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Development of a comprehensive 
assessment model for coral reef 
island carrying capacity(CORE‑CC)
Ming Chen1,2, Fenzhen Su1,2,3*, Fei Cheng1,2,3, Yu Zhang1,2 & Xuege Wang1,2,3

Coral reef islands provide precious living space and valuable ecological services for human beings, 
and its sustainability cannot be ignored under the pressure of human activities. Carrying capacity (CC) 
assessment has gradually become an important means to measure sustainability of islands. However, 
there is little comprehensive evaluation of the carrying capacity of coral reef islands, and traditional 
evaluation methods are difficult to express the social‑ecological characteristics of coral reef islands. 
The present paper proposes a comprehensive assessment model for coral reef island carrying capacity 
(CORE‑CC) which comprises dimensions of resources supply, environmental assimilative, ecosystem 
services, and socio‑economic supporting. According to the characteristics of the coral reef islands, the 
core factors and indicators of each dimension are selected and the corresponding assessment index 
system of "pressure‑support" is constructed. The assessment involves (1) identification of carrying 
dimensions and core factors, (2) pressure/support measurement and (3) assessment of carrying state. 
A case study is conducted in Zhaoshu Island of China, demonstrating the applicability of CORE‑CC 
model and serving as a reference for adaptive management.

Coral reefs are among the richest and most diverse ecosystem types found in the global  ocean1,2. Coral reef islands 
are formed by biological debris produced by the erosion, deposition and cementation of coral sediments. As 
a special type of islands, coral reef islands not only provides the carrier for human habitation and the fulcrum 
for protecting and utilizing the ocean, but also provides valuable ecosystem services, such as food provision, 
coastal protection, recreational activities and numerous cultural  services3,4. However, due to the effects of local 
human activities, such as overfishing, land runoff, and pollution discharge, coral reefs’ sustainability is questioned 
around the  world5. Coral reef systems are social-ecological systems where the interaction between humans and 
nature is particularly  complex4. Human beings are the main body in the development and utilization of coral 
reef resources, and at the same time they bring threats and damage to coral reef ecosystems, but they are also 
the promoters of the protection and management of coral reef  environment6. However, the management of the 
ecological environment should not only be passive restoration, active adaptive management to maintain the 
health of the ecosystem is more  important7. The core task of adaptive management is to identify and analyze 
the basic resource advantages and stress factors of the regional ecosystem, and propose management models 
and countermeasures on this  basis8,9. Currently, some scholars tried to achieve sustainable development of coral 
reef social-ecological system by revealing the interactions among socio-economic and ecological environment 
factors or addressing the stressors and the impact pathways, few of which have applied the carrying capacity 
theory in coral reef  islands10–13. Carrying capacity is a scientific concept for measuring the relationship between 
human socio-economic activities and the natural environment, and an important tool for measuring and manag-
ing human sustainable  development14. Meanwhile, the carrying capacity analysis method combines qualitative 
comparison and quantitative evaluation, which can reveal the stress factors and characteristics of the regional 
ecosystem to a certain extent, and can provide a basis for adaptive  management15. Carrying capacity can be an 
effective perspective to measure the sustainability of coral reef  islands16.

The concept of carrying capacity (CC) derives from a demographic focus on the sustainable growth of popu-
lation or livestock farming, this concept demonstrates the relationship between a population (carrying object) 
and the environment (carrier)17. Accompanied with the development and enlarging range of human activities, 
the research on carrying capacity has changed from researches of biotic population growth law to the com-
prehensive carrying capacity covering natural resource endowments and human development  demands18. The 
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scopes of carrying capacity applications have been expanded, such as land resource carrying  capacity19,20, water 
resource carrying  capacity21,22, environmental carrying  capacity23,24, ecological carrying  capacity25,26, social car-
rying  capacity27,28 and comprehensive carrying  capacity29–31. The progression of carrying capacity has gradually 
attached importance to the influence of human activity factors on the carrying  capacity19. The evaluation object 
has gradually shifted from a single resource and environmental element to the carrying capacity for multiple or 
comprehensive  elements32.

With the development of the marine economy, human activities, coastal development and pollution have 
gradually changed and destroyed the capacity of marine  ecosystems2,33, the researches on comprehensive assess-
ment of CC are also applied to various fields of the ocean, such as Marine ecosystem, coastal zone and islands, 
 etc34–37. However, as one of the most important marine ecosystems and type of islands, case studies on coral 
reef island carrying capacity are still limited to a single capacity, for instance, diving tourism carrying capacity 
or aquaculture carrying  capacity38–40. The social-ecological system of coral reef islands is complex, we need to 
comprehensively assessment its carrying capacity to better reflect the entire system’s capacity.

