connected, thus shrinking
the distances. Since the shortest path is defined as infinite if there is no path between two
nodes, we calculate the average path length and the Wiener index only for the largest
connected components where all nodes are reachable. The average global efficiency E is
defined as the average of the inverse shortest path lengths between all node pairs (9). For
node pairs that do not have a path between them, the distance equals infinity, and the
inverse equals zero. For this reason, we can compute the global efficiency measure for all
nodes in the network.

Finally, we leverage three types of node centrality measures to compare the network
changes in terms of respective measure heterogeneity using the Gini coefficient as well as
graph centrality indices based on them [25,26]. For each node i we use a degree centrality
k7, closeness centrality ¢; and betweeness centrality b defined as follows:

k;

c __
N-—-1
o= ——F—, (11)
Y (())
-y ) (12)
sEVEL Ost

where 0y is the total number of shortest paths between nodes s and t and o (i) is the
number of shortest paths between nodes s and ¢. For a given centrality measure c the
network’s Gini coefficient is calculated as:

~ Yijle —¢jl

GC o 2N Zi Cj (13)

The Gini coefficient ranges between 0 and 1, where 0 indicates minimum and 1 indicates
maximum heterogeneity in terms of the observed node centrality measures. The graph
centrality index CI for a centrality measure c is defined as:

Yi(c* —ci)

e = @ — )y

(14)
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where ¢* = max;¢; is the maximum observed value of the centrality measure in the
investigated network, while the denominator is calculated for the same size graph that
provides the maximum value of the quantity. As it turns out the maximum values of the
denominator for the investigated centrality measures are achieved for a star graph. CI
ranges from 0 to 1, taking the value of 0 if the centralities of all nodes are equal, and a value
of 1if the network is a star tree. The graph centrality index based on degree centrality CI «
was recently proposed as a measure of market centralization in a network of securities [27].

Having 22 annual distributions composed of the features calculated for different
security networks in a given year, we conduct a number of dependent ¢-tests for paired
samples of network structure indicators (for the number of observations used in each test,
see Figure Al in Appendix A). In particular, we perform 231 (= 22 x 21/2) tests for each of
the 10 network features to determine if we can reject the null hypothesis of the two sets of
annual network features having the same sample mean.

3. Results

In this section, we present the results for all analyzed network features. In order for
the results to be robust against the differences of investor behavior in different securities,
for a given pair of periods, we compare network features only for the securities that had an
inferred network in both of them (see Figure A1 for the number of observations). We provide
two figures showing pairs of periods for each network feature for which we reject the null
hypothesis of equal sample means at significance « equal to 0.001 and 0.01. In particular, the
null and alternative hypotheses for the network feature f test are defined as follows:

Ho :(f*) = (f") (15)
Ha :(f*) # (f*), (16)

where (f?) is the mean of a particular network feature f observed in year a. The B in the
figures indicates for which pairs of periods we have failed to reject the null hypothesis
(the means are equal), and the [ indicates for which pairs of periods we have rejected the
null hypothesis in favor of the alternative (the means are different) with « € {0.001,0.01}
(e.g., see Figure 2). Moreover, each figure is accompanied by a heat map to visualize the
differences between the sample means in different periods. The color of each cell encodes
the difference between the mean value of a feature observed in the year indicated in the
y-axis and the mean value of the year indicated in the x-axis.

(L) — (LP) a=0.001 a=0.01
[ ] ] [ | [ | AEEEEE EEE EEE EEEEEEN HEEEEEE EE
2015 -& 8 = - 2015 -8 EaNEE BEEE
] ] [
- H H H
2010 -=-.. EEEEEEEN .....l 3 2010 -=
[ || | [ 1 [ ]} 2 =
| | | [
2005 gy 8 Bmss -mms 2005 @ Year a
[ 1] [ ] [ 1
[ | | (11 | |
2000 -mm= EE TR 5000 =
[ 1] [
[ [ | [ ]| [ ]
[ ] EEm ] [ ]
PEEE EEE EEEEN | | [ ] ]
1995 “ ..!..-.I ...!.. !._ 1995 -! ] ] ] |.- 1995 -! ] ] ] ]
1995 2000 2005 2010 2015 1995 2000 2005 2010 2015 1995 2000 2005 2010 2015
Year b Year b Year b

