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Abstract: Tumor cells shed DNA into the plasma. “Liquid biopsy” analysis of mutations or other
genomic alterations in circulating cell-free DNA (cfDNA) may provide us with a tool to detect
minimal residual cancer, comprehensively profile the genomic tumor landscape in search of druggable
targets, and monitor cancers non-invasively over time for treatment failure or emerging treatment-
resistant tumor subclones. While liquid biopsies have not yet entered routine clinical management in
patients with gastric and gastroesophageal junction cancers, this group of diseases may benefit from
such advanced diagnostic tools due to their pronounced genetic spatiotemporal heterogeneity and
limitations in imaging sensitivity. Moreover, as the armamentarium of targeted treatment approaches
and immunotherapies expands, cfDNA analyses may reveal their utility not only as a biomarker
of response but also for precision monitoring. In this review, we discuss the different applications
of cfDNA analyses in patients with gastric and gastroesophageal junction cancer and the technical
challenges that such liquid biopsies have yet to overcome.
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1. Introduction

Despite overall declining incidences, gastric and gastroesophageal junction cancers—
which are mostly adenocarcinomas—remain common malignancies. This group of diseases
is the third to fourth most common cause of cancer death worldwide [1].

In the non-metastatic setting, the prognosis has improved through perioperative
chemotherapy with fluoropyrimidines, platinum, and taxanes [2]. In non-resectable or
metastatic tumors, systemic palliative chemotherapy is based on fluoropyrimidines, plat-
inum, taxanes, irinotecan, and, in the refractory situation, trifluridine/tipiracil [3,4]. In
second-line treatment, the vascular endothelial growth factor receptor-2 (VEGFR2) in-
hibitor ramucirumab is approved as monotherapy or in combination with paclitaxel [5,6].
Tumors with overexpression of human epidermal growth factor 2 (HER2) can be success-
fully treated with the anti-HER2 monoclonal antibody trastuzumab (plus chemotherapy),
which has significantly improved the prognosis of this patient subgroup [7]. In addition,
the immune checkpoint inhibitors nivolumab and pembrolizumab have recently been in-
cluded in first-line treatment for patients with PD-L1-positive tumors in combination with
chemotherapy [8,9]. Most recently, the fibroblast growth factor receptor (FGFR) pathway
has received increased attention as a promising target and clinical trials are currently testing
its inhibition [10–13].

Despite these advances, a number of challenges remain. These include the reliable
detection of actionable lesions for targeted therapies and the sensitive monitoring of disease
and resistance to open up avenues of precision targeting to more patients.

In this review, we discuss our current understanding of gastric cancer genetics and
the role of cfDNA genomic analyses as an emerging diagnostic tool in precision medicine
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of this spectrum of tumors. Since cfDNA is extracted from blood plasma, this so-called
liquid biopsy is a non-invasive technique and as such opens up the possibility for tight
monitoring intervals of otherwise hardly accessible solid tumors. In metastatic settings or
cases with a heterogeneous tumor architecture, such as in gastric and gastroesophageal
junction cancer, liquid biopsy has the advantage of more broadly reflecting all tumor
subclones than conventional biopsies. This increases the chances that relevant mutations
and resistance mechanisms are detected. The work summarized in this review shows how
liquid biopsies may promote our diagnostic abilities to improve precision diagnostics,
tumor and resistance monitoring, andearly relapse detection, thereby refining our care for
patients with gastric and gastroesophageal junction cancers.

2. Genetics of Gastric and Gastroesophageal Junction Adenocarcinoma
2.1. Frequent Genetic Alterations and Therapeutic Implications

Genomic analyses have shown that gastric and gastroesophageal junction adenocarci-
nomas have highly complex genomes characterized by both mutations and somatic copy
number alterations in key genes [14–18]. These genetic alterations largely overlap in gastric
and gastroesophageal junction cancer.

One of the therapeutically most important genes is ERBB2. The ERBB2 gene is a proto-
oncogene whose protein product HER2 is a membrane-bound tyrosine kinase receptor
that generates proliferative and anti-apoptotic signals when activated and is an important
driver in tumor development and progression [19]. In gastric and gastroesophageal junction
cancer, the percentage of HER2-positive tumors is similar to that in breast cancer, even if
other criteria of positivity are applied [20]. Approximately 12–18% of gastric carcinomas
and 24–32% of gastroesophageal junction cancers are HER2 positive [21]. While HER2
positivity represents a negative prognostic marker in breast cancer, it is not an independent
negative prognostic marker in the spectrum of gastric and gastroesophageal junction
cancers. The targeting of HER2 by trastuzumab in the palliative treatment setting of gastric
and gastroesophageal junction cancer has significantly improved progression-free and
overall survival in this subset [7].

