Contents lists available at ScienceDirect

# Heliyon



journal homepage: www.cell.com/heliyon

Review article

CelPress

# Enrollment and dropout rates of individuals with chronic obstructive pulmonary disease approached for telehealth interventions: A systematic review and meta-regression analysis

Rehab Alhasani<sup>a</sup>, Tania Janaudis Ferreira<sup>b,c,d</sup>, Marie-France Valois<sup>f</sup>, Dharmender Singh<sup>b,c</sup>, Sara Ahmed<sup>b,c,d,e,\*</sup>

<sup>a</sup> Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

<sup>b</sup> School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada

<sup>c</sup> Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, Quebec, Canada

<sup>d</sup> McGill University Health Center Research Institute, Clinical Epidemiology, Center for Outcome Research and Evaluation (CORE), Montreal,

Quebec, Canada

<sup>e</sup> Constance Lethbridge Rehabilitation Center, CIUSSS Centre- Ouest de l'Îile de Montreal, Montreal, Quebec, Canada

<sup>f</sup> Department of Medicine, McGill University, Montreal, Quebec, Canada

## ARTICLE INFO

Keywords: Tele-health Chronic obstructive pulmonary disease Dropout rate Random effect meta-regression

# $A \hspace{0.1cm} B \hspace{0.1cm} S \hspace{0.1cm} T \hspace{0.1cm} R \hspace{0.1cm} A \hspace{0.1cm} C \hspace{0.1cm} T$

*Introduction:* Telehealth interventions have the potential of improving health outcomes for individuals with chronic obstructive pulmonary disease (COPD). However, the precise impact of telehealth on exacerbation and hospital readmissions remains inconclusive. This lack of knowledge on the effectiveness of telehealth for COPD care might be due to lack of clarity regarding which variables are most strongly associated with enrolment and dropout rates.

*Objectives*: Among individuals with COPD in telehealth studies, we aimed to: (1) estimate the extent to which trial-related variables are associated with enrolment and dropout rates, and identify reasons for dropouts; (2) estimate the extent to which patients-related and intervention-related variables are associated with dropout rates; (3) estimate the effect of enrolment rate and dropout rate on effect size; (4) estimate the effect of trial-related, patient-related, and intervention-related variables on effect size.

*Methods:* A systematic literature search was conducted using four electronic databases. Two independent reviewers screened all retrieved titles, abstracts and full texts according to the inclusion criteria and extracted the data. A random-effect meta-regression analysis was conducted to estimate the overall enrolment and dropout rates, and estimated the different variables' effects on the enrolment rate, dropout rate, and effect sizes in the studies included in the review.

*Results*: A total of 56 studies comprising 7530 participants were identified. The estimated enrolment and dropout rates were 50.3 % and 14.9 %, respectively. Trial-related variables influence enrollment and dropout rates, including RCT designs and the recruitments. The patient-related variables, including age and severity of the disease, and intervention-related variables, including the components of the intervention and mode of delivery, influence dropout rates. Studies with low dropout rates had a bigger effect size by 0.23. The main reported reasons for

\* Corresponding author: PT McGill University, 3654 Prom Sir-William-Osler Montréal, QC, H3G 1Y5, Canada. *E-mail address:* sara.ahmed@mcgill.ca (S. Ahmed).

#### https://doi.org/10.1016/j.heliyon.2023.e23776

Received 19 March 2023; Received in revised form 5 December 2023; Accepted 13 December 2023

Available online 22 December 2023

<sup>2405-8440/</sup>Crown Copyright © 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

dropping out of the intervention were related to death (21 %) followed by lost to follow-up (14 %).

*Conclusion:* Trial, patient, and intervention-related variables were found to influence the enrolment and dropout rates. This would help plan and develop a more appealing telehealth intervention that patients can easily accept and incorporate into their everyday lives.

*Registration information:* International Prospective Register of Systematic Reviews (PROSPERO); ID: CRD42017078541.

## Abbreviations list

| COPD   | Chronic obstructive pulmonary disease                              |
|--------|--------------------------------------------------------------------|
| CONSOR | RT Consolidated Standards of Reporting Trials guidelines           |
| CI     | Confidence Interval                                                |
| FEV1   | Forced expiratory volume in the first second                       |
| GOLD   | Global Initiative for Chronic Obstructive Lung Disease             |
| PRISMA | Preferred Reporting Items for Systematic reviews and Meta-Analyses |
| RCT    | Randomized controlled trials                                       |
| SIGN   | Scottish Intercollegiate Guidelines Network checklist              |
|        |                                                                    |

## 1. Introduction

Individuals with Chronic obstructive pulmonary disease (COPD) need appropriate management strategies (such as self-management) that require active participation by patients to minimize the likelihood of hospitalization and a further decline in their health status [1–3]. While the rationale for providing self-management interventions for individuals with COPD is apparent, current evidence regarding these interventions' effectiveness is limited and variable [1–3].

Telehealth refers to using electronic information and communication technologies to support distance healthcare, allowing clinicians and patients to exchange information and access healthcare services remotely [2,4–7]. Telehealth is used for remote monitoring of a patient's clinical data, such as their vital signs; this enables healthcare teams to promptly identify deterioration and deliver care [8]. Clinical trials have shown that individuals with COPD have positive attitudes towards participating in telehealth to promote patients' independence toward self-management [9,10]. However, telehealth precise impact on exacerbation and hospital readmissions remains inconclusive.

In any telehealth program, adherence is a key challenge and dropout rates for telehealth vary across clinical trials [9,11,12]. It is unclear which variables are most strongly associated with enrolment and dropout rates. Possible factors that may influence dropouts include patient characteristics, intervention features, and the context in which the intervention is delivered. Evaluating design elements that prevent individuals with COPD from enrolling and completing telehealth interventions may help clinicians appropriately tailor interventions to the individuals' needs and limit dropout rates.

Currently, there is little information on the enrolment and dropout rates of individuals with COPD in telehealth intervention trials. Thus, this study aimed to: (1) estimate the extent to which trial-related variables are associated with enrolment and dropout rates, and identify reasons for dropouts; (2) estimate the extent to which patients-related and intervention-related variables are associated with dropout rates; (3) estimate the effect of enrolment rate and dropout rate on effect size; (4) estimate the effect of trial-related, patientrelated, and intervention-related variables on effect size.

# 2. Methods

Our published protocol details the methodology of this review [13].

# 2.1. Search strategy

A search of the literature was performed using electronic databases of Ovid MEDLINE, EMBASE, CINAHL and the Cochrane Database from inceptions to November 2018. The initial search strategy was constructed for Ovid MEDLINE (Appendix 1) and adapted to other databases. A combination of Medical Subject Headings (MeSH) terms, subject headings and/or key words was used. Searches were updated twice: in October 2019 (n = 44), and in October 2021 (n = 56).

# 2.2. Eligibility criteria

Inclusion criteria: trials with or without randomization and observational studies including individuals diagnosed with COPD  $\geq 18$ 



Fig. 1. PRISMA flowchart.

years; any information of technology tool designed for the clinical support of patients with COPD (see Appendix 2 that presents various terms used to reference specific telehealth applications).

Exclusion criteria: articles published in languages other than English; studies that did not describe the telehealth interventions, and studies that did not report the number of patients who were approached for recruitment or the number of participants who dropped out.

## 2.3. Study selection

Two independent reviewers screened titles and abstracts, followed by retrieving full-text articles and evaluating for eligibility. Disagreements were resolved by discussion and consensus. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow diagram [14] was used to guide the selection process.

| Table 1                                     |  |
|---------------------------------------------|--|
| Characteristics of trial-related variables. |  |

4

| Author (year)                | Study<br>Place | Recruitment method                          | Sample<br>Size | Intervention     | Intervention<br>Setting             | Delivery Mode        | Type of Control                      | Primary Outcome: (Effect<br>Size)              | Enrolment Rate/<br>Dropout Rate |
|------------------------------|----------------|---------------------------------------------|----------------|------------------|-------------------------------------|----------------------|--------------------------------------|------------------------------------------------|---------------------------------|
| Antoniades (2012)            | Australia      | Outpatient settings                         | 44             | Tele-Monitoring  | Patient's home                      | Laptop               | Standard best practice<br>care (SBP) | CRQ: (0.25)                                    | 9/18                            |
| Berkhof (2015)<br>[12]       | Netherland     | Primary care clinic<br>after regular visits | 101            | Tele-Medicine    | Medical center to<br>patient's home | Telephone            | Usual care                           | CRQ: (0.81)                                    | 84/7                            |
| Calvo (2014) [22]            | Spain          | Outpatient settings                         | 60             | Tele-Health-Care | Patient's home                      | Internet             | Usual care                           | emergency room visits: (.)                     | 31/13                           |
| Cameron-Tucker               | Australia      | Primary care clinic                         | 65             | Tele-            | Medical center to                   | Telephone            | Usual care                           | 6MWT (meter): (0.07)                           | 18/38                           |
| (2016) [9]                   |                | after regular visits                        |                | Rehabilitation   | patient's home                      | 1                    |                                      |                                                |                                 |
| Chau (2012) [30]             | Hong Kong      | Primary care clinic                         | 45             | Tele-Health-Care | Patient's home                      | Smartphone           | Usual care                           | CRQ: (0.45)                                    | 73/27                           |
|                              | 0 0            | after regular visits                        |                |                  |                                     |                      |                                      |                                                |                                 |
| Dale (2003) [64]             | UK             | Primary care clinic                         | 55             | Tele-Monitoring  | Patient's home                      | Telephone No control |                                      | Hospital admission: (.)                        | 100/20                          |
|                              |                | after regular visits                        |                | 0                |                                     | *                    |                                      | •                                              |                                 |
| De san Miguel<br>(2013) [10] | Australia      | Others (letters, homecare)                  | 80             | Tele-Health-Care | Patient's home                      | Telephone            | Education                            | Ed visits: (0.12)                              | 100/36                          |
| Dinesen (2012) [8]           | Denmark        | Primary care clinic                         | 111            | Tele-            | Patient's home                      | Telephone            | Home exercise                        | admission rate: (,)                            | 91/5                            |
|                              |                | after regular visits                        |                | Rehabilitation   |                                     | F                    |                                      |                                                |                                 |
| Farmer (2017) [1]            | UK             | Primary care clinic                         | 166            | Tele-Health-Care | Patient's home                      | Tablet               | Usual care                           | SGRO: (0.07)                                   | 81/13                           |
|                              |                | after regular visits                        |                |                  |                                     |                      |                                      |                                                |                                 |
| Franke (2016) [56]           | Germany        | Primary care clinic                         | 44             | Tele-Monitoring  | Patient's home                      | Telephone            | Usual care                           | daily training time (min):                     | 83/36                           |
|                              | 5              | after regular visits                        |                | 0                |                                     | 1                    |                                      | (0.19)                                         |                                 |
| Halpin (2011) [31]           | UK             | Primary care clinic                         | 79             | Tele-Health-Care | Patient's home                      | Smartphone           | Usual care                           | E-RS: (1.2)                                    | 12/3                            |
| 1                            |                | after regular visits                        |                |                  |                                     | 1                    |                                      |                                                |                                 |
| Ho (2016) [47]               | Taiwan         | Primary care clinic                         | 106            | Tele-Monitoring  | Patient's home                      | Laptop               | Usual care                           | Hospital admission: (0.5)                      | 33/0                            |
|                              |                | after regular visits                        |                | 0                |                                     | * *                  |                                      | •                                              |                                 |
| Jakobsen (2015)<br>[4]       | Denmark        | Primary care clinic<br>after regular visits | 57             | Tele-Health-Care | Patient's home                      | Tablet               | Phone call support                   | treatment failure:<br>readmission due to COPD: | 9/26                            |
| Koff (2009) [28]             | USA            | Primary care clinic                         | 40             | Tele-Medicine    | Patient's home                      | Telephone            | Usual care                           | SGRO: (0.22)                                   | 100/5                           |
| () []                        |                | after regular visits                        |                |                  |                                     | F                    |                                      |                                                |                                 |
| Lewis (2011) [32]            | UK             | Others (letters,                            | 40             | Tele-Monitoring  | Patient's home                      | Telephone            | Usual care                           | SGRQ: (0.05)                                   | 40/0                            |
| Lilholt (2017) [5]           | Denmark        | Primary care clinic                         | 1225           | Tele-Health-Care | Patient's home                      | Tablet               | Usual care                           | SF-36 (physical): (0.01)                       | 100/5                           |
| Marquis (2015)               | Canada         | Community centre                            | 22             | Tele             | Datient's home                      | Videoconferencing    | No control                           | 6MWT (meter): (0.68)                           | 85/5                            |
| [57]                         | Ganada         | community centre                            | 22             | Rehabilitation   | i attent s nome                     | videoconterenenig    | No control                           | 0.00)                                          | 00/0                            |
| McDowell (2015)              | UK             | Community centre                            | 100            | Tele-Health-Care | Patient's home                      | Telephone            | Usual care                           | SGBO: (0.36)                                   | 85/10                           |
| [41]                         | UK             | community centre                            | 100            | Tele Health Gare | r attent 5 nome                     | relephone            | osuu cure                            | ball(g. (0.00)                                 | 00/10                           |
| Nield (2012) [2]             | UK             | Outpatient settings                         | 22             | Tele-Health-Care | Patient's home                      | Lanton               | Usual care                           | MOS: (0.83)                                    | 79/27                           |
| Pedone (2013)                | Italy          | Outpatient settings                         | 99             | Tele-Monitoring  | Patient's home                      | Cellular telephone   | Usual care                           | incidence rate of                              | 57/11                           |
| [29]                         |                |                                             |                |                  |                                     |                      |                                      | exacerbations: (.)                             |                                 |
| Pinnock (2013)               | UK             | Primary care clinic                         | 256            | Tele-Monitoring  | Patient's home                      | Internet             | Self management                      | SGRO: (0.05)                                   | 61/1                            |
| [42]                         |                | after regular visits                        |                | 0                |                                     |                      | education                            |                                                |                                 |
| Ringbaek (2015)<br>[59]      | Denmark        | Outpatient settings                         | 281            | Tele-Health-Care | Patient's home                      | Internet             | Usual care                           | Hospital admission: (0.02)                     | 50/12                           |
| Ringbaek (2016)              | Denmark        | Outpatient settings                         | 115            | Tele-            | Patient's home                      | Tablet               | Usual care                           | ESWT (SEC): (0.01)                             | 79/14                           |
| [33]                         |                |                                             |                | Rehabilitation   |                                     |                      |                                      |                                                |                                 |
| Rosenbek (2015)              | Denmark        | Outpatient settings                         | 37             | Tele-Medicine    | Patient's home                      | Internet             | No control                           | TUG (sec): (0.56)                              | 100/16                          |
| [51]                         |                | r · · · · · · · · · · · · · · · · · · ·     |                |                  |                                     |                      |                                      |                                                |                                 |
| Schou (2013) [23]            | Denmark        | Outpatient settings                         | 44             | Tele-Medicine    | Patient's home                      | Videoconferencing    | Usual care                           | SGRQ: (0.52)                                   | 7/5                             |