Fortunately, the assessment methods of ordinary islands provide a reference for the comprehensive assess-
ment of coral reef islands CC. These methods mainly include the system dynamics  model41, ecological footprint 
 method42, energy  analysis43,44, and the comprehensive indicator  system45,46. The system dynamics model can 
quantitatively analyse the intrinsic relationship between the structure and function of various complex systems; 
however, it is difficult to select the parameter indicator, and the large quantity of data limits the application of 
the model and the similitude to  reality47. Both the ecological footprint method and the emergy analysis method 
simplify the complicated processes by an equivalent term which can neither tell considerable information rel-
evant to the complexity of coupled social-ecological systems nor sufficiently feature a specific  area48. Two com-
mon comprehensive indicator systems are as follows: one is to use a multi-dimensional indicator system, select 
indicators from the dimensions of resources, environment, ecology, socio-economic and assume ideal values 
for comprehensive evaluation; the other aims to build a PSR (Pressure-State-Response) or DPSIR (Driving-
Force-Pressure-State-Impact-Response) model as a system layer or distinguish between pressure indicators and 
support  indicators49,50.

Although the comprehensive indicator system method is more flexible and more in line with the actual 
 situation51, some limitations exist. Logic feedback frameworks based on PSR or DPSIR are usually applied 
in qualitative evaluation due to the difficulties in data collection and weight  determination52. For the multi-
dimensional indicator system method, most studies divide the carrying capacity system into a resource standard, 
environmental standard and human society standard, and calculate the indexes of each standard layer as a whole. 
However, the ultimate comprehensive research results are difficult to judge whether the examined carrying 
capacity is  overloaded50. Recently, many scholars believe that it is necessary to analyze the relationship between 
the support of the carrier and the pressure carried by the carrier to reflect the carrying capacity, so that the state 
of the carrying capacity can be more accurately  judged53–55. But the evaluation objects are mostly single ele-
ments, such as water  resources53, ecological  environment54, etc., which can only provide partial understanding 
of  sustainability55. Therefore, we can combine the multi-dimensional indicator system method and pressure-
support analysis method to evaluate the carrying capacity more comprehensively and accurately. Meanwhile, in 
view of the commonness of the islands and the uniqueness of the coral islands in the ecological dimension, the 
evaluation index system and methods for the coral reef island CC should be improved accordingly.

To address these shortcomings, this paper presents a comprehensive assessment model of coral reef island car-
rying capacity (CORE-CC), which is composed of four dimensions: resources supply, environmental assimilative, 
ecosystem services and socio-economic supporting. Comprehensively evaluates the carrying state according to 
the corresponding relationship between the pressure and support capacity of the same core indicators. Finally, 
a case study is conducted in a typical coral reef island of Zhaoshu, and serves as a reference for local adaptive 
management.

Methods
CORE‑CC conceptual model. As a primary depict, Carrying capacity can be regarded as the limit of 
human activities that will cause adverse changes in the environment, provided that the environment itself 
imposes certain restrictions on  development56. Therefore, it is necessary to understand the conflict between the 
limited support capacity of the coral reef island system and the pressure caused by the increase in population 
and human  activities57,58. In other words, it is essential to check whether population and human activities exceed 
the capacity provided by coral reef Island to achieve the mission of sustainable development. However, the pres-
sure brought by human activities on coral reef islands is reflected in many aspects, such as resources extraction 
and utilization, pollutant discharge, ecological damage caused by excessive access to ecosystem services, etc. 
Correspondingly, the coral reef islands system provides supports of resource supply, environmental assimilation 
and ecosystem service to cope with pressures. Although human socio-economic development is the source of 
pressures, it can improve the structure and function of the regional ecological environment through economic 
investment and technological innovation to increase the carrying capacity. Thus the essence of coral reef islands 
carrying capacity (CORE-CC) is kind of comparison between the pressure caused by human activities and the 
support capacity of the coral reef islands system, covering the four dimensions of resource, environmental, eco-
logical, and socio-economic (Fig. 1). In this perspective, as long as the pressure is within the support capacity 
threshold, the coral island system can remain healthy and  stable35,53,54. Herein, CORE-CC is defined as the com-
bined threshold of resources supply, environmental capacity, ecosystem services, and socio-economic support-
ing capacity of the coral reef islands that could carry socio-economic activities without causing degradation of 
the structure and function of the social-ecological system.
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CORE‑CC dimensions and their core factors. The above definition implies that CORE-CC has four 
dimensions: resources supply, environmental capacity, ecosystem services, and socio-economic supporting. 
Basically comprehensively expressed the scope of interaction between human activities and the ecological envi-
ronment of coral reef islands. However, due to the differences in geographical environment, coral reef islands 
are considered to have different natural capital stock changes and utilization patterns, resulting in serious vul-
nerability, monomer structure, development differences and coral dependence and other unique economic 
 characteristics59.