Another gene that is amplified in up to one-third of patients and that has lately re-
ceiving increased attention is the fibroblast growth factor receptor (FGFR). This receptor
is implicated in tumorigenesis and chemoresistance in many tumors [22]. Gen ampli-
fication is of clinical importance due to the development of anti-FGFR2-drug-targeting
strategies, such as the monoclonal antibody bemarituzumab, which is in late-phase clinical
development [23–25].

In routine clinical practice, HER2 and FGFR2 overexpression is determined by im-
munohistochemistry staining (IHC) or fluorescence in situ hybridization (FISH) on tumor
slides. In both cases, tumor material obtained from a resection or biopsy is needed. The
detection of copy number alterations (CNAs) from liquid biopsy would circumvent the
need for surgical procedures in cases where not enough primary material is acquired or in
the case of re-testings during the course of treatment. CNAs can reliably be detected from
cfDNA [26] and were identified in gastric cancer for ERBB2 and FGFR2 by NGS [27,28]
or digital droplet PCR (ddPCR) [29,30]. Thus, the profiling cfDNA can aid in identifying
suitable treatment modalities for patients.

2.2. Genetic Classification

In the context of The Cancer Genome Atlas research project (TCGA) [14], gastric and
gastroesophageal junction adenocarcinomas were categorized into four molecular subtypes
defined as EBV-positive (9%), microsatellite instability (MSI) high (21%), genomically stable
(20%), and chromosomal instability (CIN) (50%). In addition to its high EBV burden,
the first subtype shows extensive DNA promoter hypermethylation, including that of
CDKN2A. In addition, these tumors often display high PD-L1 expression. This is partly
due to amplification of its gene CD274 [31]. The MSI group shows mutations in major
histocompatibility genes, including beta-2 microglobulin (B2M), which may reduce antigen
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presentation in these highly mutated cancers. The genomically stable subtype essentially
includes cancers of the Lauren diffuse subtype and the CIN group is characterized by
extensive SCNA.

While, so far, the TCGA subtypes remain without clear predictive utility, they should
be taken into consideration in future clinical trials with targeted agents and combination
approaches. It is noteworthy that specific mutations are overrepresented in the four
subtypes, such as CDH1 and RHOA mutations in genomically stable tumors. A high
PIK3CA mutation rate was observed in the EBV and MSI groups, which may be of future
therapeutic relevance.

The correlation of these subtypes with distinguishable genetic patterns opens up
the possibility to classify gastric and gastroesophageal junction adenocarcinomas via se-
quencing of cfDNA, which is suitable to detect mutations, copy number variations, and
aberrant DNA methylation, and may ultimately aid in prognostic assessment and treatment
decision making.

2.3. Genetic Heterogeneity

Many solid tumors show spatiotemporal heterogeneity. In gastric and gastroesophageal
cancers, this heterogeneity is pronounced [32–34]. Very convincingly, this was demonstrated
by a multiregional sequencing study performed in the context of a neoadjuvant treatment
protocol [35]. In this trial, whole exome sequencing (WES) was performed on 8 patients,
including more than 40 tumor regions, prior to and after neoadjuvant chemotherapy. Inter-
estingly, more than half of all mutations were heterogeneously present in different tumor
subclones. Therefore, the sequencing of single biopsy specimens may greatly underesti-
mate the mutational burden of the disease. From a biological perspective, the finding of a
poor response to neoadjuvant treatment in tumors with high genomic heterogeneity was
expected. From a diagnostic and monitoring perspective, the subclonal heterogeneity of
gastric and gastroesophageal cancer indicates a role for liquid biopsies to more faithfully
map the subclonal mutational landscape in individual patients.