(continued on next page)

| Table 1 (continued)                   |                |                                              |                |                         |                                  |                   |                                   |                                                           |                                 |
|---------------------------------------|----------------|----------------------------------------------|----------------|-------------------------|----------------------------------|-------------------|-----------------------------------|-----------------------------------------------------------|---------------------------------|
| Author (year)                         | Study<br>Place | Recruitment method                           | Sample<br>Size | Intervention            | Intervention<br>Setting          | Delivery Mode     | Type of Control                   | Primary Outcome: (Effect<br>Size)                         | Enrolment Rate/<br>Dropout Rate |
| Shany (2017) [34]                     | Australia      | Outpatient settings                          | 42             | Tele-Medicine           | Patient's home                   | Telephone         | RACS-Plus                         | Hospital admission: (0.37)                                | 64/43                           |
| Sicotte (2011) [60]                   | Canada         | Others (letters, homecare)                   | 46             | Tele-Monitoring         | Patient's home                   | Internet          | Usual care                        | SF-12 (physical): (0.55)                                  | 100/4                           |
| Stickland (2011)<br>[71]              | Canada         | Outpatient/<br>hospital/primary<br>physician | 409            | Tele-Health-Care        | Medical center to patient's home | Videoconferencing | Standard pulmonary rehabilitation | SGRQ: (0.39)                                              | 100/12                          |
| Tabak (2014) [7]                      | Netherland     | Outpatient settings                          | 29             | Tele-Health-Care        | Patient's home                   | Smartphone        | Usual care                        | 6MWT (min): (0.2)                                         | 29/21                           |
| Trappenburg<br>(2008) [61]            | Netherland     | Outpatient settings                          | 115            | Tele-Monitoring         | Patient's home                   | Telephone         | Usual care                        | CRQ: (0.26)                                               | 70/43                           |
| Tsai (2017) [43]                      | Australia      | Outpatient settings                          | 37             | Tele-<br>Rehabilitation | Patient's home                   | Laptop            | Usual care                        | ISWT (m): (0.25)                                          | 29/3                            |
| Vianello (2016)<br>[66]               | Italy          | Outpatient settings                          | 334            | Tele-Monitoring         | Patient's home                   | Telephone         | Usual care                        | SF-36 (physical): (0.07)                                  | 73/15                           |
| Bhatt (2019) [53]                     | USA            | Outpatient settings                          | 240            | Tele-<br>Rehabilitation | Patient's home                   | Smartphone        | Standard pulmonary rehabilitation | 30 day all cause readmission rate: (0.44)                 | 100/6                           |
| Farias (2019) [54]                    | Canada         | Outpatient settings                          | 40             | Tele-Health-Care        | Patient's home                   | Smartphone        | No control                        | Exacerbation recovery time: (0.27)                        | 100/18                          |
| Farver-<br>Vestergaard<br>(2019) [55] | Denmark        | Outpatient settings                          | 8              | Tele-Medicine           | Patient's home                   | Tablet            | No control                        | hospital anxiety and depression score: (0.19)             | 17/0                            |
| Kessler (2018)<br>[40]                | Canada         | Outpatient settings                          | 319            | Tele-Health-Care        | Patient's home                   | Tablet            | Usual care                        | Annual unplanned all-<br>cause hospitalization:<br>(0.13) | 92/17                           |
| Loeckx (2018)<br>[49]                 | UK             | Outpatient settings                          | 159            | Tele-Health-Care        | Patient's home                   | Smartphone        | No control                        | CAT: (0.72)                                               | 93/8                            |
| Miron (2018) [50]                     | Spain          | Outpatient settings                          | 26             | Tele-Monitoring         | Patient's home                   | Laptop            | No control                        | CAT: (0.18)                                               | 93/8                            |
| Nyberg (2019) [3]                     | Sweden         | Outpatient settings                          | 83             | Tele-Health-Care        | Patient's home                   | Laptop            | Usual care                        | CAT: (0.38)                                               | 45/10                           |
| Wu (2018) [52]                        | Canada         | Outpatient settings                          | 28             | Tele-Health-Care        | Patient's home                   | Smartphone        | No control                        | Able to wear and maintain the smartwatch: (.)             | 16/43                           |
| Soriano (2018)<br>[65]                | Spain          | Outpatient settings                          | 229            | Tele-Health-Care        | Patient's home                   | Internet          | Usual care                        | The number of<br>exacerbations in the 12<br>month: (0.09) | 97/26                           |
| Tupper (2018)<br>[35]                 | Denmark        | Outpatient settings                          | 281            | Tele-Monitoring         | Patient's home                   | Tablet            | Usual care                        | 15-D score for HRQL:<br>(0.28)                            | 50/12                           |
| Walker (2018)                         | Italy          | Primary care clinic<br>after regular visits  | 312            | Tele-Monitoring         | Patient's home                   | Telephone         | Usual care                        | CAT: (0.05)                                               | 96/26                           |
| Rassouli (2018)<br>[58]               | Germany        | Others (letters, homecare)                   | 56             | Tele-<br>Rehabilitation | Patient's home                   | Smartphone        | No control                        | CAT: (0.31)                                               | 16/68                           |
| Minguez Clement<br>(2020) [26]        | Spain          | Outpatient/<br>hospital/primary<br>physician | 116            | TeleMedicine            | Patient's home                   | Internet          | Usual care                        | number of home visits: (0.82)                             | 94/11                           |
| Koff (2021) [39]                      | USA            | Primary care clinic<br>after regular visits  | 511            | TeleHealthCare          | Patient's home                   | Internet          | Usual care                        | SGRQ: (0.54)                                              | 100/24                          |
| Galdiz (2021) [37]                    | Spain          | Outpatient/<br>hospital/primary<br>physician | 94             | TeleRehabilitation      | Patient's home                   | Smartphone        | Usual care                        | 6MWD: (0.23)                                              | 70/9                            |
| Trosini-Desert<br>(2020) [63]         |                | Outpatient/<br>hospital/primary<br>physician | 42             | TeleMedicine            | Patient's home                   | Tablet            |                                   | Number of errors made: (.)                                | 84/19                           |

(continued on next page)

#### Table 1 (continued)

| Author (year)            | Study<br>Place | Recruitment method                           | Sample<br>Size | Intervention       | Intervention<br>Setting             | Delivery Mode        | Type of Control                        | Primary Outcome: (Effect<br>Size)    | Enrolment Rate/<br>Dropout Rate |
|--------------------------|----------------|----------------------------------------------|----------------|--------------------|-------------------------------------|----------------------|----------------------------------------|--------------------------------------|---------------------------------|
| Bentley (2020)<br>[24]   | UK             | Outpatient/<br>hospital/primary<br>physician | 30             | TeleHealthCare     | Patient's home                      | Smartphone           | Standard pulmonary rehabilitation (PR) | app used (no. of days): (.)          | 100/47                          |
| Jiang (2020) [38]        |                | Community centre                             | 106            | TeleMedicine       | Patient's home                      | Internet             | Face to face PeR                       | CAT: (0.013)                         | 52/11                           |
| Sink (2020) [27]         | USA            | Primary care clinic<br>after regular visits  | 168            | TeleMedicine       | Medical center to<br>patient's home | Automated phone call | Non-alerted Epharmix<br>COPD system    | time to COPD<br>hospitilization: (.) | 27/28                           |
| Stamenova (2020)<br>[45] | Canada         | Outpatient/<br>hospital/primary<br>physician | 81             | TeleMedicine       | Patient's home                      | Tablet               | Usual care                             | PIH: (0.493)                         | 10/15                           |
| Stamenova (2020)<br>[45] | Canada         | Outpatient/<br>hospital/primary<br>physician | 81             | TeleMedicine       | Patient's home                      | Tablet               | Usual care                             | РІН: (0.235)                         | 10/16                           |
| Holmner (2020)<br>[62]   | Sweden         | Community centre                             | 13             | TeleHealthCare     | Patient's home                      | Smartphone           |                                        | FEV1%: (3.77)                        | 52/15                           |
| Hansen (2020)<br>[25]    | Denmark        | Outpatient/<br>hospital/primary<br>physician | 134            | TeleRehabilitation | Patient's home                      | Videoconferencing    | Standard pulmonary rehabilitation (PR) | 6MWD (min): (.)                      | 35/32                           |
| Duiverman (2020)<br>[44] | Netherland     | Outpatient/<br>hospital/primary<br>physician | 67             | TeleMedicine       | Patient's home                      | Internet             | Initiation of NIV in<br>hospital       | PaCO2: (0.11)                        | 57/27                           |

SF-36: 36-Item Short Form Survey; SF-12: 12-Item Short Form Survey; 15D score for HRQL: 15-D score for health-related quality of life questionnaire; CRQ: Chronic respiratory questionnaire; SGRQ: St George's respiratory questionnaire; CAT: COPD assessment test; E-RS: EXACT-respiratory symptoms scale; MOS: MOS social support survey; 6MWT: 6 min walking test; ESWT: Endurance shuttle walking test; ISWT: Incremental shuttle walking test; TUG: timed up and go test; RCT: randomized clinical trials.

6

Characteristics of patient-related variables.

| Author (year)                     | Sample<br>Size | Sample<br>Size           | Age<br>Mean ±<br>SD                                              | Gender % of<br>men | FEV1 %<br>Moderate/<br>Severe <sup>a</sup> | Smoking<br>Inter./<br>Ctrl | Patient's stability after discharge from hospital <sup>b</sup> | Dropout<br>rate % |
|-----------------------------------|----------------|--------------------------|------------------------------------------------------------------|--------------------|--------------------------------------------|----------------------------|----------------------------------------------------------------|-------------------|
| Antoniades (2012)                 | 44             | 22(I)                    | $69\pm9$                                                         | 45                 | 41/54                                      | No/Yes                     | Stable                                                         | 18                |
| [11]<br>Bentley (2020) [24]       | 30             | 22(C)<br>19(I)           | 67±.                                                             | 43                 | NR                                         | NR                         | Stable                                                         | 47                |
| Berkhof (2015) [12]               | 101            | 52(I)                    | $68\pm9$                                                         | 67                 | 40/41                                      | Yes/Yes                    | Not stable                                                     | 7                 |
| Bhatt (2019) [53]                 | 240            | 49(C)<br>80(I)<br>160(C) | $63.95 \pm 10.95$                                                | 84                 | 45/49                                      | Yes/Yes                    | Stable                                                         | 6                 |
| Calvo (2014) [22]                 | 60             | 30(I)                    | 73.5 ±                                                           | 75                 | 37/38                                      | No/No                      | Stable                                                         | 13                |
| Cameron-Tucker<br>(2016) [9]      | 65             | 35(I)<br>30(C)           | 69 ± 8.6                                                         | 45                 | NR                                         | Yes/Yes                    | Not stable                                                     | 38                |
| Chau (2012) [30]                  | 45             | 22(I)<br>23(C)           | 72.93±.                                                          | 98                 | 34/44                                      | NR                         | Stable                                                         | 27                |
| Dale (2003) [64]                  | 55             | 55(I)<br>0(C)            | . ±.                                                             | NR                 | NR                                         | NR/Yes                     | Not stable                                                     | 20                |
| De san Miguel (2013)<br>[10]      | 80             | 40(I)<br>40(C)           | 72±                                                              | 46                 | NR                                         | NR                         | Stable                                                         | 36                |
| Dinesen (2012) [8]                | 111            | 60(I)<br>51(C)           | 68±.                                                             | NR                 | 40/43                                      | NR                         | Stable                                                         | 5                 |
| Duiverman (2020)<br>[44]          | 67             | 33(I)<br>34(C)           | $63.35\pm9$                                                      | 40                 | 63/68                                      | Yes/Yes                    | Stable                                                         | 27                |
| Farias (2019) [54]                | 40             | 40(I)<br>0(C)            | $69.8 \pm 6.9$                                                   | 36                 | 41/.                                       | Yes/NR                     | Stable                                                         | 18                |
| Farmer (2017) [1]                 | 166            | 110(I)<br>56(C)          | 69.8±.                                                           | 61                 | 47/50                                      | Yes/Yes                    | Stable                                                         | 13                |
| Farver-Vestergaard<br>(2019) [55] | 8              | 8(I)<br>0(C)             | $72.6 \pm 9.9$                                                   | 100                | 38/.                                       | No/NR                      | Stable                                                         | 0                 |
| Franke (2016) [56]                | 44             | 21(I)<br>23(C)           | 63.3±.                                                           | 55                 | NR                                         | NR                         | Stable                                                         | 36                |
| Galdiz (2021) [37]                | 94             | 46(I)<br>48(C)           | $\begin{array}{c} 62.65 \pm \\ 7.4 \end{array}$                  | 67                 | 46/43                                      | Yes/Yes                    | Stable                                                         | 9                 |
| Halpin (2011) [31]                | 79             | 40(I)<br>39(C)           | 69.35±.                                                          | 73                 | 48/54                                      | Yes/Yes                    | Stable                                                         | 3                 |
| Hansen (2020) [25]                | 134            | 67(I)<br>67(C)           | $68.3 \pm 9$                                                     | 45                 | 33/34                                      | Yes/Yes                    | Stable                                                         | 32                |
| Ho (2016) [47]                    | 106            | 53(I)<br>53(C)           | $\begin{array}{c} \textbf{80.2} \pm \\ \textbf{8.7} \end{array}$ | 76                 | 62/62                                      | Yes/Yes                    | Not stable                                                     | 0                 |
| Holmner (2020) [62]               | 13             | 13(I)<br>0(C)            | 67±.                                                             | 38                 | 53/.                                       | NR                         | Stable                                                         | 15                |
| Jakobsen (2015) [4]               | 57             | 29(I)<br>28(C)           | 75±.                                                             | 38                 | 44/42                                      | Yes/Yes                    | Stable                                                         | 26                |
| Jiang (2020) [38]                 | 106            | 53(I)<br>53(C)           | $\begin{array}{c} 71.36 \pm \\ 6.99 \end{array}$                 | 82                 | NR                                         | Yes/Yes                    | Stable                                                         | 11                |
| Kessler (2018) [40]               | 319            | 157(I)<br>162(C)         | $\begin{array}{c} 66.9 \pm \\ 9.3 \end{array}$                   | 47                 | 38/36                                      | Yes/Yes                    | Stable                                                         | 17                |
| Koff (2009) [28]                  | 40             | 20(I)<br>20(C)           | $65.8 \pm 8.65$                                                  | 53                 | 34/31                                      | Yes/Yes                    | Stable                                                         | 5                 |
| Koff (2021) [39]                  | 511            | 352(I)<br>159(C)         | $\begin{array}{c} 68.35 \pm \\ 9.1 \end{array}$                  | 60.6               | 36/38                                      | Yes/Yes                    | Stable                                                         | 24                |
| Lewis (2011) [32]                 | 40             | 20(I)<br>20(C)           | $\begin{array}{c} 68.5 \pm \\ 9.5 \end{array}$                   | 50                 | 38/40                                      | Yes/Yes                    | Stable                                                         | 0                 |
| Lilholt (2017) [5]                | 1225           | 578(I)<br>647(C)         | $69.95 \pm 9.25$                                                 | 70                 | 48/48                                      | Yes/Yes                    | Stable                                                         | 5                 |
| Loeckx (2018) [49]                | 159            | 159(I)<br>0(C)           | $66\pm8$                                                         | 64                 | 54/.                                       | Yes/NR                     | Stable                                                         | 8                 |
| Marquis (2015) [57]               | 22             | 22(I)<br>0(C)            | $\begin{array}{c} 65.2 \pm \\ 7.1 \end{array}$                   | 42                 | 48/.                                       | Yes/Yes                    | Stable                                                         | 5                 |
| McDowell (2015) [41]              | 100            | 48(I)<br>52(C)           | 69.5 ±<br>7.25                                                   | 80                 | 46/43                                      | Yes/Yes                    | Stable                                                         | 10                |
| Minguez Clement<br>(2020) [26]    | 116            | 58(I)<br>58(C)           | $69\pm8$                                                         | 70                 | 50/52                                      | Yes/Yes                    | Stable                                                         | 11                |
| Miron (2018) [50]                 | 26             | 26(I)<br>0(C)            | $78\pm7.9$                                                       | 93                 | 51/.                                       | Yes/NR                     | Stable                                                         | 8                 |
| Nield (2012) [2]                  | 22             | 11(I)<br>11(C)           | $65 \pm 6.5$                                                     | 100                | 55/56                                      | Yes/Yes                    | Stable                                                         | 27                |