Figure 2. Left-hand side sub-figure shows the differences in average number of links L between investor category networks

inferred in different periods. The central and right-hand side sub-figures indicate the pairs of years where we could not

reject the null hypothesis of the dependent sample mean t-test (M), and the pairs of years where we rejected the null in favor
of the alternative ().
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3.1. Links, Density, and Average Degree

The left-hand side of Figure 2 shows the differences between the average number of
links L observed between different years. The same heat map can represent the density p
and average degree (k), though on a different scale (not shown in the figure). That is, all
three measures are linearly dependent on the number of links in the network, yet scaled
differently (see (3) to (5)), for which reason we report results only for the average number of
links. From the figure, we can see that the network connectivity peaked in 2008-2009 with
more links on average (higher density and average degree) than observed in other years.
Moreover, when comparing the means of the annual network features that are calculated
for the securities with existing networks in both compared periods, we can see that the
years 20082009 particularly stand out as with only a few exceptions, we rejected the paired
t-test null hypotheses between the ones observed in those years and the ones observed
between 2001 and 2016.

From the point of view that the network estimation is based on the synchronization
measures in the trade timing, we provide evidence that investors timed their transactions
more similarly during the 2008-2009 crisis compared to other periods. This can result as a
consequence of the use of similar trading strategies or a higher throughput in the investor
information networks [5,29].

3.2. Global Clustering, Size of the Largest Connected Component, and the Average Number
of Components

Next, we compare the herding intensity between pairs of periods via three variables—
the size of the largest connected component Nj.., the number of components in the network
N, and global clustering coefficient C. The larger the giant component, the more the
distinct investor categories use similar strategies, which results in a higher similarity in
their trades timing. Similarly, the more the number of distinct components go down, the
more there are investor categories that have synchronized trading patterns. The average
clustering coefficient increases when the increased trading synchronization results in more
closed node triplets, i.e., when two nodes sharing a common neighbor are also connected
themselves. We can see from Figure 3 that global clustering and the size of the largest
connected component are somewhat larger during the 2009 crisis, while the number of
components in the networks is lower in 2009 than in other years. Again, the paired t-test
mostly rejects the null hypothesis in favor of the alternative hypothesis where one of
the network feature distributions comes from the crisis period in 2009. It means that the
distributions of all three network features have different means during the crisis when
compared to other periods.

3.3. Average Distance, Wiener Index, and Global Efficiency

Next, we turn our attention to the path-based network features. We calculate the
average distance / (7) and the Wiener index W (8) for the largest connected components,
while the global efficiency E (9) is calculated for whole networks. As we can see from
Figure 4, the Wiener index increases with time with no apparent change during the financial
crisis, i.e.,, W? > W? for many a and b, when a > b (see the red color dominating above the
diagonal of the matrix). On the other hand, in 2008-2009, the average distance is lower and
the global efficiency higher compared to the other periods. This indicates that the nodes
(investors) were more closely connected during the crisis. Since the Wiener index is defined
as the sum of all shortest paths, the lack of sensitivity to the financial crisis in the Wiener
index is explained by the increase in the number of links being offset by the decrease in the
average path distances. During the crisis, investor hubs emerge, increasing the size of the
largest connected components, shortening the distances between investor categories in the
network, and making networks more connected.
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Figure 3. Left-hand side shows the differences in the annual mean values for the size of the largest connected component,

number of components, and the global clustering coefficient between networks in different periods. The central and
right-hand side sub-figures indicates the pairs of years where we could not reject the null hypothesis of the dependent
sample mean t-test (M), and the pairs of years where we rejected the null in favor of the alternative (OJ).
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Figure 4. Left-hand side shows the differences in the annual mean values for the average shortest path length in the giant

component, global network efficiency, and Wiener index for networks in different periods. The central and right-hand side

sub-figures indicates the pairs of years where we could not reject the null hypothesis of the dependent sample mean ¢-test

(M), and the pairs of years where we rejected the null in favor of the alternative (OJ).