As a result, it leads to differences in the economic structure and functional orientation of different coral reef 
islands, the types and quality of factors that CORE-CC focuses on in each dimension are also different. There-
fore, it is more meaningful to select the core factors of each dimension of CORE-CC according to the common 
characteristics of coral reef islands. The coral reef islands are common characterized by: (a) insularity, i.e. small 
size, limited water resources and heavily dependent on imports  problems60; (b) human presence and shaping of 
landscapes for long time periods, leading to the development of semi natural environment to urbanization with 
the changes of economy and  society61,62; (c) economy dominated by tourism, services and  fisheries62,63; (d) it 
has both terrestrial and marine ecosystems, as well as a unique coral reef  ecosystem16. These characteristics lead 
to the identification of the core factors for each dimension of CORE-CC. In addition, the word "CORE" means 
that the model considers the core factors of each dimension.

1. The resources supply dimension refers to the ability of the reef islands ecological environment to provide 
natural resources for human activities. Coral reef islands can provide humans with resources such as land, 
water, food, and a small amount of  fuel64. Among them, water is a precious source of  life65, land resources 
provide a foothold for human  survival66, and most coral reef islands rely on imports for food and  fuel64. 
Considering the scarcity and importance of resources, ensuring the sustainability of water and land resources 
is the focus of this  research67. Therefore, Land resources and water resources are used herein as the core 
factors to measure the resources supply capacity in CORE-CC.

2. The environmental assimilation dimension refers to the migration of the reef islands environment and the 
self-purification function of transforming pollutants. The environmental assimilation of the coral reef islands 
should theoretically include the water assimilation, atmospheric assimilation and soil  assimilation56. How-
ever, coral reef islands have few large industries, and at the same time, due to the fast air circulation of the 
coral reef islands, makes air pollution is easy to reduce. Furthermore, scarce land resources are usually not 
used as pollutant discharge carriers, and the seawater around the island is the main receptor for pollution 
 discharge68. Therefore, the water assimilation is used herein as the core factor to measure the environmental 
assimilative capacity.

3. The ecosystem services dimension refers to the ability of ecosystems within a certain time and space to pro-
vide services such as ecological regulation, ecological support, and ecological  culture69. Coral reef islands 
have the characteristics of land-sea transition patches, and their ecosystem service capacity should be con-
sidered from both terrestrial ecosystem and marine  ecosystem70,71. Among them, the marine is dominated 
by coral reef ecosystem services, which is also a unique feature of the CORE-CC.

4. The socio-economic supporting dimension refers to the ability of human socio-economic to improve the 
resources supply capacity, environmental assimilative capacity and ecosystem services capacity of the 
coral reef islands. Human socio-economic’s support behavior includes research and development of more 
resources, pollution control, environmental construction, ecological protection and restoration construc-
tion,  etc35,54. Its capacity depends on the level of socio-economic development and the degree of support for 
the sustainable development of coral reef  islands51,72. Therefore, the socio-economic supporting capacity is 
measured using socio-economic development and protective initiatives as the core factors.

Figure 1.  CORE-CC conceptual model. The ellipsis in the pressure box represents other human activities that 
interact with nature and exert pressure on the social-ecological system.
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According to the analysis conducted above, the core factors of each dimension of CORE-CC are determined 
(Table 1). In the next step, according to the characteristics of each factor, the quantitative indicators are selected 
in accordance with the basic principles of regionality, representativeness, ease of operation, and symmetry of 
"pressure-support".

Measuring indicators of each core factor. In summary, the following measurable indicators of each 
core factor are collected. Since CORE-CC is expressed into a comparison of the safe thresholds and the pressure 
generated by human demand, a set of methodologies for indicators estimation are described from the ends of 
pressure and support. For the core factors of resources and environment, the supply of resources and the capacity 
of environment are taken as the support, while the actual demand of resources and the discharge of pollutants 
in the social economic system are taken as the pressure. For the core factors of ecosystem and socio-economic, 
the actual ecological services provided by the ecosystem and the actual economic input provided by the socio-
economic system are taken as the support, while the expected value of a specific standard or environmental 
quality improvement requirements is taken as the pressure.