(continued on next page)

| R. | Alhasani | et | ai |
|----|----------|----|----|
|----|----------|----|----|

#### Table 2 (continued)

| Author (year)                 | Sample<br>Size | Sample<br>Size   | Age Mean $\pm$                                     | Gender % of<br>men | FEV1 %<br>Moderate/ | Smoking<br>Inter./ | Patient's stability after<br>discharge from hospital <sup>b</sup> | Dropout<br>rate % |
|-------------------------------|----------------|------------------|----------------------------------------------------|--------------------|---------------------|--------------------|-------------------------------------------------------------------|-------------------|
|                               |                |                  | SD                                                 |                    | Severe <sup>a</sup> | Ctrl               |                                                                   |                   |
| Nyberg (2019) [3]             | 83             | 43(I)<br>40(C)   | $70\pm8$                                           | 46                 | 60/59               | Yes/Yes            | Stable                                                            | 10                |
| Pedone (2013) [29]            | 99             | 50(I)<br>49(C)   | $74.5\pm6$                                         | 73                 | 53/55               | Yes/Yes            | Stable                                                            | 11                |
| Pinnock (2013) [42]           | 256            | 128(I)<br>128(C) | $\begin{array}{c} 68.9 \pm \\ 8.6 \end{array}$     | 44                 | 44/40               | Yes/Yes            | Not stable                                                        | 1                 |
| Rassouli (2018) [58]          | 56             | 56(I)<br>0(C)    | 57.5 ±<br>7.8                                      | 11                 | NR                  | Yes/NR             | Not stable                                                        | 68                |
| Ringbaek (2015) [59]          | 281            | 141(I)<br>140(C) | $69 \pm 9.5$                                       | 47                 | 35/34               | Yes/Yes            | Not stable                                                        | 12                |
| Ringbaek (2016) [33]          | 115            | 46(I)<br>69(C)   | $68 \pm 10$                                        | 48                 | 31/35               | Yes/Yes            | Stable                                                            | 14                |
| Rosenbek (2015) [51]          | 37             | 37(I)<br>0(C)    | $\begin{array}{c} 69.2 \pm \\ 8.8 \end{array}$     | 14                 | 27/.                | NR                 | Stable                                                            | 16                |
| Schou (2013) [23]             | 44             | 22(I)<br>22(C)   | $\begin{array}{c} 70.5 \pm \\ 5.6 \end{array}$     | 41                 | 39/44               | NR                 | Stable                                                            | 5                 |
| Shany (2017) [34]             | 42             | 21(I)<br>21(C)   | $73\pm 8$                                          | 46                 | NR                  | Yes/Yes            | Not stable                                                        | 43                |
| Sicotte (2011) [60]           | 46             | 23(I)<br>23(C)   | $74\pm9$                                           | 57                 | NR                  | NR                 | Stable                                                            | 4                 |
| Sink (2020) [27]              | 168            | 83(I)<br>85(C)   | $60.91 \pm 1.08$                                   | 36                 | 65/63               | Yes/Yes            | Stable                                                            | 28                |
| Soriano (2018) [65]           | 229            | 115(I)<br>114(C) | $71\pm8$                                           | 80                 | 34/32               | Yes/Yes            | Stable                                                            | 26                |
| Stamenova (2020)<br>[45]      | 81             | 41(I)<br>40(C)   | $\begin{array}{c} 72.17 \pm \\ 8.6 \end{array}$    | 55                 | 52/45               | Yes/Yes            | Stable                                                            | 15                |
| Stamenova (2020)<br>[45]      | 81             | 41(I)<br>40(C)   | $\begin{array}{c} 72.17 \pm \\ 8.6 \end{array}$    | 55                 | 55/45               | Yes/Yes            | Stable                                                            | 16                |
| Stickland (2011) [71]         | 409            | 147(I)<br>262(C) | $69.35 \pm 9.15$                                   | 50                 | 48/49               | Yes/Yes            | Stable                                                            | 12                |
| Tabak (2014) [7]              | 29             | 15(I)<br>14(C)   | $63\pm8$                                           | 50                 | 50/36               | Yes/Yes            | Stable                                                            | 21                |
| Trappenburg (2008)            | 115            | 59(I)<br>56(C)   | $69.5 \pm 9$                                       | 53                 | 42/39               | Yes/Yes            | Stable                                                            | 43                |
| Trosini-Desert (2020)<br>[63] | 42             | 42(I)<br>0(C)    | . ±.                                               | 58                 | NR                  | Yes/NR             | Stable                                                            | 19                |
| Tsai (2017) [43]              | 37             | 20(I)<br>17(C)   | $74\pm8.5$                                         | 50                 | 60/68               | Yes/Yes            | Stable                                                            | 3                 |
| Tupper (2018) [35]            | 281            | 141(I)<br>140(C) | $\begin{array}{c} 69.6 \\ \pm \\ 9.55 \end{array}$ | 47                 | 35/34               | Yes/Yes            | Stable                                                            | 12                |
| Vianello (2016) [66]          | 334            | 230(I)<br>104(C) | $76\pm 6$                                          | 72                 | 42/42               | Yes/Yes            | Not stable                                                        | 15                |
| Walker (2018) [36]            | 312            | 154(I)<br>158(C) | 71±.                                               | 66                 | 49/50               | Yes/Yes            | Stable                                                            | 26                |
| Wu (2018) [52]                | 28             | 28(I)<br>0(C)    | 68.5±.                                             | 64                 | 57/.                | Yes/NR             | Stable                                                            | 43                |

I: intervention, C: control; NR: not reported.

<sup>a</sup> To note, the main criterion for COPD is a FEV1 ratio, sub-classification into mild (GOLD1: FEV1  $\geq$  80 % predicted), moderate (GOLD2: 50 %  $\leq$  FEV1 < 80 % predicted), severe (GOLD3: 30 %  $\leq$  FEV1 50 % predicted) and very severe (GOLD4: FEV1 < 30 % predicted) disease is achieved by including various levels of FEV1 as percentage of predicted value.

<sup>b</sup> After an exacerbation is appropriately managed, a suitable discharge plan should be prepared. This will depend on the severity of the exacerbation, but should generally include reclassification of the patient according to the GOLD criteria, optimization of pharmacological therapy, management of comorbidities, patient (or home caregiver) education on the correct use of medications, referral to a Pulmonology Consultation if they are not already attending one, and a smoking cessation and pulmonary rehabilitation program.

#### 2.4. Risk of bias assessment

Risk of bias of the quality of the included studies was assessed by two independent reviewers using the criteria list advised by the Cochrane Collaboration Risk of Bias criteria for randomized controlled trials (RCTs) [15] and the Scottish Intercollegiate Guidelines Network checklist (SIGN) for observational studies [16].

#### 2.5. Data extraction

A data extraction form was created, which included information on enrolment and dropout rates as well as on variables (i.e. trials, patients, intervention) [13] that can influence by the enrolment and dropout rates.

9

Characteristics of intervention-related variables.

| Author (year)                     | Type of program                                  | Classification                                              | Mode of delivery  | Professional guide                          | Parameters | Setting                             | Length<br>(months) | Frequency |
|-----------------------------------|--------------------------------------------------|-------------------------------------------------------------|-------------------|---------------------------------------------|------------|-------------------------------------|--------------------|-----------|
| Antoniades (2012)                 | Home support system                              | Self-management                                             | Laptop            | Nurse                                       | 8          | Patient's home                      | 12                 | Daily     |
| Bentley (2020) [24]               | Digital health system                            | Self-management and coping skills                           | Smartphone        | RT                                          | 2          | Patient's home                      | 2                  | Daily     |
| Berkhof (2015) [12]               | Home support system                              | Self-management                                             | Telephone         | Nurse and pulmonologist                     | 8          | Medical center to                   | 6                  | Others    |
|                                   | i i i i i i i i i i i i i i i i i i i            | <u> </u>                                                    |                   | i i i i i i i i i i i i i i i i i i i       |            | patient's home                      |                    |           |
| Bhatt (2019) [53]                 | Home support system                              | Education and lifestyles changes                            | Smartphone        | Telemonitoring team                         | 3          | Patient's home                      | 3                  | Others    |
| Calvo (2014) [22]                 | Home support system                              | Action plan                                                 | Internet          | Pulmonologist and primary                   | 4          | Patient's home                      | 7                  | Daily     |
| Cameron-Tucker<br>(2016) [9]      | Home support system                              | Action plan and lifestyles changes                          | Telephone         | Nurse                                       | 3          | Medical center to<br>patient's home | 2                  | Others    |
| Chau (2012) [30]                  | Home support system                              | Self-management                                             | Smartphone        | Nurse                                       | 3          | Patient's home                      | 2                  | Daily     |
| Dale (2003) [64]                  | Home support system                              | Self-management                                             | Telephone         | Nurse                                       | 3          | Patient's home                      | 3                  | Daily     |
| De san Miguel (2013)              | Home support system                              | Self-management education                                   | Telephone         | Nurse                                       | 5          | Patient's home                      | 6                  | Daily     |
| Dinesen (2012) [8]                | Home support system                              | Action plan                                                 | Telephone         | General practitioner                        | 5          | Patient's home                      | 4                  | Daily     |
| Duiverman (2020)                  | Home support system                              | Self-management                                             | Internet          | Nurse                                       | 4          | Patient's home                      | 6                  | Others    |
| Farias (2019) [54]                | Home support system and<br>Digital health system | Action plan and lifestyles changes                          | Smartphone        | Nurse                                       | 1          | Patient's home                      | 12                 | Others    |
| Farmer (2017) [1]                 | Digital health system                            | Self-management and coping skills                           | Tablet            | Respiratory therapist                       | 3          | Patient's home                      | 12                 | Daily     |
| Farver-Vestergaard<br>(2019) [55] | Home support system                              | Education                                                   | Tablet            | Clinical psychologist                       | 2          | Patient's home                      | 2                  | Others    |
| Franke (2016) [56]                | Home support system                              | Action plan                                                 | Telephone         | Nurse                                       | 3          | Patient's home                      | 6                  | Daily     |
| Galdiz (2021) [37]                | Home support system                              | Self-management education,<br>action planned                | Smartphone        | Pulmonologist and primary<br>care physician | 4          | Patient's home                      | 12                 | Others    |
| Halpin (2011) [31]                | Home support system                              | Action plan                                                 | Smartphone        | Nurse                                       | 3          | Patient's home                      | 4                  | Daily     |
| Hansen (2020) [25]                | Home support system                              | Self-management education                                   | Videoconferencing | PT                                          | 4          | Patient's home                      | 3                  | Others    |
| Ho (2016) [47]                    | Home support system                              | Self-management                                             | Laptop            | Nurse and pulmonologist                     | 3          | Patient's home                      | 2                  | Daily     |
| Holmner (2020) [62]               | Home support system                              | Self-management                                             | Smartphone        | Researcher                                  | 3          | Patient's home                      | 6                  | Others    |
| Jakobsen (2015) [4]               | Home support system                              | Self-management                                             | Tablet            | Nurse and pulmonologist                     | 3          | Patient's home                      | 6                  | Daily     |
| Jiang (2020) [38]                 | Home support system                              | Self-management education,<br>action planned, coping skills | Internet          | Nurse                                       | 3          | Patient's home                      | 6                  | Others    |
| Kessler (2018) [40]               | Home support system and<br>Digital health system | Self-management and coping skills                           | Tablet            | Telemonitoring team                         | 3          | Patient's home                      | 24                 | Daily     |
| Koff (2009) [28]                  | Home support system                              | Self-management education                                   | Telephone         | Respiratory therapist                       | 2          | Patient's home                      | 3                  | Daily     |
| Koff (2021) [39]                  | Digital health system                            | Self-management education,                                  | Internet          | Researcher                                  | 2          | Patient's home                      | 9                  | Daily     |
| Lewis (2011) [32]                 | Home support system                              | Self-management                                             | Telephone         | Nurse and pulmonologist                     | 3          | Patient's home                      | 6                  | Daily     |
| Lilholt (2017) [5]                | Home support system                              | Self-management and coping skills                           | Tablet            | Municipal healthcare worker                 | 4          | Patient's home                      | 12                 | Daily     |
| Loeckx (2018) [49]                | Home support system and<br>Digital health system | Education                                                   | Smartphone        | COPD educator                               | 1          | Patient's home                      | 3                  | Daily     |
| Marquis (2015) [57]               | Home support system                              | Self-management education                                   | Videoconferencing | Nurse                                       | 3          | Patient's home                      | 2                  | Others    |
| McDowell (2015)                   | Home support system                              | Self-management education                                   | Telephone         | Nurse                                       | 3          | Patient's home                      | 6                  | Daily     |
| Minguez Clement<br>(2020) [26]    | Home support system                              | Action planned                                              | Internet          | Nurse and pulmonologist                     | 5          | Patient's home                      | 6                  | Others    |
| Miron (2018) [50]                 | Home support system and<br>Digital health system | Self-management                                             | Laptop            | Nurse                                       | 4          | Patient's home                      | 6                  | Daily     |