3.4. Network Centrality

Finally, we take a look at two different global network indices based on three different
node centrality measures. Here we present only the indices based on the degree centrality
in Equation (10). Indices based on the closeness and betweenness centralities are provided
in the Appendix A. The absolute differences in the average coefficients range roughly up
to 0.1, see Figure 5. The absolute differences for the average Gini coefficient range up
to 0.2 and up to 0.12 for the average graph centrality index. Both of the figures suggest
statistically significant structural changes in the investor networks during the financial
crisis of 2008-2009. However, when these measures are calculated for the largest connected
components in the corresponding networks, we can not make similar conclusions, see
Figure A7 in the Appendix A.
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Figure 5. Left-hand side sub-figures show the differences in the Gini and graph centrality indices
calculated using the degree centrality measure between investor category networks inferred in
different periods (see Equations (10), (13) and (14)). The central and right-hand side sub-figures
indicate the pairs of years where we could not reject the null hypothesis of the dependent sample
mean t-test (M), and the pairs of years where we rejected the null in favor of the alternative ([J).
Similar figures for indices based on closeness and betweenness centralities are provided in the
Appendix A.

3.5. Robustness Checks

For a robustness check, we run the results with both FDR and Bonferroni multitest
correction methods. Moreover, we vary the threshold parameter 6 used in Equation (1), which
determines the regions where a trading day is assigned into the buying or the selling states.
Figures A2 and A3 in the Appendix A show that the results are very consistent not only with
respect to the multitest correction methods but also with respect to 6. In fact, with most of
the features, the use of Bonferroni sharpens the contrast of 20082009 to other years, thus
strengthening the results. The level of 6 has a barely noticeable impact on the results.

4. Conclusions

How does the investor trading behavior and their mutual interactions in the stock market
change during a financial crisis? In this paper, we answered this question by analyzing the
structure of investor networks with some of the most prominent network features. The main
empirical contribution of this paper is the finding that all of the investigated features were
abnormally distributed during the 20082009 financial crisis period.

Our results are robust, showing significantly different distributions for 2008-2009
compared to the other 20 years on our sample. Most importantly, during the crisis, investors
had abnormally many links to other investors, which indicates that investors were better
linked and that the role of private information was more important compared to other
times. Moreover, in terms of the network components and path-based network features,
the results of the paper suggest an increased trading synchronization during the crisis. This
further indicates the increased importance of private information channels during the crisis.
On the other hand, the structure of investor networks did not show significant changes
around the dot-com bubble. The finding that the investor networks reacted differently to
different crises remains unexplained and requires further research.

The results of this paper are important for the further development of agent-based
models. Notably, our results suggest that investors’ co-behavior is dependent on the state of
the markets, which should be better captured by the models for agent behavior. Moreover,
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in future research, one could develop methods to reveal early-warning signals of financial
crises. Such research has already been successfully reported in the context of inter-bank
networks [16] and world trade [44]. We think this paper motivates such research in the
context of investor networks, too.
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Appendix A. Descriptive Statistics

Table A1 summarizes the numbers of security-specific networks that were inferred in
different years. The columns in the table present the number of networks resulting after
different link validation decisions, i.e., no validation, when each link is validated with
statistical significance & = 0.05, when FDR multiple test correction is applied, and when
the largest connected component is required to have more than 5 nodes.

Table A1. Number of networks observed in different years. The columns summarize the number
of security-networks that (i) have at least one non-validated link, (ii) have at least one statistically
significant link with a p-value lower than 0.05 verified without multiple test correction (MTC),
(iii) have at least one link remaining after the false discovery rate (FDR) for the MTC, and (iv) had
more than 5 nodes in the largest connected component after the FDR for MTC was applied. These
numbers are used to produce Figure 1.

e FDR MTC
Securities No MTC FDR MTC (Niee > 5)
1995 128 126 38 12
1996 135 134 62 27
1997 142 139 74 37
1998 166 163 92 55
1999 203 197 108 70
2000 225 213 118 89
2001 350 309 125 81
2002 527 453 160 89
2003 672 506 184 96
2004 885 667 244 138
2005 1137 851 298 161
2006 1503 1191 463 251
2007 2139 1663 501 230
2008 2126 1646 469 228
2009 1474 1133 421 230
2010 2456 1682 394 185
2011 4578 2617 424 174
2012 5682 2840 335 107
2013 5388 2980 460 178
2014 6747 3679 399 149
2015 10,086 4734 436 165