3. Liquid Biopsy by Genetic Analysis of Circulating cfDNA in Gastric Cancer
3.1. Liquid Biopsy Analysis of cfDNA in Patients with Solid Cancers

cfDNA is released from somatic tissue into the blood stream after cell death. Cell-
free DNA fragments deriving from apoptotic cells are usually only ~180 bp long [36],
which has to be taken into account when designing analysis strategies of cfDNA. This
process constitutively happens in healthy individuals, e.g., depending on tissue remodeling,
leading to varying concentrations of cfDNA in plasma. Cancer patients, however, show
increased amounts of plasma cfDNA [37,38]. Of these, patients with metastatic disease
or advanced disease stages yield the highest amounts of cfDNA [38,39]. An important
fraction of this represents the circulating tumor DNA that is defined by mutations or
other genomic aberrations [36,40]. Analysis of cfDNA may provide information on the
genomic landscape of a given tumor, including gene mutations, SCNA, chromosomal
rearrangements, and methylation patterns. It may reflect both the primary tumor and the
metastatic sites [41]. As such, it is well suited for the genetic characterization of tumors
with a high degree of subclonal heterogeneity [42,43]. The detection of cfDNA with tumor-
specific genetic aberrations after treatment with curative intent defines minimal residual
disease (MRD). MRD may give rise to clinical relapse and cancer progression in the course.
Liquid biopsy monitoring approaches after surgery or other forms of definitive treatment
have been shown to enable the detection of disease relapse many months prior to clinical
progression [44,45]. Furthermore, in the palliative treatment setting, tumor dynamics may
be monitored non-invasively by quantifying tumor cfDNA over time [46–48]. Such serial
cfDNA analyses can also provide insights into the molecular evolution of the clonal tumor
makeup, with implications for therapy at progression [49–51].
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3.2. Technical Challenges in Liquid Biopsy Analyses of cfDNA

There are many challenges in the analysis of liquid biopsies in cancer patients as
recently reviewed in [52]. These include preanalytical problems associated with the un-
specific lysis of blood cells releasing large quantities of unmutated DNA if no adequate
asservation technique and stabilizers are used. Moreover, very low levels of tumor cfDNA
in early cancer stages dictate low sensitivity of detection. Additional pitfalls arise from
the potential detection of mutations that derive from clonal hematopoiesis or uncommon
heterozygous single nucleotide polymorphisms that may be erroneously interpreted as
tumor specific [32]. The majority of liquid biopsy studies that investigate the prognos-
tic relevance of this biomarker and its utility for monitoring quantify the percentage of
tumor-derived cfDNA by sequencing (e.g., NGS, modified NGS, CAPP-seq) or individual
mutation detection (e.g., RT PCR, ddPCR, BEAMing). These technologies have different
sensitivity levels as shown in Figure 1.
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Figure 1. Schematic presentation of the potential applications of cfDNA profiling in gastric and
gastroesophageal cancer. The sensitivity level indicates the minimal allele frequency (%) of a mutation
that can be detected with the respective method. RT-PCR = real-time PCR; NGS = next-generation
sequencing; ddPCR = digital droplet PCR; BEAMing = beads, emulsion, amplification, magnetics
digital PCR technique; UMI = unique molecular identifier, CAPP-seq = cancer personalized profiling
by deep sequencing.

Due to the stage-specific amounts of tumor-derived cfDNA, caution must be exer-
cised when selecting a technology platform with adequate sensitivity for the respective
research question. A general problem of all mutation-based quantification strategies con-
sists in inadequate representation of the whole tumor mass by single mutations in cancers
with pronounced subclonal genetic heterogeneity. For prognostication and monitoring,
a number of studies have, therefore, used quantification of plain cfDNA concentrations
per plasma volume based on the observation that cfDNA concentrations correlate with
tumor burden [53–56]. Taking into account all these possible pitfalls, the feasibility of liquid
biopsy analyses has to be carefully investigated. Valuable lessons can be learned from
comparative analyses of matched tumor tissue and plasma samples of the same patient at
the same time-point. A summary of such studies is presented in Table 1.
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Table 1. Studies with comparative analysis of genomic profiling using liquid biopsy and matched
tissue biopsy in gastric cancer.

Author Cohort Target Sample Size Result

Parikh et al.,
2019 [34]

Patients with molecularly
defined gastrointestinal

cancers and acquired
resistance to targeted therapy

Targeted NGS,
multiple

cancer-specific genes
23

Clinically relevant resistance
alterations are more frequently

identified from cfDNA

Wang et al.,
2018 [57]

Patients with advanced gastric
cancer before medication HER2 amplification 56 91.1% concordance of ctDNA

and tumor tissue

Schrock et al.,
2018 [58]

Patients with
gastrointestinal carcinomas

Hybrid capture-based
genomic profiling of

62 genes
25

86% of mutations detected in
tissue were also detected in

matched ctDNA and, conversely,
63% of mutations found in

ctDNA were also found in tissue

Pectasides et al.,
2018 [59]