# Table 3 (continued)

| Author (year)                 | Type of program                                  | Classification                                      | Mode of delivery     | Professional guide                               | Parameters | Setting                             | Length<br>(months) | Frequency |
|-------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------|--------------------------------------------------|------------|-------------------------------------|--------------------|-----------|
| Nield (2012) [2]              | Home support system                              | Education                                           | Laptop               | COPD educator                                    | 1          | Patient's home                      | 1                  | Others    |
| Nyberg (2019) [3]             | Digital health system                            | Self-management                                     | Laptop               | Telemonitoring team                              | 1          | Patient's home                      | 12                 | Daily     |
| Pedone (2013) [29]            | Digital health system                            | Self-management                                     | Cellular telephone   | Primary care physician                           | 1          | Patient's home                      | 9                  | Daily     |
| Pinnock (2013) [42]           | Home support system                              | Self-management education                           | Internet             | Respiratory therapist                            | 1          | Patient's home                      | 12                 | Daily     |
| Rassouli (2018) [58]          | Digital health system                            | Education and lifestyles changes                    | Smartphone           | Telemonitoring team                              | 2          | Patient's home                      | 0.66               | Daily     |
| Ringbaek (2015) [59]          | Home support system                              | Self-management consultation                        | Internet             | Nurse                                            | 3          | Patient's home                      | 6                  | Others    |
| Ringbaek (2016) [33]          | Digital health system                            | Education and lifestyles changes                    | Tablet               | Respiratory therapist                            | 1          | Patient's home                      | 2                  | Others    |
| Rosenbek (2015) [51]          | Home support system                              | Self-management education                           | Internet             | Telemonitoring team                              | 2          | Patient's home                      | 1                  | Others    |
| Schou (2013) [23]             | Home support system                              | Self-management                                     | Videoconferencing    | Ward round ream                                  | 4          | Patient's home                      | 3                  | Daily     |
| Shany (2017) [34]             | Others (home support<br>system and RACS-Plus)    | Self-management education                           | Telephone            | Nurse                                            | 7          | Patient's home                      | 12                 | Daily     |
| Sicotte (2011) [60]           | Home support system                              | Self-management                                     | Internet             | Nurse                                            | 3          | Patient's home                      | 3                  | Daily     |
| Sink (2020) [27]              | Home support system                              | Action planned                                      | Automated phone call | Medical resident                                 | 3          | Medical center to<br>patient's home | 8                  | Daily     |
| Soriano (2018) [65]           | Digital health system                            | Self-management                                     | Internet             | Nurse                                            | 4          | Patient's home                      | 12                 | Daily     |
| Stamenova (2020)<br>[45]      | Digital health system                            | Action planned                                      | Tablet               | RT                                               | 5          | Patient's home                      | 6                  | Daily     |
| Stamenova (2020)<br>[45]      | Digital health system                            | Action planned                                      | Tablet               | RT                                               | 6          | Patient's home                      | 7                  | Daily     |
| Stickland (2011) [71]         | Home support system                              | Self-management education                           | Videoconferencing    | Respiratory therapist                            | 3          | Medical center to<br>patient's home | 2                  | Others    |
| Tabak (2014) [7]              | Home support system and<br>Digital health system | Self-management, action plan and lifestyles changes | Smartphone           | Physiotherapist                                  | 3          | Patient's home                      | 6                  | Daily     |
| Trappenburg (2008)<br>[61]    | Digital health system                            | Self-management education                           | Telephone            | Nurse                                            | 3          | Patient's home                      | 6                  | Daily     |
| Trosini-Desert (2020)<br>[63] | Home support system                              | Self-management education, action planned           | Tablet               | Physician, nurse, pharmacist,<br>hospital person | 2          | Patient's home                      | 0.25               | Daily     |
| Tsai (2017) [43]              | Home support system                              | Action plan                                         | Laptop               | Physiotherapist                                  | 3          | Patient's home                      | 2                  | Others    |
| Tupper (2018) [35]            | Home support system                              | Self-management                                     | Tablet               | Nurse                                            | 3          | Patient's home                      | 6                  | Others    |
| Vianello (2016) [66]          | Home support system                              | Self-management                                     | Telephone            | Operator                                         | 3          | Patient's home                      | 12                 | Daily     |
| Walker (2018) [36]            | Digital health system                            | Self-management                                     | Telephone            | Telemonitoring team                              | 5          | Patient's home                      | 9                  | Daily     |
| Wu (2018) [52]                | Digital health system                            | Action plan                                         | Smartphone           | Telemonitoring team                              | 2          | Patient's home                      | 3                  | Daily     |



Fig. 2. Flowchart showing the numbers of participants from all included studies.

# Table 4Overall enrolment and dropout rates.

|                                                  | Unweighted | Estimated (weighted) | SE  | 95 % CI      |
|--------------------------------------------------|------------|----------------------|-----|--------------|
| Enrollment rate (N $=$ 56)                       | 63 %       | 50.3 %               | 0.3 | 49.7 to 50.9 |
| Dropout rate (N $=$ 56)                          | 18 %       | 14.9 %               | 0.1 | 14.7 to 15.2 |
| Dropout rate in intervention groups ( $N = 56$ ) | 19 %       | 16.6 %               | 0.2 | 16.2 to 17.0 |
| Dropout rate in control groups $(N = 44)^a$      | 16 %       | 13.1 %               | 0.2 | 12.7 to 13.4 |

SE: standard error; CI: confidence intervals; N: number of studies.

<sup>a</sup> The number of studies with a control group was 36, as other studies were pre/post-intervention trials.

#### 2.6. Statistical methods

Descriptive statistics were used to describe the characteristics of trials, patients, and interventions. Data were expressed as means  $\pm$  standard deviation or as frequencies. The enrollment rate was defined as the proportion of individuals who consented to participate in the study out of the total number of eligible patients [13]. The dropout rate was defined as the proportion of participants who dropped out from the study (at the first evaluation point post-intervention) out of the number of participants who consented to participate in the study [13]. A random effect meta-regression analysis was used to estimate the overall enrolment and dropout rates of COPD telehealth interventions. This model accounted for the differential weights (due to different sample sizes) of each included study and estimated the different variables' effects on the enrolment rate, dropout rate, and effect size [17–19].

If studies had more than one outcome measure, the primary outcome's effect size was included in the analysis unless indicated otherwise. If the effect size was not reported in the study, it was calculated using Cohen d [20], taking the difference in the mean change in the primary outcome between the intervention and control groups and dividing it by the initial pooled standard deviation. For trials without a control group, the effect size was calculated by dividing the mean change in the outcome (pre and post-intervention) by the initial standard deviation. If the standard deviation was not reported in the study, it was estimated using the *p*-value or 95 % confidence intervals [21]. Where there was insufficient information to calculate the effect size, those studies were excluded from the effect size analysis.

The reasons for refusing to participate and dropping out of the telehealth interventions were listed by category in order of frequency. Recommendations provided by authors on ways to improve enrolment and dropout rates were summarized qualitatively. A *p*-value  $\leq$ 0.05 was considered statistically significant. A dropout rate difference of 5 % was considered clinically significant. Statistical analyses were performed using the Statistical Analysis Systems (SAS version 9.4).



Fig. 3. Forest plot of dropout rates.

# 3. Results

#### 3.1. Search results

Fig. 1 provides the details of the study selection process, and reasons for exclusion according to PRISMA flowchart [14]. The search strategy was updated in October 2021 and yielded a total of 56 articles.

Effect of trial-related variables on enrollment rate.

| Variables                                          | N (%) of<br>studies | N (%) of<br>participants | Un-weigh       | ted Enrollment rate (%) Estimated difference in enrollment rate in comparison to referent category |     |     | Estimated difference in enrollment rate<br>comparison to referent category |     |                   |          |
|----------------------------------------------------|---------------------|--------------------------|----------------|----------------------------------------------------------------------------------------------------|-----|-----|----------------------------------------------------------------------------|-----|-------------------|----------|
|                                                    |                     |                          | Mean<br>(SD)   | Median                                                                                             | Min | Max | Estimate                                                                   | SE  | 95 % CI           | p-value  |
| Publication years                                  |                     |                          |                |                                                                                                    |     |     |                                                                            |     |                   |          |
| 2015–2021                                          | 38 (68 %)           | 5934 (79 %)              | 63.0<br>(32.4) | 72                                                                                                 | 9   | 100 | Reference                                                                  | -   | -                 | -        |
| 2010–2014                                          | 15 (27 %)           | 1386 (18 %)              | 58.3<br>(34.6) | 61                                                                                                 | 7   | 100 | -14.6                                                                      | 0.7 | -16.0 to<br>-13.3 | < 0.0001 |
| 2000–2009                                          | 3 (5 %)             | 210 (3 %)                | 90.0<br>(17.3) | 100                                                                                                | 70  | 100 | 30.1                                                                       | 1.1 | 28.0 to 32.2      | < 0.0001 |
| Study place                                        |                     |                          |                |                                                                                                    |     |     |                                                                            |     |                   |          |
| Denmark                                            | 10 (18 %)           | 2293 (30 %)              | 53.8<br>(36.9) | 50                                                                                                 | 7   | 100 | Reference                                                                  | -   | -                 | -        |
| UK                                                 | 9 (16 %)            | 907 (12 %)               | 72.3<br>(29.7) | 81                                                                                                 | 12  | 100 | -2.0                                                                       | 0.9 | -3.9 to<br>-0.2   | 0.0335   |
| Australia                                          | 5 (9 %)             | 268 (4 %)                | 44.0<br>(37.6) | 29                                                                                                 | 9   | 100 | -28.7                                                                      | 0.9 | -30.5 to<br>-26.9 | < 0.0001 |
| Others                                             | 32 (57 %)           | 4062 (54 %)              | 66.5<br>(31.1) | 73                                                                                                 | 10  | 100 | 0.7                                                                        | 0.7 | -0.7 to 2.0       | 0.3224   |
| Study type                                         |                     |                          |                |                                                                                                    |     |     |                                                                            |     |                   |          |
| RCT                                                | 39 (70 %)           | 6075 (81 %)              | 57.7<br>(32.2) | 57                                                                                                 | 7   | 100 | Reference                                                                  | -   | -                 | -        |
| Others                                             | 17 (30 %)           | 1455 (19 %)              | 75.8<br>(31.2) | 85                                                                                                 | 16  | 100 | 20.3                                                                       | 0.9 | 18.5 to 22.0      | < 0.0001 |
| Recruitment method                                 |                     |                          |                |                                                                                                    |     |     |                                                                            |     |                   |          |
| Outpatient settings                                | 31 (55 %)           | 3643 (48 %)              | 61.2<br>(33.3) | 70                                                                                                 | 7   | 100 | Reference                                                                  | -   | -                 | -        |
| Primary care clinic after regular<br>visits        | 17 (30 %)           | 3424 (46 %)              | 65.4<br>(34.1) | 81                                                                                                 | 9   | 100 | 12.6                                                                       | 0.6 | 11.4 to 13.9      | < 0.0001 |
| Community center and Others<br>(letters, homecare) | 8 (14 %)            | 463 (6 %)                | 66.2<br>(30.7) | 69                                                                                                 | 16  | 100 | 3.9                                                                        | 1.1 | 1.8 to 6.0        | 0.0003   |
| Quality assessment                                 |                     |                          |                |                                                                                                    |     |     |                                                                            |     |                   |          |
| Cochrane High                                      | 11 (20 %)           | 1286 (17 %)              | 58.2<br>(33.3) | 61                                                                                                 | 7   | 100 | Reference                                                                  | -   | -                 | _        |
| Cochrane Fair                                      | 21 (37 %)           | 3988 (53 %)              | 56.3<br>(30.5) | 57                                                                                                 | 9   | 100 | 8.6                                                                        | 0.7 | 7.2 to 9.9        | < 0.0001 |
| SIGN Well covered                                  | 6 (11 %)            | 703 (9 %)                | 80.8<br>(32.4) | 93                                                                                                 | 16  | 100 | 38.1                                                                       | 1.2 | 35.7 to 40.5      | < 0.0001 |
| SIGN Adequate                                      | 10 (18 %)           | 697 (9 %)                | 70.3<br>(32.1) | 82                                                                                                 | 16  | 100 | 12.2                                                                       | 1.3 | 9.8 to 14.7       | < 0.0001 |
| Cochrane or SIGN Poor                              | 8 (14 %)            | 856 (12 %)               | 66.1<br>(39.2) | 86                                                                                                 | 9   | 100 | 3.5                                                                        | 1.0 | 1.5 to 5.4        | 0.0006   |

## 3.2. Risk of bias assessment

The overall assessment of the included RCTs based on the Cochrane Collaboration Risk of Bias criteria were judged as "High" in 11 (29 %) studies [2,3,7,22–29], "Fair" in 20 (53 %) studies [4,5,12,30–46], and "Low" in 7 (18 %) studies [1,8–11,47,48] (Appendix 3). The overall assessment of included observational studies based on SIGN was judged as "Well covered" in 5 (29 %) studies [6,49–52], "Adequately addressed" in 11 (65 %) studies [53–63], and "Poorly addressed" in one study (6 %) [64] (Appendix 4).

# 3.3. Characteristics of trial-related variables

A detailed description of each of the 56 articles included in this systematic review [1-12,22-45,47,49-66] is provided in Table 1. The majority of studies were RCTs (n = 38; 68 %; Appendix 3). Methods for recruiting patients varied, including: outpatient settings (41 %), primary care (29), and community (7 %).

## 3.4. Characteristics of patient-related variables

The total sample size was 7530, and the mean age of patients ranged from 57.5 to 80.2 years. The majority of studies included more men than women, and most patients were smokers. The severity of the disease ranged between moderate to severe (intervention group: FEV1% = 27%-65%; control group: 31%-68%), and 83% of the patients were discharged from the hospital in stable condition (Table 2).

Effect of trial-related variables on dropout rate.

| Variables                                   | N (%) of<br>studies | N (%) of participants | Un-weighted Dropout rate (%) |        |     |     | Estimated difference in Dropout rate in comparison to referent category |     |                 |          |  |  |
|---------------------------------------------|---------------------|-----------------------|------------------------------|--------|-----|-----|-------------------------------------------------------------------------|-----|-----------------|----------|--|--|
|                                             |                     |                       | Mean<br>(SD)                 | Median | Min | Max | Estimate                                                                | SE  | 95 % CI         | p-value  |  |  |
| Publication years                           |                     |                       |                              |        |     |     |                                                                         |     |                 |          |  |  |
| 2015–2021                                   | 38 (68 %)           | 5934 (79 %)           | 19.3<br>(14.5)               | 15.2   | 0   | 68  | Reference                                                               | -   | -               | -        |  |  |
| 2010–2014                                   | 15 (27 %)           | 1386 (18 %)           | 12.5<br>(11.0)               | 11     | 0   | 36  | -5.0                                                                    | 0.3 | -5.6 to<br>-4.5 | < 0.0001 |  |  |
| 2000–2009                                   | 3 (5 %)             | 210 (3 %)             | 22.7<br>(19.1)               | 20     | 5   | 43  | 14.3                                                                    | 1.1 | 12.2 to<br>16.4 | < 0.0001 |  |  |
| Study place                                 |                     |                       |                              |        |     |     |                                                                         |     |                 |          |  |  |
| Denmark                                     | 10 (18 %)           | 2293 (30 %)           | 12.7<br>(10.0)               | 12     | 0   | 32  | Reference                                                               | -   | -               | -        |  |  |
| UK                                          | 9 (16 %)            | 907 (12 %)            | 14.3<br>(15.0)               | 10     | 0   | 47  | -0.6                                                                    | 0.3 | -1.3 to $0.1$   | 0.0897   |  |  |
| Australia                                   | 5 (9 %)             | 268 (4 %)             | 27.6<br>(16.7)               | 36     | 3   | 43  | 20.6                                                                    | 0.8 | 19.0 to<br>22.3 | < 0.0001 |  |  |
| Others                                      | 32 (57 %)           | 4062 (54 %)           | 18.6<br>(14.0)               | 15     | 0   | 68  | 8.9                                                                     | 0.2 | 8.5 to 9.4      | < 0.0001 |  |  |
| Study type                                  |                     |                       |                              |        |     |     |                                                                         |     |                 |          |  |  |
| RCT                                         | 39 (70 %)           | 6075 (81 %)           | 16.8<br>(12.1)               | 13     | 0   | 47  | Reference                                                               | -   | -               | -        |  |  |
| Others                                      | 17 (30 %)           | 1455 (19 %)           | 19.7<br>(17.9)               | 15     | 0   | 68  | 2.6                                                                     | 0.4 | 1.7 to 3.4      | < 0.0001 |  |  |
| Recruitment method                          |                     |                       |                              |        |     |     |                                                                         |     |                 |          |  |  |
| Outpatient settings                         | 31 (55 %)           | 3643 (48 %)           | 18.3<br>(12.3)               | 15     | 0   | 47  | Reference                                                               | -   | -               | -        |  |  |
| Primary care clinic after<br>regular visits | 17 (30 %)           | 3424 (46 %)           | 16.1<br>(12.7)               | 13     | 0   | 38  | -3.3                                                                    | 0.2 | -3.8 to<br>-2.9 | < 0.0001 |  |  |
| Community center                            | 8 (14 %)            | 463 (6 %)             | 18.7<br>(22.8)               | 11     | 0   | 68  | 4.1                                                                     | 1.0 | 2.2 to 6.0      | < 0.0001 |  |  |
| Quality assessment                          |                     |                       |                              |        |     |     |                                                                         |     |                 |          |  |  |
| Cochrane High                               | 11 (20 %)           | 1286 (17 %)           | 17.6<br>(14.2)               | 13     | 1   | 47  | Reference                                                               | -   | -               | -        |  |  |
| Cochrane Fair                               | 21 (37 %)           | 3988 (53 %)           | 15.4<br>(10.4)               | 12     | 0   | 43  | -2.4                                                                    | 0.3 | −3.1 to<br>−1.7 | < 0.0001 |  |  |
| SIGN Well covered                           | 6 (11 %)            | 703 (9 %)             | 20.5<br>(15.2)               | 14     | 8   | 43  | -1.7                                                                    | 0.5 | -2.6 to<br>-0.8 | 0.0002   |  |  |
| SIGN Adequate                               | 10 (18 %)           | 697 (9 %)             | 19.2<br>(21.0)               | 15     | 0   | 68  | 4.2                                                                     | 0.8 | 2.6 to 15.8     | < 0.0001 |  |  |
| Cochrane or SIGN Poor                       | 8 (14 %)            | 856 (12 %)            | 19.5<br>(13.6)               | 19     | 0   | 38  | 3.0                                                                     | 0.5 | 2.0 to 4.0      | <0.0001  |  |  |