Land resource. This factor is measured by indicator of suitable construction land resource. Land resources have 
functions of production, carrying capacity, providing raw materials, saving and value-added, etc. The CORE-CC 
focuses on the spatial carrying capacity function of land as the basic activity place of human beings and build-
ing base, and the analysis of its supply capacity mainly focuses on construction land. The pressure end of this 
indicator is the developed land use area of coral reef islands, and the support end is the area suitable for construc-
tion land. The amount of land resources suitable for construction refers to the amount of land resources whose 
natural conditions and socio-economic conditions are suitable for construction purposes and will not adversely 
affect the ecological environment after development. The calculation is mainly obtained through the ecological 
suitability assessment of construction land. The assessment of the ecological suitability of construction land is 
the process of assessing the suitability of the land for various construction uses from the perspective of ecologi-
cal environmental protection. The main factors affecting the suitability of the land are selected (including land 
cover, fracture zone, mean gradient, and soil property). Based on the GIS tool, a multi-factors weighted scoring 
method is used to calculate the appropriate construction land resources. The comprehensive ecological suitabil-
ity score is obtained by using the following equations:

where Ci is the comprehensive ecological suitability score of the i-th evaluation unit, i = 1,2,3…m; Cij is the suit-
ability grade score for the j-th evaluation factor of the i-th evaluation unit, j = 1,2,3…n; Wj is the weight of the 
j-th factor. The results of evaluation unit are classified into four levels: forbidden, limited, less suitable, or suitable. 
Among them, the area land of less suitable and suitable is accounting for the suitable construction land resource.

Water resource. This factor is measured by indicator of the available water resource that refers to the maximum 
amount of water resources that can be developed and used within a certain time and space without prejudice to 
environmental systems. The pressure end of this indicator is the annual water consumption of the total popula-
tion, while the support end is the annual total available water resources, which is composed of available surface 
water, available ground water, trans-boundary water and wastewater reclamation. The calculation equation is as 
follows:

where WAR is the total available water resource, WG is available ground water, WT is water transferred in, WRe is 
reclaimed wastewater, and  WD is desalinated sea water.

Water assimilation. According to the characteristics of the treatment of coral reef island pollutants, the water 
assimilation refers to the ability of the seawater around the coral reef island to keep the water body clean through 
the migration of water mass and degradation of pollutant concentration. The pressure end of this indicator is cal-

(1)Ci =







0 Cij = 0
n
�

j=1
Wj × Cij Cij �= 0

(2)WAR = WG +WT +WRE +WD

Table 1.  Core factors of each dimension of CORE-CC.

Objective Dimensions Core factors

CORE-CC

Resource supply
Land resources

Water resources

Environmental assimilation Water assimilation

Ecosystem services
Terrestrial ecosystem services

Coral reef ecosystem services

Socio-economic supporting
Socio-economic development

Protective initiatives
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culated according to the annual emissions from point sources (e.g., sewage treatment plants), while the support 
end is estimated by the water assimilative capacity proposed in the total maximum daily load (TMDL) process, 
to achieve compliance with the pollutant  standards73. In this paper, inorganic nitrogen (IN) and inorganic phos-
phorus (IP) as the main pollutant indicators. A DHI MIKE3 software was used to establish a coupling model of 
hydrodynamics and water quality in the offshore waters of the coral reef islands. The movement and water qual-
ity of pollutants in the offshore waters were simulated, and the response field results reflecting the relationship 
between the pollutant concentration and the emission sources in the near waters were obtained. In addition, the 
classic linear optimization method is used to obtain the maximum total pollution load of each pollution source 
under the premise of meeting specific water quality standards, which is used as the water assimilation  capacity74. 
It is expressed as,

where i is the sea area number, j is the point source number, Ci is the pollutant concentration in the sea area i, Cs
i  

is the reference standard for quality of seawater in sea area i, Pij is pollutant response field of source j in sea area 
i, Qj is optimized pollutant load of source j, Ql

j and Qu
j  are the minimum and maximum pollutant load limits of 

point source j, AC is the seawater assimilative capacity.

Terrestrial ecosystem services. This factor is measured by indicator of Sum LAI. Leaf area index (LAI) is one of 
the most widely used parameters in ecological science, which is used to describe the ecological health of natural 
ecosystems. Most of the ecological service functions of terrestrial natural ecosystems originate from metabolic 
processes of plants or related processes, including photosynthesis, transpiration, and material circulation, and 
the leaf area plays a decisive role to a large  extent75. Therefore, the LAI can approximately represent the ecologi-
cal service function. For a region, the sum of average LAI for all types of land cover (Sum LAI) is often used to 
reflect the level of ecosystem  services76. The pressure end of this indicator is the expected value of the Sum LAI 
to meet the functional orientation and development planning of the coral reef islands, while the support end is 
the actual measured value. The equation is as follows:

where, LS is the sum LAI value, i is the land cover type, Li is the averaged LAI value of i-th land cover type, Ai is 
the area of the i-th land cover type, Ais is the sum area of land covers. The types and proportions of land cover 
can be obtained through remote sensing image supervision and classification combined with field investigation. 
The averaged LAI for each type of biome/land covers employ the empirical  values77,78 listed in Table 2.