Patients with newly diagnosed
metastatic gastric and

esophageal adenocarcinomas
Mixed 28

87.5% concordance for targetable
alterations in cfDNA and

metastatic tissue of discordant
primary and metastatic lesions

Lee et al.,
2019 [60]

Patients with
metastatic gastric cancer

Hybrid capture NGS
of MET amplification 19

89.5% concordance rate between
ctDNA and tumor,

100% concordance rate when
patients without detectable

ctDNA levels were excluded

3.3. Liquid Biopsies for Early Relapse Detection in Patients with Gastric and Gastroesophageal
Junction Cancer

MRD detection by cfDNA analysis has been prospectively investigated in a number
of studies of early stage gastric cancer being resected with curative intent [32,61–63]. The
majority of these studies used targeted next-generation sequencing (NGS), some of which
included serial measurements over the post-surgical course. An overview of these studies
is shown in Table 2.

Table 2. Key studies on liquid biopsy applications in gastric and gastroesophageal cancer *.

Cancer Entity Technique Conclusions Reference

Resected GC Targeted NGS of cfDNA Mutant cfDNA correlates with tumor stage and
post-operative positivity is prognostically adverse. [63]

Resected GEA Targeted NGS of cfDNA
In locoregional gastric cancer, patients treated with

curative intent cfDNA-detected MRD identifies
patients at high risk for recurrence

[63]

Resected and metastatic GEA Targeted NGS of cfDNA
Post-operative MRD predicted short relapse-free
survival. High mutation load at the diagnosis of

metastatic disease predicted poor survival.
[61]

Resected and metastatic GEA Targeted NGS of cfDNA

Patients with locally advanced disease and
detectable mutations in cfDNA postoperatively

experienced adverse outcomes. Liquid biopsies and
matched tissue biopsies demonstrate significant

heterogeneity and may therefore give
complementary information.

[32]

Resected and metastatic GEA Targeted NGS and WES
of cfDNA

Mutant cfDNA can be detected in the plasma of
GEA patients and correlates with disease burden

and stage.
[62]
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Table 2. Cont.

Cancer Entity Technique Conclusions Reference

Locally advanced
HER2+ GEA NGS of cfDNA

cfDNA sequencing at disease progression
demonstrates the emergences of other genomic

aberrations, such as MYC, EGFR, FGFR2,
and MET amplifications.

[64]

Mostly metastatic GEA Targeted NGS of cfDNA

76% of patients showed mutations in cfDNA.
Genomic alterations only partially overlapped with
those found upon tumor tissue sequencing. Many

patients had potentially druggable lesions.

[33]

Metastatic GEA treated with
targeted therapy NGS of cfDNA (WES)

The emergence of multiple resistance alterations in
an individual patient may represent the ‘rule’ rather
than the ‘exception’. Liquid biopsies are preferable
over tissue biopsy because they better capture the
heterogeneity in the setting of acquired resistance.

[34]

Metastatic HER2+ GEA Targeted NGS of cfDNA

Serial monitoring of mutations in cfDNA identified
progressive disease before clinical progression.
Resistance mechanisms on HER2 targeting are

genetically heterogeneous.

[65]

Metastatic HER2+ GEA Targeted NGS of cfDNA
The study identifies PIK3CA/R1/C3, ERBB2/4, and

NF1 mutations as drivers of resistance in
HER2 targeting.

[66]

Metastatic HER2+ GEA Targeted NGS of cfDNA

Early increase in cfDNA during treatment identifies
individuals at risk for rapid progression. Resistance

to anti-HER2 may be mediated by
epitope-disrupting HER2 mutations.

[67]

* GC = gastric cancer, GEA = gastroesophageal adenocarcinoma, cfDNA = cell-free DNA, MRD = minimal residual
disease, NGS = next-generation sequencing, WES = whole exome sequencing.

Together, these studies show that post-surgical detection of mutant cfDNA is prog-
nostically adverse and most patients with persistent MRD eventually relapse at some
point. Time to relapse appears to be generally shorter in patients with post-surgical detec-
tion of mutant cfDNA and liquid biopsy positivity typically precedes clinical relapse by
several months.