## 3.5. Characteristics of intervention-related variables

The interventions provided in different studies were mostly home support system (66 %), aimed at delivering self-management support (32 %). The intervention setting was primarily patients' home (93 %), and the interventions were mostly web-based and provided through the internet, smartphone, tablet, and laptop (66 %). The control groups were mainly provided with usual care (57 %). The majority of studies (75 %) included guidance by a health professional. Most protocols required that patients monitor their parameter measurements daily (66 %) (Table 3).

# 3.6. Enrollment and dropout rates

Fig. 2 presents the flowchart of the numbers of participants from all included studies. A total of 14812 participants with COPD were approached, of whom 7530 consented to participate. The number of participants who dropped out from the intervention and control groups was 673 and 451 participants, respectively. This gave a total number of 1124 dropout participants across all the included studies. Using the random effects meta-regression model, the estimated enrollment rate and dropout rate of the included studies were 50.3 % (95 % CI 47.7 to 50.9) and 14.9 % (95 % CI 14.7 to 15.2); respectively (Table 4). The specific dropout rate of each study along with their 95 % CI is shown in Fig. 3.

The effects of trial-related variables on the enrollment rates indicated that studies using non-RCT designs had a higher enrollment rate by 20.3 % than studies which used RCT design. Compared with those studies recruiting from outpatient settings, the enrolment rate was higher by 12.6 % and 3.9 % in studies recruiting from primary care clinics, and community centers, respectively (Table 5). The effect of trial-related variables on dropout rates indicated that studies using other designs had a higher dropout rate by 2.6 % compared

Effect of patient-related variables on dropout rate.

| Variables                         | N (%) of<br>participants | Un-weighted | l Dropout ra   | ate (%) |     | Estimated difference in Dropout rate in comparison to referent category |           |     |                  |          |
|-----------------------------------|--------------------------|-------------|----------------|---------|-----|-------------------------------------------------------------------------|-----------|-----|------------------|----------|
|                                   |                          |             | Mean (SD)      | Median  | Min | Max                                                                     | Estimate  | SE  | 95 % CI          | p-value  |
| Age                               |                          |             |                |         |     |                                                                         |           |     |                  |          |
| 60–69                             | 35 (62 %)                | 5557 (74 %) | 18.7<br>(15.4) | 14      | 0   | 68                                                                      | Reference | -   | -                | -        |
| 70 and over                       | 19 (34 %)                | 1876 (25 %) | 15.5<br>(12.1) | 13      | 0   | 43                                                                      | 4.1       | 0.3 | 3.6 to 4.6       | <0.0001  |
| Not reported<br>Gender (% of men) | 2 (4 %)                  | 97 (1 %)    | 19.5 (0.7)     | 20      | 19  | 20                                                                      | 5.8       | 0.2 | 5.5 to 6.1       | <0.0001  |
| <50 %                             | 21 (37 %)                | 2234 (30 %) | 23.2<br>(16.3) | 18      | 1   | 68                                                                      | Reference | -   | -                | -        |
| 50-64 %                           | 15 (27 %)                | 1828 (24 %) | 17.5<br>(13.9) | 15      | 0   | 43                                                                      | -1.0      | 0.4 | -1.7 to -0.3     | 0.0080   |
| ≥65 %                             | 18 (32 %)                | 3302 (44 %) | 11.9 (9.0)     | 10.5    | 0   | 27                                                                      | -8.0      | 0.3 | -8.7 to -7.4     | < 0.0001 |
| Not reported                      | 2 (4 %)                  | 166 (2 %)   | 12.5<br>(10.6) | 12.5    | 5   | 20                                                                      | -8.9      | 0.6 | -10.1 to<br>-7.7 | < 0.0001 |
| Severity of disease (GOLD         | 3 or 4)                  |             |                |         |     |                                                                         |           |     |                  |          |
| <b>≤50 %</b>                      | 10 (18 %)                | 1197 (16 %) | 13.7<br>(11.5) | 10.5    | 0   | 38                                                                      | Reference | -   | -                | -        |
| >50 %                             | 25 (45 %)                | 4128 (55 %) | 14.2<br>(12.2) | 12      | 0   | 43                                                                      | -4.1      | 0.3 | -4.8 to -3.5     | < 0.0001 |
| Missing                           | 21 (37 %)                | 2205 (29 %) | 23.7<br>(15.5) | 20      | 0   | 68                                                                      | 7.1       | 0.4 | 6.4 to 7.9       | < 0.0001 |
| FEV1 %                            |                          |             |                |         |     |                                                                         |           |     |                  |          |
| <b>≤38 %</b>                      | 13 (23 %)                | 2100 (28 %) | 15.2<br>(10.1) | 14      | 0   | 32                                                                      | Reference | -   | -                | -        |
| 39%-44 %                          | 9 (16 %)                 | 1102 (15 %) | 15.3<br>(13.1) | 15      | 1   | 43                                                                      | -5.3      | 0.4 | -6.0 to -4.5     | < 0.0001 |
| ≥45 %                             | 24 (43 %)                | 3762 (50 %) | 13.8<br>(10.2) | 11      | 0   | 43                                                                      | -7.6      | 0.2 | -8.0 to -7.2     | < 0.0001 |
| Missing                           | 10 (18 %)                | 566 (7 %)   | 32.2<br>(18.9) | 36      | 4   | 68                                                                      | 11.9      | 0.8 | 10.4 to 13.4     | < 0.0001 |
| Smoking (Intervention)            |                          |             |                |         |     |                                                                         |           |     |                  |          |
| Yes                               | 43 (77 %)                | 6913 (92 %) | 17.4<br>(14.1) | 13      | 0   | 68                                                                      | Reference | -   | -                | -        |
| No                                | 3 (5 %)                  | 112 (1 %)   | 10.3 (9.3)     | 13      | 0   | 18                                                                      | -0.5      | 0.5 | -1.4 to 0.3      | 0.2334   |
| Not reported                      | 10 (18 %)                | 505 (7 %)   | 21.1<br>(14.9) | 18      | 4   | 47                                                                      | 5.1       | 0.6 | 3.8 to 6.4       | <0.0001  |
| Patient's stability               |                          |             |                |         |     |                                                                         |           |     |                  |          |
| Stable after discharged           | 47 (84 %)                | 6234 (83 %) | 16.7<br>(11.8) | 14      | 0   | 47                                                                      | Reference | -   | -                | -        |
| Not stable after<br>discharged    | 9 (16 %)                 | 1296 (17 %) | 22.7<br>(22.7) | 15      | 0   | 68                                                                      | -0.7      | 0.4 | -1.6 to 0.1      | 0.0998   |

to studies that used RCT design. Compared with those studies recruiting from outpatient settings, the dropout rate was lower by 3.3 % in studies recruiting from primary care clinics, and higher by 4.1 % in studies recruiting from community centers (Table 6). Most trial-related variables had statistically significant effects on the estimated enrolment and dropout rates (p < 0.0001) (Tables 5 and 6).

The effect of patient-related variables on the dropout rate indicated that age, gender, and the severity of the disease were found to have the most effect on the dropout rate. Studies that included patients with a mean age of  $\geq$ 70 years had a higher estimated dropout rate by 4.1 % than studies that included patients with a mean age of 60–69. Studies that consisted of 50%–64 % and  $\geq$ 65 % of men had a lower dropout rate by 1 % and 8 %, respectively, compared to studies including <50 % of men. Studies with >50 % of patients with severe COPD (GOLD 3 or 4) had a lower dropout rate by 4.1 % than studies with  $\leq$ 50 % of patients with severe COPD. Studies with FEV % ranged between 39% and 44 % or  $\geq$ 45 % had a lower dropout rate by 5.3 % and 7.6 %, respectively, as compared to studies with FEV1  $\leq$ 38 %. Interestingly, studies that did not report or perhaps did not measure either GOLD or FEV1% had higher dropout rates by 7.1 % and 11.9 %, respectively (Table 7).

The effect of intervention-related variables on the dropout rate indicated that studies that delivered a digital health system had a higher estimated dropout rate by 12.8 % than a home support system (see Appendix 2 for definitions). Compared to self-management consultation programs, self-management and coping skills had a lower dropout rate by 7.1, and higher by 0.4 % and 1.5 % for action plan and self-management education and lifestyle, respectively. Studies that had other modes of delivery had an estimated dropout rate lower by 7.7 % compared to using a telephone. Compared to interventions with durations of  $\leq$  3-month, the dropout rate was lower by 1.5 % for interventions lasting 7–24 months (Table 8). On examining the effect of patient-related variables (Appendix 5) and intervention-related variables (Appendix 6) on dropout rates within participants included in the intervention group only, some differences were noted in the magnitude of dropout rate estimates, but interpretations were the same. Most patient- and intervention-related variables had statistically significant effects on the estimated dropout rates (p < 0.0001).

Effect of intervention related variables on dropout rate.

| Variables                                                                                                           | N (%) of<br>studies | N (%) of<br>participants | Un-weighted Dropout rate (%) |        |     | Estimated difference in Dropout rate i<br>comparison to referent category |           |     | rate in           |          |
|---------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|------------------------------|--------|-----|---------------------------------------------------------------------------|-----------|-----|-------------------|----------|
|                                                                                                                     |                     |                          | Mean<br>(SD)                 | Median | Min | Max                                                                       | Estimate  | SE  | 95 % CI           | p-value  |
| Type of intervention                                                                                                |                     |                          |                              |        |     |                                                                           |           |     |                   |          |
| Home support system                                                                                                 | 37 (66<br>%)        | 5009 (67 %)              | 14.0<br>(11.2)               | 12     | 0   | 38                                                                        | Reference | -   | -                 | -        |
| Digital health system                                                                                               | 13 (23<br>%)        | 1906 (25 %)              | 27.3<br>(17.7)               | 24     | 10  | 68                                                                        | 12.8      | 0.3 | 12.2 to<br>13.3   | <0.0001  |
| Others                                                                                                              | 6 (11 %)            | 615 (8 %)                | 19.2<br>(12.9)               | 18     | 8   | 43                                                                        | 5.1       | 0.4 | 4.4 to 5.8        | <0.0001  |
| Classification                                                                                                      |                     |                          |                              |        |     |                                                                           |           |     |                   |          |
| Self-management consultation                                                                                        | 19 (34<br>%)        | 2263 (30 %)              | 14.2<br>(9.2)                | 12     | 0   | 27                                                                        | Reference | -   | -                 | -        |
| Action plan                                                                                                         | 10 (18<br>%)        | 805 (11 %)               | 17.3<br>(13.9)               | 14     | 3   | 43                                                                        | 0.4       | 0.4 | –0.5 to<br>1.2    | 0.3951   |
| Self-management education and lifestyle<br>changes                                                                  | 20 (36<br>%)        | 2588 (34 %)              | 19.4<br>(17.5)               | 13     | 0   | 68                                                                        | 1.5       | 0.3 | 0.9 to 2.1        | < 0.0001 |
| Self-management and coping skills                                                                                   | 4 (7 %)             | 1740 (23 %)              | 20.4<br>(18.2)               | 15     | 5   | 47                                                                        | -7.1      | 0.2 | –7.5 to<br>–6.6   | < 0.0001 |
| Others (self-management, education,<br>action plan and lifestyle changes)<br>Mode of delivery                       | 3 (5 %)             | 134 (2 %)                | 25.7<br>(10.8)               | 21     | 18  | 38                                                                        | 12.6      | 0.8 | 11.0 to<br>14.2   | <0.0001  |
| Telephone                                                                                                           | 13 (23<br>%)        | 1439 (19 %)              | 21.8<br>(15.9)               | 20     | 0   | 43                                                                        | Reference | -   | -                 | -        |
| Others                                                                                                              | 43 (77<br>%)        | 6091 (81 %)              | 16.4<br>(13.3)               | 13     | 0   | 68                                                                        | -7.7      | 0.4 | -8.4 to<br>-7.0   | < 0.0001 |
| Professional guide                                                                                                  |                     |                          |                              |        |     |                                                                           |           |     |                   |          |
| Nurse                                                                                                               | 19 (34<br>%)        | 1767 (23 %)              | 20.9<br>(13.4)               | 18     | 3   | 43                                                                        | Reference | -   | -                 | -        |
| Nurse and Pulmonologist                                                                                             | 5 (9 %)             | 420 (6 %)                | 8.8<br>(10.7)                | 7      | 0   | 26                                                                        | -11.5     | 0.5 | -12.4 to<br>-10.5 | < 0.0001 |
| Pulmonologist and primary care physician,<br>GP, Primary care physician, Clinical<br>psychologist, Medical resident | 6 (11 %)            | 540 (7 %)                | 10.9<br>(9.5)                | 10     | 0   | 28                                                                        | -5.1      | 0.5 | -6.1 to<br>-4.1   | <0.0001  |
| Respiratory therapist                                                                                               | 8 (14 %)            | 1178 (16 %)              | 15.3<br>(13.7)               | 14     | 1   | 47                                                                        | -8.7      | 0.4 | -9.4 to<br>-8.0   | < 0.0001 |
| Others (Municipal healthcare worker,<br>COPD educator, Operator, Researcher)                                        | 7 (13 %)            | 2306 (31 %)              | 16.2<br>(7.9)                | 15     | 5   | 27                                                                        | -8.4      | 0.3 | -9.1 to<br>-7.8   | < 0.0001 |
| Physiotherapist                                                                                                     | 3 (5 %)             | 200 (2 %)                | 18.7<br>(14.7)               | 21     | 3   | 32                                                                        | 5.3       | 0.8 | 3.7 to 7.0        | < 0.0001 |
| Ward round team                                                                                                     | 8 (14 %)            | 1119 (15 %)              | 23.9<br>(21.7)               | 17     | 5   | 68                                                                        | -0.5      | 0.5 | -1.4 to<br>0.5    | 0.3751   |
| Length of intervention                                                                                              |                     |                          |                              |        |     |                                                                           |           |     |                   |          |
| $\leq$ 3 months                                                                                                     | 21 (38<br>%)        | 1740 (23 %)              | 19.0<br>(18.1)               | 14     | 0   | 68                                                                        | Reference | -   | -                 | -        |
| 4–6 months                                                                                                          | 18 (32<br>%)        | 1727 (23 %)              | 16.6<br>(12.3)               | 12     | 0   | 43                                                                        | -0.4      | 0.4 | -1.3 to<br>0.5    | 0.3701   |
| 7–24 months                                                                                                         | 17 (30<br>%)        | 4063 (54 %)              | 17.2<br>(10.0)               | 16     | 1   | 43                                                                        | -1.5      | 0.4 | -2.3 to<br>-0.8   | < 0.0001 |