Coral reef ecosystem services. Coral reef ecosystems provide a rich variety of direct and indirect services to 
humans, such as food supply, coastal protection, diving tourism, etc. By preserving coral ecosystems’ capacity 
to cope with disturbances, we can preserve the ability of ecosystems to provide us with the goods and services 
that we depend on. The coral coverage is often used as an indicator of the health and resilience of coral reefs in 
general, and a decline in coral coverage means reduced habitat supply and reduced service  capacity12,79. Among 
which, Hard corals are reef-building and when they die the skeleton endures and creates a base for other corals 
to grow on. They are considered as the most important component of coral reefs because they build durable 
structures that provide habitat for countless coral reef  organisms80. Furthermore, if the coral reef has a high 
biodiversity of plants and animals that perform different functions, the buffer capacity is usually  higher81. Thus, 
this factor is measured by indicators of hard corals coverage, species number hard corals, coral reef fish density, 
and species number of coral reef fishes for assessment. Referring to the coral reef health status standard set by 
 Zufikar82 and  Sun83, the pressure end of these indicators is the demand value that can maintain the health of 
coral reef ecosystem, and the supporting end is the actual value of these indicators. These indicators are available 
through field surveys and remote sensing. Among them, the calculation formulas of hard corals coverage and 
coral reef fish density are as follows:

(3)Ci =

n
∑

i=1

PijQj

(4)
AC = Max

n
∑

j=1

Qj

Subject to Ci ≤ Cs
i

(5)Ql
j ≤ Qj ≤ Qu

j

(6)LS =

n
∑

i=1

Li ·
Ai

Ais

Table 2.  Average LAI of land cover type  (m2/m2).

Land cover Farmland Garden Woodland Grassland Wetland Construction land Other land

Average LAI 3.0 3.0 5.0 2.0 6.5 0.5 1.0
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1. Hard corals coverage (HCC)

where, n is the number of hard corals on each survey line, and M is the total number of points on each line.
2. Coral reef fish density (Df)

where, N is the total number of reef fish on the sample line; L is the total length of the sample line (m); W is 
the width of one side of the sample line (m).

Socio‑economic supporting. This dimension contains the level of socioeconomic technology development and 
human willingness to pay for ecological and environmental protection. The core factors are measured by the 
indicators of GDP per capita, environmental protection investment and R&D expenditures. The support end 
of these indicators is determined by actual values for the year and can be obtained from local statistics. The 
pressure end of GDP per capita is calculated by referring to the Environmental Kuznets  curve84, local economic 
development indicators and environmental  quality85. The pressure end of environmental protection investment 
and R&D expenditures is calculated according to the expected value set by the national or local government 
development  plan16,86..

Indicators system of assessing CORE‑CC. The essence of core-cc assessment is to judge whether the 
pressure brought by social development is within the support capacity provided by reef island system. Along this 
line of thought, based on the above-mentioned CORE-CC concept and connotation, a comprehensive assess-
ment indexes system was established (Table 3). The characteristic of this indicator system is that there is a one-
to-one correspondence between the support indicator and the pressure indicator. The support indicator value 
can be regarded as the threshold value of the pressure indicator, which can easily evaluate whether the regional 
development is overloaded and the degree.

Assessment of CORE‑CC. Assessment of the core indicators. Once the paired pressure/support indicators 
and their values are determined, they can be compared directly. By determining the ratio of the remaining quan-
tity between the index pairs, it is determined whether the carrying state is overloaded. The equation is as follows:

where  sij is the support indicator, and  pij is the pressure indicator. The principle of assessment is the following. For 
dij > 0, surplus occurs when support capable of meeting the pressure, which represents as the degree of surplus. 
For dij = 0, the pressure has reached the support capacity threshold, and no more pressure should be placed on this 
indicator. For dij < 0, deficit occurs when pressure exceeds support, which represents the degree of transgression.