The general problem of MRD detection in this group of diseases is the profound
inter-patient heterogeneity of mutations. The use of mutation-agnostic MRD monitoring
approaches, therefore, requires large gene panels. This is in conflict with the high sensitivity
needed for MRD detection. CAPP-seq approaches and tumor-informed approaches may
achieve much higher sensitivity. The latter require prior sequencing of the tumor followed
by the design of patient-specific probes that can be used for highly sensitive over-time
monitoring (e.g., by digital droplet PCR). Some of the limitations of tumor-informed
monitoring the relatively high costs, the turn-around times for the establishment of the
patient-individual assays, and the potential of losing the monitored subclone as a result of
shifts in the genomic tumor landscape, e.g., on selective treatment pressure.

3.4. Liquid Biopsies for the Detection of Druggable Lesions in Patients with Gastric and
Gastroesophageal Junction Cancer

In gastric and gastroesophageal junction cancer, there are currently two biomarkers
guiding treatment decisions: ERBB2/HER2 amplification/expression for trastuzumab
treatment and PD-L1 tissue expression for treatment with immune checkpoint inhibitors.

For determination of the HER2 amplification status, a genomic test is necessary,
which is usually performed on DNA from formalin-fixed paraffin-embedded tissue. The
amplification of ERBB2 may, however, also be done on cfDNA by a ddPCR method,
which showed comparable effectiveness to immunohistochemistry and fluorescence in situ
hybridization [29]. In addition to its potential use in primary genotyping of gastric and
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gastroesophageal junction cancer, the plasma HER2 ratio determined by ddPCR may also
represent a non-invasive approach that can be used to monitor the effects of treatment
in patients with HER2-positive tumors and to enable treatment options for patients with
tumors that converted from HER2 negativity to HER2 positivity at recurrence without
the need to obtain a new tissue biopsy [29]. Moreover, since liquid biopsies are generally
better suited to capturing tumor genetic heterogeneity as described above, the use of
liquid biopsies with or without additional tissue diagnostics at relapse may allow the
identification of more patients for targeted treatment approaches. A large sequencing
study performed on patients with gastric adenocarcinoma supported this idea. This study
identified substantial heterogeneity when sequencing cfDNA, tumor, and metastatic tissue
in seven confirmed HER2-positive cases [32]. Of these, only 2 (28%) showed concordant
results with the 3 testing modalities. This illustrates that therapeutic decisions based on
just one test or biopsy site carry the risk of missing HER2-targeting opportunities.

The U.S. Food and Drug Administration (FDA) granted Breakthrough Therapy Des-
ignation for the monoclonal antibody bemarituzumab as first-line treatment for patients
with FGFR2b-overexpressing metastatic and locally advanced gastric and gastroesophageal
adenocarcinoma in combination with chemotherapy. The licensing is expected to be based
on an FDA-approved companion diagnostic assay showing overexpression of this target
in at least 10% of tumor cells [24,25]. FGFR2 tissue expression will, therefore, become a
third biomarker guiding the choice of treatment in these cancers. It is interesting to note
that the recent trials studying FGFR2 targeting have included cfDNA analyses to deter-
mine the FGFR2 amplification status. In the FIGHT trial combining the FGFR-targeting
antibody bemarituzumab with chemotherapy, eligible patients were selected based on
FGFR2b overexpression determined by immunohistochemistry or FGFR2 gene amplifica-
tion by cfDNA analysis [24,25]. Of the 155 randomized patients, only 6 could be detected
as FGFR2 amplified by cfDNA analysis but not via tumor tissue testing. Another trial
investigating the efficacy of the FGFR inhibitor AZD4547 [68] demonstrated high activity
in FGFR2-amplified patients with gastric cancer. Copy number variation using ddPCR in
tumor tissue and plasma identified all responders.

Together, this data suggests that the integration of cfDNA profiling at diagnosis or
repeated profiling at relapse may help to offer a targeted treatment option to a larger
number of patients with gastric and gastroesophageal junction cancer.

3.5. Liquid Biopsies for Disease and Resistance Monitoring in Systemic Treatment of Gastric and
Gastroesophageal Junction Cancer

Finally, serial analysis of cfDNA may provide insights into the level of tumor control
and the development of resistance traits in gastric and gastroesophageal junction cancers
over time.