Effect sizes were reported in 46 out of 56 studies among 6746 participants with COPD. The effect size ranged from 0.01 to 3.77 (Table 1). Results showed that studies with high (80%–100 %) enrolment rates had a smaller effect size by 0.04 compared to studies with low enrolment rates (7%–45 %). Studies with low dropout rates (6%–13 %) had a bigger effect size by 0.23 compared to studies with very low dropout rates (0%–5%) (Table 9). RCT Studies with quality assessment of Fair had a bigger effect size by 0.01 compared to RCT studies with High quality assessment (Table 10). Studies with 50%–64 % of men had a bigger effect size by 0.18 than studies including  $\leq$ 50 % of men. Studies with >50 % of patients with severe COPD (GOLD 3 or 4) had a bigger effect size by 0.01 than studies with  $\leq$ 50 % of patients with severe COPD. Studies with FEV1% ranged between 39% and 44 %, and  $\geq$ 45 % had a lower effect size by 0.26 and 0.18, respectively, as compared to studies with FEV1  $\leq$ 38 % (Table 11). Studies that delivered the digital health system estimated a bigger effect size by 0.11 compared to the home support system. Compared to self-management consultation programs, action plan and self-management and coping skills. Interventions of duration 4–6 months had an estimates of higher effect size by 0.24 compared to intervention of  $\leq$ 3 months duration (Table 12).

Reasons for dropping out of the study were reported by 967 participants with COPD across 52 studies, as presented in Appendix 7. The main reasons for dropping out, at the patient level, were death (21 %), lost to follow-up (14 %), medical issues (11 %) and no interest in the intervention (8 %). Recommendations for improving enrolment rates and reducing dropout rates as suggested by authors

Effect of enrolment rate and dropout rate on Effect size.

| Variables               | N (%) of<br>studies | N (%) of<br>participants | Un-weighted    | Un-weighted Effect size |      |      |           | Estimated difference in Effect size in comparison to referent category |                   |          |  |  |  |
|-------------------------|---------------------|--------------------------|----------------|-------------------------|------|------|-----------|------------------------------------------------------------------------|-------------------|----------|--|--|--|
|                         |                     |                          | Mean (SD)      | Median                  | Min  | Max  | Estimate  | SE                                                                     | 95 % CI           | p-value  |  |  |  |
| Enrollment rate         |                     |                          |                |                         |      |      |           |                                                                        |                   |          |  |  |  |
| 7 %–45 % (low)          | 12 (28 %)           | 647 (10 %)               | 0.28<br>(0.26) | 0.21                    | 0.00 | 0.98 | Reference | -                                                                      | -                 | -        |  |  |  |
| 46 %–80 %<br>(moderate) | 13 (30 %)           | 1771 (28 %)              | 0.53<br>(1.04) | 0.18                    | 0.00 | 3.77 | -0.15     | 0.01                                                                   | -0.18 to<br>-0.12 | < 0.0001 |  |  |  |
| 80 %–100 % (high)       | 18 (42 %)           | 3863 (62 %)              | 0.36<br>(0.39) | 0.19                    | 0.00 | 1.30 | -0.04     | 0.01                                                                   | -0.07 to<br>-0.02 | 0.0017   |  |  |  |
| Dropout rate            |                     |                          |                |                         |      |      |           |                                                                        |                   |          |  |  |  |
| 0 %–5 % (very low)      | 9 (21 %)            | 1757 (28 %)              | 0.20<br>(0.30) | 0.15                    | 0.00 | 0.98 | Reference | -                                                                      | -                 | -        |  |  |  |
| 6 %–13 % (low)          | 13 (30 %)           | 2162 (34 %)              | 0.30<br>(0.37) | 0.19                    | 0.00 | 1.30 | 0.23      | 0.01                                                                   | 0.21 to 0.24      | < 0.0001 |  |  |  |
| 14 %–26 %<br>(moderate) | 12 (28 %)           | 1826 (29 %)              | 0.68<br>(1.02) | 0.43                    | 0.00 | 3.77 | 0.29      | 0.01                                                                   | 0.27 to 0.31      | < 0.0001 |  |  |  |
| 27 %-63 % (high)        | 9 (21 %)            | 536 (9 %)                | 0.33<br>(0.44) | 0.18                    | 0.03 | 1.43 | 0.14      | 0.01                                                                   | 0.12 to 0.17      | < 0.0001 |  |  |  |

\*46 studies and 6746 participants.

of the included studies are presented in Appendix 8.

## 4. Discussion

This review reported results of the enrolment and dropout rates of telehealth interventions among individuals with COPD. The estimated enrollment and dropout rates across the included studies were 50.3 % and 14.9 %, respectively. To evaluate the potential benefit of a telehealth intervention in clinical care or a research context, individuals need to commit to enroll, adhere to the intervention protocol and recommendations, and complete the program.

The variables that were associated with enrollment and dropout rates rate were the trial-related variables including the RCT designs and the recruitments from outpatient clinics. The variables that associated with dropout rates were the patient-related variables including age, gender and severity of the disease, and intervention-related variables including the components of the intervention and mode of delivery. Effect size was influenced by trial, patient and intervention-related variables. A systematic review evaluated the overall attrition and dropout rates in telehealth interventions among individuals with COPD [67], resulting in an unweighted average of attrition (80 %) and dropout (19 %) rates. However, many limitations were raised from this study, including:

- The authors aimed to assess the overall attrition and dropout rates in telehealth interventions and to summarize the reasons for dropouts exploring the factors that impact overall attrition and dropout rates. Our review was more specific and aimed to: estimate the extent to which trial-related variables are associated with enrolment and dropout rates; estimate the extent to which patients-related and intervention-related variables are associated with dropout rates; estimate the effect of enrolment rate and dropout rate on effect size; and estimate the effect of trial-related, patient-related, and intervention-related variables on effect size.
- The authors claimed that they updated the review until April 2021 and included 27 studies, whereas the search should include more than 44 studies. We expanded the search to learn from all studies, including RCTs and observational studies. As we stated previously, this review was updated twice: one in October 2019, including 44 studies, and the other update was October 2021 and yielded a total of 56 articles.
- The authors claimed that they used only the Cochrane Risk of Bias to assess the bias of the included studies. This raises a question regarding how they assess the bias for non-RCT studies when Cochrane Risk of Bias is used to assess RCTs only.
- The authors used a meta-analysis to estimate the pooled difference in acceptance and dropout rates, including RCT and non-RCT studies, which raises another question about how they pooled the data from non-RCT studies.

Therefore, we cannot compare our results to this systematic review because of the trust issue of the published results.

One modifiable variable that can alter the enrolment rate is the recruitment method. We found that incorporating more than one recruitment method was found to increase the enrolment rate. The enrolment rate was lower in RCTs compared to other designs, perhaps because random assignment to a control group, perceived as less beneficial, might not have appealed to participants. However, the dropout rate was lower in RCTs compared to other designs. An explanation may be related to RCTs having stricter protocols for follow-up and retention of participants. Willingness to participate was associated with older age, having no children, and having already participated in clinical trials. Furthermore, multiple challenges were identified as impacting enrolment, including factors that affect access to tele-health, such as repeated hospitalization, medication management, and comorbidities [8,10,11,47,66].

Based on Cochrane systematic reviews, we can also highlight the lack of robust studies evaluating the effectiveness of the different technologies relating to telehealth interventions. Researchers should ensure that trials are adequately powered, developed with high

Effect of trial-related variables on Effect size.

| Variables                                   | N (%) of<br>studies | N (%) of<br>participants | Un-weighted Effect size |        |      | Estimated difference in Effect size in comparison to referent category |           |       |                   |          |  |
|---------------------------------------------|---------------------|--------------------------|-------------------------|--------|------|------------------------------------------------------------------------|-----------|-------|-------------------|----------|--|
|                                             |                     |                          | Mean<br>(SD)            | Median | Min  | Max                                                                    | Estimate  | SE    | 95 % CI           | p-value  |  |
| Publication years                           |                     |                          |                         |        |      |                                                                        |           |       |                   |          |  |
| 2015–2019                                   | 30 (70 %)           | 5050 (80 %)              | 0.41<br>(0.71)          | 0.19   | 0.00 | 3.77                                                                   | Reference | -     | -                 | -        |  |
| 2010-2014                                   | 12 (28 %)           | 1116 (18 %)              | 0.37<br>(0.42)          | 0.19   | 0.00 | 1.43                                                                   | 0.13      | 0.01  | 0.12 to 0.15      | < 0.0001 |  |
| 2000–2009                                   | 1 (2 %)             | 115 (2 %)                | 0.10<br>(NA)            | 0.10   | 0.10 | 0.10                                                                   | -0.14     | 0.004 | -0.15 to<br>-0.14 | < 0.0001 |  |
| Study place                                 |                     |                          |                         |        |      |                                                                        |           |       |                   |          |  |
| Denmark                                     | 7 (16 %)            | 1991 (32 %)              | 0.18<br>(0.17)          | 0.19   | 0.00 | 0.51                                                                   | Reference | -     | -                 | -        |  |
| UK                                          | 7 (16 %)            | 822 (13 %)               | 0.42<br>(0.57)          | 0.10   | 0.00 | 1.43                                                                   | 0.34      | 0.01  | 0.32 to 0.36      | < 0.0001 |  |
| Australia                                   | 5 (12 %)            | 268 (4 %)                | 0.16<br>(0.13)          | 0.18   | 0.03 | 0.36                                                                   | 0.08      | 0.005 | 0.07 to 0.09      | < 0.0001 |  |
| Others                                      | 24 (56 %)           | 3200 (51 %)              | 0.49<br>(0.78)          | 0.23   | 0.01 | 3.77                                                                   | 0.21      | 0.005 | 0.20 to 0.22      | < 0.0001 |  |
| Study type                                  |                     |                          |                         |        |      |                                                                        |           |       |                   |          |  |
| RCT                                         | 29 (67 %)           | 4951 (79 %)              | 0.31<br>(0.34)          | 0.19   | 0.00 | 1.43                                                                   | Reference | -     | -                 | -        |  |
| Others                                      | 14 (33 %)           | 1330 (21 %)              | 0.56 (1.00)             | 0.17   | 0.00 | 3.77                                                                   | -0.01     | 0.01  | -0.03 to 0.02     | 0.6873   |  |
| Recruitment method                          |                     |                          |                         |        |      |                                                                        |           |       |                   |          |  |
| Outpatient settings                         | 24 (56 %)           | 2931 (47 %)              | 0.38<br>(0.41)          | 0.21   | 0.00 | 1.43                                                                   | Reference | -     | -                 | _        |  |
| Primary care clinic after<br>regular visits | 11 (25 %)           | 2887 (46 %)              | 0.25 (0.31)             | 0.10   | 0.01 | 0.98                                                                   | -0.01     | 0.01  | -0.02 to<br>0.00  | 0.1048   |  |
| Community center                            | 8 (19 %)            | 463 (7 %)                | 0.62 (1.28)             | 0.19   | 0.00 | 3.77                                                                   | 0.01      | 0.02  | -0.03 to<br>0.05  | 0.5015   |  |
| Quality assessment                          |                     |                          |                         |        |      |                                                                        |           |       |                   |          |  |
| Cochrane High                               | 6 (14 %)            | 575 (9 %)                | 0.49<br>(0.54)          | 0.28   | 0.06 | 1.43                                                                   | Reference | -     | -                 | -        |  |
| Cochrane Fair                               | 18 (42 %)           | 3792 (60 %)              | 0.25                    | 0.21   | 0.00 | 0.98                                                                   | 0.04      | 0.01  | 0.02 to 0.05      | < 0.0001 |  |
| SIGN Well covered                           | 5 (11 %)            | 675 (11 %)               | 0.16                    | 0.07   | 0.00 | 0.51                                                                   | -0.17     | 0.01  | -0.19 to<br>-0.16 | < 0.0001 |  |
| SIGN Adequate                               | 9 (21 %)            | 655 (11 %)               | 0.77                    | 0.18   | 0.00 | 3.77                                                                   | 0.19      | 0.02  | 0.15 to 0.24      | < 0.0001 |  |
| Cochrane or SIGN Poor                       | 5 (11 %)            | 584 (9 %)                | 0.30 (0.35)             | 0.19   | 0.03 | 0.87                                                                   | 0.06      | 0.01  | 0.04 to 0.08      | < 0.0001 |  |

\*46 studies and 6746 participants.

methodological quality, and in compliance with the Consolidated Standards of Reporting Trials (CONSORT) guidelines [68].

The effects of all patient-related variables on dropout rates were statistically significant, although not all were clinically significant. Age, gender and severity of the disease were found to have the most statistically significant effects on dropout rates. Although patient-related variables are not modifiable, interventions guided by healthcare professionals using strategies such as motivational messages tailored to individuals' profiles can reduce dropout rates and increase patients' engagement and motivation [69]. Using different strategies were highlighted by recommendations provided by researchers, which include providing incentives, encouragement, constant monitoring, structured support, and acknowledging the health literacy of participants to increase adherence to the interventions [42].

Regarding intervention-related variables, studies with a digital health system had a higher dropout rate compared to home support system. A possible explanation is that the majority of home support systems were guided by health professionals and peer-led health education and social support [8,10-12]. Online support groups can be asynchronous or synchronous, providing a range of therapeutic benefits that are similar to face-to-face support groups [4,47]. Most home support systems were provided through more convenient methods using videoconferencing [43,53], which saved time and made travelling to an intervention site unnecessary.