Assessment of the CORE‑CC and its dimension indexes. According to the theory of regional carrying capacity 
vector assessment proposed by Yu and  Mao49, CORE-CC can be regarded as a vector containing four dimen-
sions, and each dimension index can be regarded as a subvector containing several core indicators. Liu and 
 Borthwick56 based on this idea, proposed a vector of carrying capacity surplus ratio model. The model first uses 
the vector modulus to calculate the carrying capacity surplus ratio of each dimension, then calculates the com-

(7)HCC = n×M × 100%

(8)Df =
N

2LW

(9)dij =
pij − sij

sij
= 1−

pij

sij

Table 3.  Indicators system for CORE-CC.

Objective (c) Dimensions  (ci)

Primary

Support indicator  (sij) Pressure indicator  (pij) Unit

CORE-CC

Resources supply
Suitable construction land resource Construction land km2

Available water resource Water consumption t/a

Environmental assimilation Water assimilation capacity Pollutant discharge t/a

Ecosystem services

Sum LAI Target Sum LAI m2/m2

Hard corals coverage Target hard corals coverage %

Species number of hard corals Target species number of hard corals -

Coral reef fishes density Target coral reef fishes density Fish/m2

Species number of coral reef fishes Target species number of coral reef 
fishes –

Socio-economic supporting

GDP per capita Target GDP per capita Yuan

Environmental Protection Investment Target environmental Protection 
Investment %

R&D Expenditures Target R&D Expenditures %



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3917  | https://doi.org/10.1038/s41598-021-83481-w

www.nature.com/scientificreports/

prehensive carrying capacity surplus ratio from each dimension’s surplus ratio. Each dimension (indicator) has 
equal opportunities for the factors that restrict the CORE-CC, so the same weight is used for assessment. For 
dimension index assessment, we define the surplus ratio of the dimension index as:

where Di is the surplus ratio of the i-th dimension, ni is the number of core indicators of the i-th dimension 
index,  dij is the same as above. For Di > 0, it implies the surplus state. For Di = 0, it implies the full- loaded state. 
Whereas for Di < 0, it implies the over-loaded state.

For the CORE-CC assessment, combining vector of each dimension index to get a surplus ratio of CORE-CC 
index, which can be described as:

where D is the surplus ratio of the CORE-CC, m is the number of dimensions (equal to 4 in the present study). 
For D > 0, the coral reef island is fully capable of carrying the pressure induced by human interference, whereas 
for D < 0, the coral reef island is over-loaded and negative to carry the pressure.

Study area and data sources. Zhaoshu Island (ZSI) is one of the main coral reef islands of the Xisha 
Islands in the South China Sea. Its geographical coordinates are 16°59′N, 112°16′E, and an area of about 0.22 
 km2. It is formed by the accumulation of white coral skeletal and shell sands on a reef platform, and is about 
4.4 m above sea level. There are lots of hard disk phosphorous lime soil on the island, and the vegetation is 
mostly Scaevola sericea. ZSI community belongs to Sang City, Hair Province, China. The residents are generally 
composed of fishermen, government workers and civil servants who have settled down for a long time or visited 
for a short time. With the gradual opening of the island’s tourism policy, its tourism industry is booming and 
the number of tourists is increasing. Since the official establishment of Sansha municipal government in 2012, 
the living conditions and environment of the local residents in ZSI have been significantly improved, and the 
infrastructure construction of road facilities, power grid, sewer and so on is complete. With the development 
and utilization of coral reef islands strengthened, the pressure on the ecological environment of the ZSI is also 
increasing. Through the comprehensive carrying capacity assessment to provide a reference for the sustainable 
development of ZSI.

According to the assessment method described above, an assessment index system for the carrying capacity 
of the coral reefs of ZSI was established, and the carrying stage of ZSI in 2017 was evaluated and analyzed. The 
data of each indicator are obtained through field surveys, local government statistical yearbooks, interviews with 
local government staff, historical research literature, and remote sensing monitoring.

Results
Assessment results of core indicators. The surplus ratio of each core indicator is calculated by Eq. (9), 
and the carrying state and degree of each core element of the coral reef island system are determined (Table 4).

On the whole, 4 of the 11 core indicators of ZSI’s CORE-CC in 2017 were overloaded. The Sum LAI, Hard cor-
als coverage, and coral reef fish density in the ecosystem service capacity dimension are overloaded by 4%, 145%, 
and 67%, respectively, indicating that both land and marine ecosystems cannot provide stable and adequate eco-
system services. Among them, the marine ecosystem is particularly overloaded, with two indicators of the highest 
degree of overload. This indicates that ZSI’s coral reef ecosystem service capacity has been severely degraded by 
climate change and human activities. The R&D expenditure indicator in the social support capacity dimension 

(10)Di = 1−

√

√

√

√

1

ni

ni
∑

j=1

(1− dij)2

(11)D = 1−

√

√

√

√

1

m

m
∑

i=1

(1− Di)
2

Table 4.  Assessment of core indicator of CORE-CC in ZSI in 2017.