2016 11,090 4320 421 167
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Figure A1. Number of common investor networks estimated for different pairs of periods.
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Figure A2. Figures indicate the pairs of years where we could not reject the null hypothesis of the dependent sample
mean t-test (M), and the pairs of years where we rejected the null in favour of the alternative (0J), at statistical significance
« = 0.01. Each row summarizes the results for different network features, namely the number of links L, the size of the
largest connected component N, the number of connected components N, and the average clustering coefficient C.
Subplots in each row differ in the multiple correction applied (first two columns—FDR, last two—Bonferroni) and the 6
parameter (first and third columns use 6 = 0.01, second and fourth use 6 = 0.05) used to assign trading states based on
net-scaled volume (see Equation (1)). The figures in the second column are identical with the ones presented in the article
and are shown here for easier comparison.
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Figure A3. Figures indicate the pairs of years where we could not reject the null hypothesis of the dependent sample mean
t-test (M), and the pairs of years where we rejected the null in favour of the alternative (0J), at statistical significance « = 0.01.
Each row summarizes the results for different network features, namely the average shortest path length in the giant
component [, the global network efficiency E, and the Wiener index W. Subplots in each row differ in the multiple correction
applied (first two columns—FDR, last two—Bonferroni) and the 6 parameter (first and third columns use 8 = 0.01, second
and fourth use 8 = 0.05) used to assign trading states based on net-scaled volume (see Equation (1)). The figures in the
second column are identical with the ones presented in the article and are shown here for easier comparison.
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Figure A4. Left-hand side sub-figures show the differences in the Gini and graph centrality indices calculated using
the closeness and betweeness centrality measures between investor category networks inferred in different periods (see
Equations (11)—(14)). The central and right-hand-side sub-figures indicates the pairs of years where we could not reject the
null hypothesis of the dependent sample mean ¢-test (M), and the pairs of years where we rejected the null in favor of the
alternative (UJ). Similar figures for indices based on closeness and betweenness centralities are provided in the Appendix A.
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Figure A5. Figures indicate the pairs of years where we could not reject the null hypothesis of the dependent sample mean
t-test (M), and the pairs of years where we rejected the null in favor of the alternative (L), at statistical significance « = 0.01.
Each row summarizes the results for Gini coefficients calculated using different node centrality measures, namely the degree
centrality k¢, closeness centrality c¢, and the betweeness centrality b°. Subplots in each row differ in the multiple correction
applied (first two columns—FDR, last two—Bonferroni) and the 6 parameter (first and third columns use 8 = 0.01, second
and fourth use 8 = 0.05) used to assign trading states based on net-scaled volume (see Equation (1)). The figures in the
second column of the first row are identical with the one presented in the article and is shown here for easier comparison.
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Figure A6. Figures indicate the pairs of years where we could not reject the null hypothesis of the dependent sample mean
t-test (M), and the pairs of years where we rejected the null in favor of the alternative (L), at statistical significance « = 0.01.
Each row summarizes the results for the graph centrality indices calculated using different node centrality measures,
namely the degree centrality k°, closeness centrality c¢, and the betweeness centrality b°. Subplots in each row differ in the
multiple correction applied (first two columns—FDR, last two—Bonferroni) and the 6 parameter (first and third columns
use 6 = 0.01, second and fourth use 6 = 0.05) used to assign trading states based on net-scaled volume (see Equation (1)).
The figures in the second column of the first row are identical with the one presented in the article and is shown here for
easier comparison.
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Figure A7. Left-hand side sub-figures show the differences in the Gini and graph centrality indices calculated using the
degree centrality measure between the largest connected components in investor category networks inferred in different
periods (see Equations (10), (13) and (14)). The central and right-hand-side sub-figures indicates the pairs of years where we
could not reject the null hypothesis of the dependent sample mean t-test (M), and the pairs of years where we rejected the
null in favour of the alternative (UJ). Similar figures result when Gini and graph centrality indices are calculated using the
closeness and betweeness centrality measures. Figure are available upon request.
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