Moreover, results showed that studies with longer interventions ( $\geq$ 7-month) had lower dropout rates compared to shorter interventions ( $\leq$ 3-month). A possible reason could be that shorter interventions would not allow participants to master the required skills, increasing the dropout rate. However, in the case of longer interventions, participants may feel invested in these studies and hence feel more encouraged to continue. Another explanation is related to the complexity of the intervention, as short-term studies tend to examine interventions with many components, such as self-management education and lifestyle. This complexity may overwhelm the participants, which leads them to drop out from the study. A take-home note for health professionals is to provide telehealth interventions that aim at long-term goals with gradual addition of components adapted to accommodate the different challenges that

#### Heliyon 10 (2024) e23776

#### Table 11

Effect of patient-related variables on Effect size.

| Variables                         | N (%) of<br>studies | N (%) of<br>participants | Un-weight      | Un-weighted Effect size |      |      |           | Estimated difference in Effect size in compariso<br>referent category |                   |          |  |  |  |
|-----------------------------------|---------------------|--------------------------|----------------|-------------------------|------|------|-----------|-----------------------------------------------------------------------|-------------------|----------|--|--|--|
|                                   |                     |                          | Mean<br>(SD)   | Median                  | Min  | Max  | Estimate  | SE                                                                    | 95 % CI           | p-value  |  |  |  |
| Age                               |                     |                          |                |                         |      |      |           |                                                                       |                   |          |  |  |  |
| 60–69                             | 28 (65 %)           | 4727 (75 %)              | 0.48<br>(0.76) | 0.23                    | 0.00 | 3.77 | Reference | -                                                                     | -                 | -        |  |  |  |
| 70 and over                       | 15 (35 %)           | 1554 (25 %)              | 0.23           | 0.18                    | 0.01 | 0.87 | -0.04     | 0.01                                                                  | -0.05 to<br>-0.02 | 0.0002   |  |  |  |
| Not reported<br>Gender (% of men) | 0 (0 %)             | 0 (0 %)                  | NA             | NA                      | NA   | NA   | NA        | NA                                                                    | NA                | NA       |  |  |  |
| <50 %                             | 16 (37 %)           | 1526 (24 %)              | 0.27           | 0.27                    | 0.01 | 0.68 | Reference | -                                                                     | -                 | -        |  |  |  |
| 50-64 %                           | 12 (28 %)           | 1718 (27 %)              | 0.29           | 0.24                    | 0.05 | 0.72 | 0.18      | 0.01                                                                  | 0.16 to 0.19      | < 0.0001 |  |  |  |
| ≥65 %                             | 15 (35 %)           | 3037 (49 %)              | 0.40           | 0.36                    | 0.01 | 1.20 | 0.00      | 0.01                                                                  | -0.01 to 0.02     | 0.5990   |  |  |  |
| Not reported                      | 0 (0 %)             | 0 (0 %)                  | (0.30)<br>NA   | NA                      | NA   | NA   | NA        | NA                                                                    | NA                | NA       |  |  |  |
|                                   | D 3 01 4)           | 000 (16 0/)              | 0.10           | 0.10                    | 0.00 | 0.21 | Defenence |                                                                       |                   |          |  |  |  |
| ≤50 %                             | 8 (19 %)            | 992 (16 %)               | (0.12)         | 0.12                    | 0.00 | 0.31 | Reference | -                                                                     | -                 | -        |  |  |  |
| >50 %                             | 20 (46 %)           | 3541 (56 %)              | 0.25<br>(0.30) | 0.17                    | 0.00 | 0.99 | 0.01      | 0.005                                                                 | 0.01 to 0.02      | 0.0021   |  |  |  |
| Missing                           | 15 (35 %)           | 1748 (28 %)              | 0.72<br>(0.94) | 0.36                    | 0.01 | 3.77 | 0.53      | 0.01                                                                  | 0.51 to 0.56      | < 0.0001 |  |  |  |
| FEV1 %                            |                     |                          |                |                         |      |      |           |                                                                       |                   |          |  |  |  |
| <b>≤38 %</b>                      | 9 (21 %)            | 1547 (25 %)              | 0.33<br>(0.29) | 0.22                    | 0.00 | 0.87 | Reference | -                                                                     | -                 | -        |  |  |  |
| 39%-44 %                          | 7 (16 %)            | 934 (15 %)               | 0.29           | 0.19                    | 0.02 | 0.99 | -0.26     | 0.01                                                                  | -0.28 to          | < 0.0001 |  |  |  |
| ≥45 %                             | 20 (47 %)           | 3361 (53 %)              | 0.54           | 0.21                    | 0.00 | 3.77 | -0.18     | 0.01                                                                  | -0.20 to<br>-0.16 | < 0.0001 |  |  |  |
| Missing                           | 7 (16 %)            | 439 (7 %)                | 0.14           | 0.15                    | 0.01 | 0.32 | -0.29     | 0.01                                                                  | -0.30 to $-0.27$  | < 0.0001 |  |  |  |
| Smoking (Intervention)            |                     |                          | (0111)         |                         |      |      |           |                                                                       | 0127              |          |  |  |  |
| Yes                               | 34 (79 %)           | 5920 (94 %)              | 0.32           | 0.18                    | 0.00 | 1.43 | Reference | -                                                                     | -                 | -        |  |  |  |
| No                                | 2 (5 %)             | 52 (1 %)                 | 0.26           | 0.26                    | 0.16 | 0.36 | 0.08      | 0.01                                                                  | 0.06 to 0.11      | <0.0001  |  |  |  |
| Not reported                      | 7 (16 %)            | 309 (5 %)                | 0.77           | 0.19                    | 0.07 | 3.77 | 0.16      | 0.04                                                                  | 0.08 to 0.24      | 0.0001   |  |  |  |
| Patient's stability               |                     |                          | (1.33)         |                         |      |      |           |                                                                       |                   |          |  |  |  |
| Stable after discharged           | 36 (84 %)           | 5146 (82 %)              | 0.43           | 0.19                    | 0.00 | 3.77 | Reference | -                                                                     | -                 | -        |  |  |  |
| Not stable after                  | 7 (16.%)            | 1125 (19.%)              | (0.68)         | 0.18                    | 0.02 | 0.32 | 0.16      | 0.01                                                                  | 0.17 to           | <0.0001  |  |  |  |
| discharged                        | / (10 %)            | 1133 (10 %)              | (0.12)         | 0.10                    | 0.02 | 0.32 | -0.10     | 0.01                                                                  | -0.14             | 0.0001   |  |  |  |

\*46 studies and 6746 participants.

### are faced by patients in their everyday lives.

Acknowledging the identified variables in this study that influence the enrolment and dropout rates in telehealth interventions is important, as these variables have been found to influence the effect size of interventions. Our results indicating that a higher enrolment rate corresponded with a smaller effect size while a lower dropout rate was associated with a larger effect size. One explanation may relate to the combined effect of trial-related variables, patient-related variables, and intervention-related variables on the effect size. Such findings have been considered in a study indicating that participants who are benefitting less from the telehealth interventions are dropping out, enhancing the resultant effect of interventions and leading to biased parameter estimates [7]. This loss to follow-up would lead to overestimating treatment effectiveness [7]. Therefore, understanding the patterns and reasons for dropping out is very important, as they affect the validity and generalizability of studies.

The potential interest of telehealth interventions is to allow professionals to demonstrate and deliver exercise guidance virtually in real-time while participants complete the intervention from home [70]. Also, gaming approaches and guidance by a health professional can enhance engagements [69].

In this study we did not report on adherence, which for almost all studies is inadequately captured making it difficult to draw collective conclusions about adherence rates. Adherence is difficult to track, as it requires capturing participant's uptake of the defined protocol for the intervention. The challenge of measuring adherence influences the impact of interventions in a given study and the ability to compare results between studies that use different methods of study designs, recruitments and retention rates.

Effect of intervention related variables on Effect size.

| Variables                                                                                                              | N (%) of<br>studies | N (%) of<br>participants | Un-weighted Effect size |        |      | Estimated difference in Effect size in comparison to referent category |           |      |                   |          |
|------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|-------------------------|--------|------|------------------------------------------------------------------------|-----------|------|-------------------|----------|
|                                                                                                                        |                     |                          | Mean<br>(SD)            | Median | Min  | Max                                                                    | Estimate  | SE   | 95 % CI           | p-value  |
| Type of intervention                                                                                                   |                     |                          |                         |        |      |                                                                        |           |      |                   |          |
| Home support system                                                                                                    | 28 (65<br>%)        | 4236 (67 %)              | 0.44<br>(0.75)          | 0.19   | 0.00 | 3.77                                                                   | Reference | -    | -                 | -        |
| Digital health system                                                                                                  | 10 (23<br>%)        | 1749 (28 %)              | 0.28<br>(0.28)          | 0.20   | 0.00 | 0.87                                                                   | 0.11      | 0.01 | 0.09 to<br>0.13   | < 0.0001 |
| Others                                                                                                                 | 5 (12 %)            | 296 (5 %)                | 0.33<br>(0.38)          | 0.18   | 0.00 | 0.99                                                                   | -0.02     | 0.02 | -0.06 to<br>0.02  | 0.3988   |
| Classification                                                                                                         |                     |                          |                         |        |      |                                                                        |           |      |                   |          |
| Self-management consultation                                                                                           | 15 (35<br>%)        | 1946 (31 %)              | 0.47<br>(0.94)          | 0.19   | 0.00 | 3.77                                                                   | Reference | -    | -                 | -        |
| Action plan                                                                                                            | 6 (14 %)            | 438 (7 %)                | 0.44<br>(0.39)          | 0.36   | 0.06 | 0.98                                                                   | 0.29      | 0.02 | 0.26 to<br>0.33   | < 0.0001 |
| Self-management education and lifestyle changes                                                                        | 17 (39<br>%)        | 2372 (38 %)              | 0.33<br>(0.42)          | 0.18   | 0.00 | 1.43                                                                   | 0.09      | 0.01 | 0.07 to<br>0.11   | < 0.0001 |
| Self-management and coping skills                                                                                      | 2 (5 %)             | 1391 (22 %)              | 0.03 (0.02)             | 0.03   | 0.01 | 0.04                                                                   | -0.23     | 0.01 | -0.25 to<br>-0.22 | < 0.0001 |
| Others (self-management, education,<br>action plan and lifestyle changes)                                              | 3 (7 %)             | 134 (2 %)                | 0.44<br>(0.49)          | 0.31   | 0.03 | 0.99                                                                   | 0.13      | 0.04 | 0.06 to<br>0.20   | 0.0004   |
| Telephone                                                                                                              | 10 (23<br>%)        | 1233 (20 %)              | 0.12                    | 0.09   | 0.00 | 0.36                                                                   | Reference | -    | -                 | -        |
| Others                                                                                                                 | 33 (77<br>%)        | 5048 (80 %)              | 0.47                    | 0.22   | 0.00 | 3.77                                                                   | 0.20      | 0.01 | 0.19 to<br>0.21   | < 0.0001 |
| Professional guide                                                                                                     | ,                   |                          | (0.1.0)                 |        |      |                                                                        |           |      |                   |          |
| Nurse                                                                                                                  | 18 (41<br>%)        | 1712 (27 %)              | 0.32<br>(0.32)          | 0.19   | 0.01 | 0.99                                                                   | Reference | -    | -                 | _        |
| Nurse and pulmonologist                                                                                                | 3 (7 %)             | 257 (4 %)                | 0.37<br>(0.42)          | 0.29   | 0.00 | 0.82                                                                   | 0.15      | 0.02 | 0.11 to<br>0.19   | < 0.0001 |
| Pulmonologist and primary care<br>physician, GP, Primary care<br>physician, Clinical psychologist,<br>Medical resident | 2 (5 %)             | 102 (2 %)                | 0.20<br>(0.05)          | 0.20   | 0.16 | 0.23                                                                   | -0.11     | 0.01 | -0.12 to<br>-0.09 | <0.0001  |
| Respiratory therapist                                                                                                  | 6 (14 %)            | 1108 (18 %)              | 0.15                    | 0.08   | 0.00 | 0.49                                                                   | -0.23     | 0.01 | -0.25 to $-0.22$  | < 0.0001 |
| Others (Municipal healthcare worker,<br>COPD educator, Operator,<br>Researcher)                                        | 6 (14 %)            | 2264 (36 %)              | 0.96<br>(1.48)          | 0.28   | 0.00 | 3.77                                                                   | -0.17     | 0.01 | -0.19 to<br>-0.15 | <0.0001  |
| Physiotherapist                                                                                                        | 2 (5 %)             | 66 (1 %)                 | 0.19<br>(0.18)          | 0.19   | 0.06 | 0.31                                                                   | -0.16     | 0.02 | -0.20 to<br>-0.13 | < 0.0001 |
| Ward round team                                                                                                        | 6 (14 %)            | 772 (12 %)               | 0.42<br>(0.46)          | 0.26   | 0.01 | 1.30                                                                   | 0.15      | 0.02 | 0.11 to<br>0.19   | < 0.0001 |
| Length of intervention                                                                                                 |                     |                          |                         |        |      |                                                                        |           |      |                   |          |
| $\leq$ 3 months                                                                                                        | 14 (33<br>%)        | 1305 (21 %)              | 0.35<br>(0.46)          | 0.17   | 0.00 | 1.43                                                                   | Reference | -    | -                 | -        |
| 4–6 months                                                                                                             | 16 (37<br>%)        | 1559 (25 %)              | 0.51<br>(0.91)          | 0.21   | 0.00 | 3.77                                                                   | 0.24      | 0.01 | 0.23 to<br>0.26   | < 0.0001 |
| 7–24 months                                                                                                            | 13 (30<br>%)        | 3417 (54 %)              | 0.29<br>(0.32)          | 0.18   | 0.01 | 0.99                                                                   | 0.01      | 0.01 | -0.001 to 0.02    | 0.0890   |

\*46 studies and 6746 participants.

# 5. Strengths and limitations

Beneficial contribution of this review is due to: providing estimates of the enrolment and dropout rates of COPD telehealth interventions and their related variables; and identifying inputs from individuals with COPD regarding reasons for refusing or dropping out of these interventions. There are several limitations in this review that need to be addressed. This review excluded unpublished or grey literature and included only studies that were published in peer-reviewed journals. In this review, we did not evaluate the quality of the interventions using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, as the purpose was to explore possible variables that can influence enrolment and dropout rates. Moreover, other variables have been suggested as influencing the dropout rates, such as education and emotional status. This review could not include these variables in the analyses, as sufficient information was not provided in the included studies. In addition, we were unable to evaluate adherence as few studies measured and reported on adherence.

#### 6. Conclusions

Trial, patient, and intervention-related variables were found to influence COPD telehealth interventions' enrolment and dropout rates. Tailoring interventions to best suit the needs, preferences, and lifestyles of individuals with COPD is crucial to help plan and develop a more appealing telehealth intervention that patients can easily accept and incorporate into their everyday lives. Furthermore, incorporating these findings into future clinical trials can enhance the enrolment rates and reduce the dropout rates, thus preventing biased estimates of studies outcomes and strengthening their generalizability.

# Funding

Canadian Institute of Health Research #367348.

# **Ethics** approval

Not applicable.

#### Consent to participate

Not applicable.

### **Consent for publication**

This manuscript has not been published and is not under consideration for publication elsewhere.

# Data availability

Sharing research data helps other researchers evaluate your findings, build on your work and increase trust in your article. We encourage all our authors to make as much of their data publicly available as reasonably possible. Please note that your response to the following questions regarding the public data availability and the reasons for potentially not making data available will be available alongside your article upon publication.