CORE-CC dimensions Core indicator Surplus ratio Carrying state Degree (%)

Resources supply
Land resources 0.38 Surplus 38

Water resources 0.44 Surplus 44

Environmental assimilation Water assimilation capacity 0.87 Surplus 87

Ecosystem services

Sum LAI − 0.04 Over-load 4

Hard corals coverage − 1.45 Over-load 145

Species number of hard corals 0.14 Surplus 14

Coral reef fishes density − 0.67 over-load 67

Species number of coral reef fishes 0.14 Surplus 14

Socio-economic supporting

GDP per capita 0.04 Surplus 4

Environmental protection investment 0.08 Surplus 5

R&D expenditures − 0.60 Over-load 60
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is 60% overloaded, indicating that under the situation of economic development, the investment in research 
on ZSI is relatively lagging. As a practice of the national ecological civilization reform, the ‘Ecological Island’ 
project implemented by the State Oceanic Administration has a positive impact on the ecological environment 
of ZSI, making the environmental protection investment indicator appear surplus stage. The core indicators of 
the resource supply dimension are all surplus. Thanks to the establishment and operation of desalination plant, 
the available water resource of ZSI is 105  m3/a and tends to have a net surplus of 44%. Although the construc-
tion intensity of civil buildings continues to increase, the suitable construction land resource remains 0.13  km2 
with a 38% surplus. The seawater assimilation capacity indicator has the highest surplus degree, with a surplus 
ratio of 87%. This shows that ZSI’s offshore water body (1 km buffer zone) has sufficient assimilation capacity 
to carry the discharge of IN and IP pollutants, and can ensure that the water quality meets the national optimal 
water quality standard.

Comprehensive assessment results of CORE‑CC. Based on the analysis of the core indicators, a vector 
of carrying capacity surplus ratio model is used for the comprehensive assessment of CORE-CC to determine 
the comprehensive carrying stage and degree of each dimension and the entire coral reef islands system (Fig. 2). 
In general, ZSI’s whole carrying state in 2017 is in a surplus state, with a degree of 5%, which is close to the limit 
of CORE-CC. The inherent capacity has been almost exhausted by human needs, which indicates that the opera-
tion of the ZSI system is not optimistic. Although the dimensions of resource supply and environmental assimi-
lation are in a large surplus state, the overload of other dimensions has a serious negative impact on the overall 
capacity. This is reflected in the lack of ecosystem service capacity caused by the unhealthy ecosystem and the 
lack of social support capacity caused by the lagging behind of protective scientific research investment in eco-
nomic development. These findings indicate that the state of marine and terrestrial ecosystems and the scarcity 
of relating fundamental research play a key role in ZSI’s CORE-CC, which should have drawn major concerns.

Discussion
Discussion on the case demonstration results. The CORE-CC model proposed in this paper indi-
cates the new connotation of coral reef islands comprehensive carrying capacity from the four dimensions of 
resources, environment, ecosystem and socio-economic. Moreover, the core indicators are selected according to 
the characteristics of each dimension, which is conducive to quickly determining the carrying status. The results 
of the comprehensive assessment highlight the overall pressures on the coral reef island, which can help local 
decision-making and provide information for the coral reef island’s sustainable development. The case study of 
ZSI showed that the model can be applied to local contexts and that is potentially useful in practice as a guide 
for planning. There is still a large surplus in the dimension of resource supply and environmental assimilation 
of ZSI’s carrying capacity, but this is only because ZSI is in the primary stage of construction and the optimistic 
situation brought by the small population and industrial scale. At the same time, if the assessment standard of 
environmental assimilation capacity is changed to coral healthy water quality limit, its carrying capacity will be 
greatly reduced. Therefore, although the carrying capacity of resources and environmental is in surplus state, it 
does not mean that resources can be squandered and pollution can be discharged at will. Due to the common 
interference of human activities and natural changes, factors that threaten ecological resilience and health set 
the tone for the regional decline in coral reef ecosystem  service87, so we are not surprised that ZSI’s ecosystem 
service carrying state are overloaded. As an administrative division newly established in 2012, ZSI experienced a 

Figure 2.  Assessment of CORE-CC (whole carrying state) and its each dimension’s carrying state for ZSI in 
2017.
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lot of reclamation activities and excessive pollution caused by intensive shipping in the initial stage of construc-
tion, which may lead to the degradation of coral reef ecosystem services. Although the ecological restoration of 
ZSI has been ongoing, at least it has not yet returned to the ideal state.