Table 2 gives an overview of key trials testing cfDNA screenings by NGS in the
advanced metastatic situation and on systemic treatment [34,62,64–67,69]. Similarly to the
situation in early disease after resection, serial monitoring of mutations in cfDNA identified
progressive disease before clinical progression. In our own trial studying the efficacy of
two experimental anti-HER2 protocols for the treatment of advanced HER2-positive gastric
cancer, we found increases in cfDNA after the first treatment cycle to identify patients
at risk of early treatment failure [67,69]. This makes cfDNA quantification an interesting
biomarker for rapid evaluation of treatment efficacy, especially in light of the progressively
broadening treatment landscape, which may enable early informed change in treatment.
This is clinically relevant given that many patients with newly diagnosed metastatic gastric
cancer are in need of a rapid treatment response.

Moreover, these above-mentioned trials showed that the resistance mechanisms to sys-
temic targeted therapy are genetically heterogeneous with different routes to resistance that
can even co-exist in individual patients. In HER2 targeting, the emergence of other genomic
aberrations in alternative pathways, such as MYC, EGFR, FGFR2, and MET amplifications,
and PIK3CA/R1/C3, ERBB2/4, and NF1 mutations may occur (refer to Table 2). In a large
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liquid biopsy and autopsy study, the subclonal heterogeneity of acquired resistance was
studied in a patient with gastric cancer on FGFR kinase inhibition [34]. In this patient, a
large spectrum of resistance subclones was detected to have heterogeneously seeded the
different metastatic sites. These included cancer cells negative for the FGFR2-CD44 fusion
transcript of the original main tumor clone (potential ancestors of this clone that experi-
enced selective advantage on FGFR-targeted treatment) and clones with a variety of FGFR2
mutations within the kinase domain. Interestingly, the clones identified in the different
metastatic sites on autopsy material were also found by liquid biopsy cfDNA sequencing.

4. Future Directions

A large body of evidence from different trials confirms that in gastric and gastroe-
sophageal junction cancer, quantification of cfDNA can be used to assess the risk for
disease recurrence or progression. A number of challenges still remain. These pertain to
the sensitivity levels of detection methods, standardization of protocols, and the clinical
implementation of complex tumor-informed monitoring approaches. Moreover, when
predicting a lack of treatment efficacy, caution must be exercised to exclude false-positive
liquid biopsy results that may result from the presence of clonal hematopoiesis or rare
germline single-nucleotide polymorphisms in the patient. If these challenges can be tackled,
pre- and post-surgical liquid biopsies may become a transformative technical tool to guide
tailored adjuvant systemic treatment. New studies should be designed to evaluate whether
adjuvant treatment intensification or drug rotation in patients with persisting liquid biopsy
positivity may lead to higher cure rates.

In the metastatic setting, early drug rotation based on cfDNA dynamics may also help
to reduce the percentage of patients that die early due to insufficient tumor control by their
first-line treatment regimen. Admittedly, however, the numbers of active drug regimens in
this spectrum of tumors are still rather limited, hampering the design of such trials.

5. Conclusions

Treatment personalization is geared toward boosting patient care in gastric and gas-
troesophageal junction cancer. Liquid biopsy testing will become increasingly relevant in
this respect. In addition to their value in disease monitoring, liquid biopsies may more
faithfully capture tumor heterogeneity. As a technical assay independent of tissue analysis,
they may help to identify more patients for targeted treatment approaches.

Before liquid biopsies can become a standard of care in the guidance of personalized
medicine in gastric and gastroesophageal junction cancer, large prospective validation trials
are required.

Author Contributions: M.B. and L.P. contributed to the conceptualization and writing of the review.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: M.B. Consulting and Honoraria: BMS, Amgen, Gilead, Sanofi Aventis. Con-
tracted Research: Novartis, Servier, Hexal Biosimilars, BMS, Merck, Janssen.



Curr. Oncol. 2022, 29 1438

Abbreviations

B2M beta-2 microglobulin
BEAMing beads, emulsion, amplification, magnetics
CAPP-seq cancer personalized profiling by deep sequencing
cfDNA cell-free DNA
CIN chromosomal instability
ddPCR digital droplet PCR
FCGR fibroblast growth factor receptor
FDA Food and Drug Administration
FISH fluorescence in situ hybridization
GC gastric cancer
GEA gastroesophageal adenocarcinoma
Her2 human epidermal growth factor 2
IHC immunohistochemistry staining
MRD minimal residual disease
MSI microsatellite instability
NGS next-generation sequencing
RT PCR real-time PCR
TCGA The Cancer Genome Atlas research project
UMI unique molecular identifyer
VEGFR2 vascular endothelial growth factor receptor-2
WES whole exome sequencing
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