## CRediT authorship contribution statement

Rehab Alhasani: Writing – review & editing, Writing – original draft, Validation, Methodology, Formal analysis, Data curation, Conceptualization. Tania Janaudis Ferreira: Writing – review & editing, Validation, Methodology, Conceptualization. Marie-France Valois: Writing – review & editing, Validation, Software, Formal analysis. Dharmender Singh: Writing – review & editing, Methodology, Data curation, Conceptualization. Sara Ahmed: Writing – review & editing, Validation, Supervision, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.

# Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Dr Sara Ahmed reports financial support was provided by Quebec Health Research Fund. Dr. Tania Janaudis-Ferreira reports financial support was provided by Quebec Health Research Fund. Dr. Sara Ahmed reports financial support was provided by Canadian Institutes of Health Research. Dr. Rehab Alhasani reports financial support was provided by Princess Nourah bint Abdulrahman University. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

## Acknowledgment of financial support

Rehab Alhasani is supported by Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Dr. Sara Ahmed and Dr. Tania Janaudis-Ferreira are supported by career awards from the Fonds de la recherche du Québec-santé. This work was supported by the Canadian Institute of Health Research (Application # 367348). The funding agency had no role in the design of the study, in the collection and analysis of the data, or in the decision to publish the results.

## Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e23776.

#### References

- A. Farmer, et al., Self-management support using a digital health system compared with usual care for chronic obstructive pulmonary disease: randomized controlled trial, J. Med. Internet Res. 19 (2017).
- [2] M. Nield, G.W.S. Hoo, Real-time telehealth for COPD self-management using skype, COPD 9 (2012) 611-619.
- [3] A. Nyberg, M. Tistad, K. Wadell, Can the COPD web be used to promote self-management in patients with COPD in Swedish primary care: a controlled pragmatic pilot trial with 3 month- and 12 month follow-up, Scand. J. Prim. Health Care 37 (2019) 69–82.
- [4] A.S. Jakobsen, et al., Home-based telehealth hospitalization for exacerbation of chronic obstructive pulmonary disease: findings from "the Virtual Hospital" Trial, Telemedicine and e-Health 21 (2015) 364–373.
- [5] P.H. Lilholt, et al., Telehealthcare for patients suffering from chronic obstructive pulmonary disease: effects on health-related quality of life: results from the Danish ? ETeleCare North' cluster-randomised trial, BMJ Open 7 (2017).
- [6] M.K. Stickland, et al., Using Telehealth technology to deliver pulmonary rehabilitation to patients with chronic obstructive pulmonary disease, Can Respir J 18

   (4) (2011) 216–220.
- [7] M. Tabak, et al., A telehealth program for self-management of COPD exacerbations and promotion of an active lifestyle: a pilot randomized controlled trial, International Journal of COPD 9 (2014) 935–944.
- [8] B. Dinesen, et al., Using preventive home monitoring to reduce hospital admission rates and reduce costs: a case study of telehealth among chronic obstructive pulmonary disease patients, J. Telemed. Telecare 18 (2012) 221–225.
- [9] H.L. Cameron-Tucker, et al., A randomized controlled trial of telephone-mentoring with home-based walking preceding rehabilitation in COPD, International Journal of COPD 11 (2016) 1991–2000.
- [10] K. De San Miguel, J. Smith, G. Lewin, Telehealth remote monitoring for community-dwelling older adults with chronic obstructive pulmonary disease, Telemedicine and e-Health 19 (2013) 652–657.
- [11] N.C. Antoniades, et al., Pilot study of remote telemonitoring in COPD, Telemedicine and e-Health 18 (2012) 634-640.
- [12] F.F. Berkhof, et al., Telemedicine, the effect of nurse-initiated telephone follow up, on health status and health-care utilization in COPD patients: a randomized trial, Respirology 20 (2015) 279–285.
- [13] S.M. Alghamdi, et al., Acceptance, adherence and dropout rates of individuals with COPD approached in telehealth interventions: a protocol for systematic review and meta-analysis, BMJ Open 9 (2019).
- [14] A. Liberati, et al., The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration, J. Clin. Epidemiol. 62 (10) (2009) e1–e34.
- [15] A. Lundh, P.C. Gøtzsche, Recommendations by Cochrane Review Groups for assessment of the risk of bias in studies, BMC Med. Res. Methodol. 8 (2008).
- [16] R. Harbour, G. Lowe, S. Twaddle, Scottish intercollegiate guidelines network: the first 15 years (1993-2008), J. Roy. Coll. Phys. Edinb. 41 (2011) 163–168.
- [17] A.M. Arafah, V. Bouchard, N.E. Mayo, Enrolling and keeping participants in multiple sclerosis self-management interventions: a systematic review and metaanalysis, Clin. Rehabil. 31 (6) (2017) 809–823.
- [18] D. Jackson, I.R. White, R.D. Riley, A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression, Biom. J. 55 (2) (2013) 231–245.
- [19] S.B. Bruns, Meta-regression models and observational research, Oxf. Bull. Econ. Stat. 79 (5) (2017) 637-653.
- [20] A. Kuspinar, A.M. Rodriguez, N.E. Mayo, The effects of clinical interventions on health-related quality of life in multiple sclerosis: a meta-analysis, in: Multiple Sclerosis Journal, 2012, pp. 1686–1704.
- [21] A.D. Rae-Grant, et al., Self-management in neurological disorders: systematic review of the literature and potential interventions in multiple sclerosis care, J. Rehabil. Res. Dev. 48 (2011) 1087–1100.
- [22] G.S. Calvo, et al., A home telehealth program for patients with severe COPD: the PROMETE study, Respir. Med. 108 (2014) 453-462.
- [23] L. Schou, et al., A randomised trial of telemedicine-based treatment versus conventional hospitalization in patients with severe COPD and exacerbation effect on self-reported outcome, J. Telemed. Telecare 19 (2013) 160–165.
- [24] C.L. Bentley, et al., The use of a smartphone app and an activity tracker to promote physical activity in the management of chronic obstructive pulmonary disease: randomized controlled feasibility study, JMIR mHealth and uHealth 8 (6) (2020) e16203.
- [25] H. Hansen, et al., Supervised pulmonary tele-rehabilitation versus pulmonary rehabilitation in severe COPD: a randomised multicentre trial, Thorax 75 (5) (2020) 413–421.
- [26] P. Mínguez Clemente, et al., Follow-up with telemedicine in Early discharge for COPD exacerbations: randomized clinical trial (TELEMEDCOPD-Trial), COPD 18 (1) (2020) 62–69.
- [27] E. Sink, et al., Effectiveness of a novel, automated telephone intervention on time to hospitalisation in patients with COPD: a randomised controlled trial, J. Telemed. Telecare 26 (3) (2020) 132–139.
- [28] P.B. Koff, et al., Proactive integrated care improves quality of life in patients with COPD, Eur. Respir. J. 33 (2009) 1031–1038.
- [29] C. Pedone, et al., Efficacy of multiparametric telemonitoring on respiratory outcomes in elderly people with COPD: a randomized controlled trial, BMC Health Serv. Res. (2013).
- [30] J.P.C. Chau, et al., A feasibility study to investigate the acceptability and potential effectiveness of a telecare service for older people with chronic obstructive pulmonary disease, Int. J. Med. Inf. 81 (2012) 674–682.
- [31] D.M.G. Halpin, et al., A randomised controlled trial of the effect of automated interactive calling combined with a health risk forecast on frequency and severity of exacerbations of COPD assessed clinically and using EXACT PRO, Prim. Care Respir. J. 20 (2011) 324–331.
- [32] K.E. Lewis, et al., Does home telemonitoring after pulmonary rehabilitation reduce healthcare use in optimized COPD a pilot randomized trial, COPD 7 (2010) 44–50.
- [33] T.J. Ringbaek, M. Lavesen, P. Lange, Tablet computers to support outpatient pulmonary rehabilitation in patients with COPD, European Clinical Respiratory Journal 3 (2016) 31016.
- [34] T. Shany, et al., A small-scale randomised controlled trial of home telemonitoring in patients with severe chronic obstructive pulmonary disease, J. Telemed. Telecare 23 (2017) 650–656.
- [35] O.D. Tupper, et al., Effect of tele-health care on quality of life in patients with severe COPD: a randomized clinical trial, International Journal of COPD 13 (2018) 2657–2662.
- [36] P.P. Walker, et al., Telemonitoring in chronic obstructive pulmonary disease (chromed) a randomized clinical trial, Am. J. Respir. Crit. Care Med. 198 (2018) 620–628.
- [37] J.B. Galdiz, et al., Telerehabilitation programme as a maintenance strategy for COPD patients: a 12-month randomized clinical trial, Arch. Bronconeumol. 57 (3) (2021) 195–204.
- [38] Y. Jiang, et al., Evaluating an intervention program using WeChat for patients with chronic obstructive pulmonary disease: randomized controlled trial, J. Med. Internet Res. 22 (4) (2020) e17089.
- [39] P.B. Koff, et al., Impact of proactive integrated care on chronic obstructive pulmonary disease, Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation 8 (1) (2021) 100.
- [40] R. Kessler, et al., CoMET: a multicomponent home-based disease-management programme versus routine care in severe COPD, Eur. Respir. J. (2018) 51.
- [41] J.E. McDowell, et al., A randomised clinical trial of the effectiveness of home-based health care with telemonitoring in patients with COPD, J. Telemed. Telecare 21 (2015) 80–87.
- [42] H. Pinnock, et al., Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: Researcher blind, multicentre, randomised controlled trial, BMJ (Online) (2013) 347.

- [43] L.L.Y. Tsai, et al., Home-based telerehabilitation via real-time videoconferencing improves endurance exercise capacity in patients with COPD: the randomized controlled TeleR Study, Respirology 22 (2017) 699–707.
- [44] M.L. Duiverman, et al., Home initiation of chronic non-invasive ventilation in COPD patients with chronic hypercapnic respiratory failure: a randomised controlled trial, Thorax 75 (3) (2020) 244–252.
- [45] V. Stamenova, et al., Technology-enabled self-management of chronic obstructive pulmonary disease with or without asynchronous remote monitoring: randomized controlled trial, J. Med. Internet Res. 22 (7) (2020) e18598.

[46] J.B. Soriano, et al., A multicentre, randomized controlled trial of telehealth for the management of COPD, Respir. Med. 144 (2018) 74-81.

- [47] T.W. Ho, et al., Effectiveness of telemonitoring in patients with chronic obstructive pulmonary disease in taiwan-A randomized controlled trial, Sci. Rep. 6 (2016).
- [48] A. Vianello, et al., Home telemonitoring for patients with acute exacerbation of chronic obstructive pulmonary disease: a randomized controlled trial, BMC Pulm. Med. 16 (1) (2016) 1–12.
- [49] M. Loeckx, et al., Smartphone-based Physical Activity Telecoaching in Chronic Obstructive Pulmonary Disease: Mixed-Methods Study on Patient Experiences and Lessons for Implementation, vol. 6, JMIR mHealth and uHealth, 2018.
- [50] M. Mirón Rubio, et al., Telemonitoring and home hospitalization in patients with chronic obstructive pulmonary disease: study TELEPOC, Expet Rev. Respir. Med. 12 (2018) 335–343.
- [51] L. Rosenbek Minet, et al., Early telemedicine training and counselling after hospitalization in patients with severe chronic obstructive pulmonary disease: a feasibility study, BMC Med. Inf. Decis. Making 15 (2015).
- [52] R. Wu, et al., Feasibility of Using a Smartwatch to Intensively Monitor Patients with Chronic Obstructive Pulmonary Disease: Prospective Cohort Study, vol. 6, JMIR mHealth and uHealth, 2018.
- [53] S.P. Bhatt, et al., Video telehealth pulmonary rehabilitation intervention in chronic obstructive pulmonary disease reduces 30-day readmissions, in: American Journal of Respiratory and Critical Care Medicine, American Thoracic Society, 2019, pp. 511–513.
- [54] R. Farias, et al., Innovating the treatment of COPD exacerbations: a phone interactive telesystem to increase COPD Action Plan adherence, BMJ Open Respiratory Research 6 (2019).
- [55] I. Farver-Vestergaard, et al., Tele-delivered mindfulness-based cognitive therapy in chronic obstructive pulmonary disease: a mixed-methods feasibility study, J. Telemed. Telecare 25 (2019) 468–475.
- [56] K.J. Franke, et al., Telemonitoring of home exercise cycle training in patients with COPD, International Journal of COPD 11 (2016) 2821-2829.
- [57] N. Marquis, et al., Are improvements maintained after in-home pulmonary telerehabilitation for patients with chronic obstructive pulmonary disease? Int. J. Telerehabilitation 6 (2015) 21–30.
- [58] F. Rassouli, et al., Digitalizing multidisciplinary pulmonary rehabilitation in COPD with a smartphone application: an international observational pilot study, International Journal of COPD 13 (2018) 3831–3836.
- [59] T. Ringbæk, et al., Effect of tele health care on exacerbations and hospital admissions in patients with chronic obstructive pulmonary disease: a randomized clinical trial, International Journal of COPD 10 (2015) 1801–1808.
- [60] C. Sicotte, et al., Effects of home telemonitoring to support improved care for chronic obstructive pulmonary diseases, Telemedicine and e-Health 17 (2011) 95–103.
- [61] J.C.A. Trappenburg, et al., Effects of telemonitoring in patients with chronic obstructive pulmonary disease, Telemedicine and e-Health 14 (2008) 138–146. [62] Å. Holmner, et al., How stable is lung function in patients with stable chronic obstructive pulmonary disease when monitored using a telehealth system? A
- logitudinal and home-based study, BMC Med. Inf. Decis. Making 20 (1) (2020) 1–11.
- [63] V. Trosini-Désert, et al., A telemedicine intervention to ensure the correct usage of inhaler devices, Telemedicine and e-Health 26 (11) (2020) 1336–1344.
- [64] J. Dale, S. Connor, K. Tolley, An evaluation of the west Surrey telemedicine monitoring project, J. Telemed. Telecare 9 (Suppl 1) (2003).[65] J.B. Soriano, et al., A multicentre, randomized controlled trial of telehealth for the management of COPD, Respir. Med. 144 (2018) 74–81.
- [66] A. Vianello, et al., Home telemonitoring for patients with acute exacerbation of chronic obstructive pulmonary disease: a randomized controlled trial, BMC Pulm. Med. 16 (2016).
- [67] S.M. Alghamdi, et al., Chronic obstructive pulmonary disease patients' acceptance in e-health clinical trials, Int. J. Environ. Res. Publ. Health 18 (10) (2021) 5230.
- [68] C.D.Q. Flumignan, et al., What do Cochrane systematic reviews say about telemedicine for healthcare?, in: Sao Paulo Medical Journal Associacao Paulista de Medicina, 2019, pp. 184–192.
- [69] T.M. Burkow, et al., Comprehensive pulmonary rehabilitation in home-based online groups: a mixed method pilot study in COPD, BMC Res. Notes 8 (2015).
- [70] K.A. Bland, et al., Exercising in isolation? The role of telehealth in exercise oncology during the COVID-19 pandemic and beyond, Phys. Ther. 100 (10) (2020) 1713–1716.
- [71] Stickland, M.K., et al. Using Telehealth technology to deliver pulmonary rehabilitation to patients with chronic obstructive pulmonary disease. in Can Respir J.