In terms of socio-economic supporting, due to the lack of significant economic benefits and good invest-
ment allocation of ZSI, the positive feedback of ecological environment is hindered. At present, ZSI focuses 
on the physical carrier of human survival, and gradually implements basic functions in a human-controlled 
manner. In the realization process of functional zones under the guidance of policies, due to the open source 
of production materials and construction capital, the CORE-CC of ZSI has a relatively large elastic range, and 
the autonomous carrying capacity is relatively weak. Maintaining a good foundation of care conditions and 
establishing appropriate regulations and policies for risk control are important prerequisites for enhancing the 
self-sufficiency of coral reef island resources and ensuring their sustainability. In terms of marine eco-civilization 
practice proposed by 18th CPC National Congress, timely release of priority measures to ease supply pressure, 
strengthen ecological restoration, and promote the optimal allocation of resources and services to ensure the 
sustainable development of ZSI.

Discussion on the uncertainties and future work. The comparative analysis of pressure-support indi-
cators may help to understand the concept and mechanism of carrying capacity, but it also introduces the uncer-
tainty of the quantification of carrying capacity. The CORE-CC model essentially takes the pressure-support 
index comparison result d (see Eq. 9) equal to zero as the critical point to judge the carrying status of each 
element. Since most of the pressure or support group parameters are estimated through functions and data sets, 
the data will inevitably be ambiguous, which leads to uncertainty in the comparison between the results and 
the critical point. In this case study, except for a few indicators data (e.g., GDP per capita) released by govern-
ment agencies that are definite values, the estimated data of most other indicators may be uncertainty range or 
confidence interval (e.g., Water Resources, Sum LAI, etc.). Our treatment is to choose the average value. This 
is a conventional method, but it also brings uncertainty to the comparison  results88, especially when the value 
range of the pressure end and the support end are close. Therefore, we recommend setting a certain amount 
of uncertainty buffer (such as 10%) as warning zone near the critical point, which means that when the result 
is greater than 0 and less than 10%, the carrying capacity is considered to be in a warning state. This allows 
society time to react to early warning signs approaching the critical point and the subsequent possible overload 
 risk89, instead of entangled in the uncertainty of the carrying capacity state. Another type of uncertainty relates 
to indicator weights. Weights can indirectly integrate the views of  stakeholders90 or experts’ opinions on local 
policy  priorities91, and are often used as measures of perceived importance of the subgroup to the  system92. We 
used equal weights due to a lack of knowledge of the study area. However, in practice, the importance of various 
carrying capacity factors to coral reef islands with different economic structures, stakeholders and development 
policies may not be the  same93,94. In this regard, we encourage development and use of weights for localised 
assessments to maintain the usefulness of the model in different types of coral reef islands.

We strive to have a comprehensive and versatile model for coral reef islands, but the core factors and indica-
tors selected in this article may not cover all of them. The indicators of each dimension may be more abundant 
in future research, such as increasing energy supply and fishery supply. Considering the difficulties encountered 
in assessing the correct match between pressure and support and establishing standard thresholds, the repre-
sentation of ecosystem service capacity needs to be further improved. In view of these problems, it is necessary 
to further explore ways to enrich the CORE-CC framework, propose an acceptable indicators and standard 
thresholds list, and dynamically monitor the resource consumption and ecological environment status related 
to social development.

Conclusions
According to the sustainable development needs of coral reef islands and the essence of the concept of carrying 
capacity, this paper proposes a conceptual model of coral reef island carrying capacity (CORE-CC) from the 
perspective of pressure-support. The model includes four dimensions: resource supply, environmental assimila-
tion, ecosystem services and socioeconomic supporting. According to the characteristics of the coral reef islands, 
the core factors and indicators of each dimension are selected and the corresponding assessment index system of 
"pressure-support" is constructed. Using the pressure/support comparative analysis method, the comprehensive 
assessment of carrying capacity was conducted with ZSI as the case study. The results show that the ZSI’s CORE-
CC in 2017 still maintained a carrying capacity surplus ratio of 5%. Among them, the resource supply capacity 
and environmental assimilative capacity are in a good carrying state, and the surplus ratios were 41% and 87%, 
respectively. The ecosystem service capacity and social support capacity are both overloaded, with overload 
degrees of 36% and 20%, respectively. This is also the key factors that lead to ZSI’s CORE-CC nearing full load, 
and it must be targeted for improvement.

Case studies show that the CORE-CC model is suitable for measuring the carrying capacity of coral reef 
islands. The measurement results not only show the carrying states of each dimension, but also provide a data 
basis for resource balance, total amount control and ecological construction. This will help provide a support 
for decision-making on the scale, structure, and layout of coral reef islands development.
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