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Antibodies recognize their cognate antigens with high affinity
and specificity, but the prediction of binding sites on the
antigen (epitope) corresponding to a specific antibody remains
a challenging problem. To address this problem, we developed
AbAdapt, a pipeline that integrates antibody and antigen
structural modeling with rigid docking in order to derive
antibody-antigen specific features for epitope prediction. In this
study, we systematically assessed the impact of integrating the
state-of-the-art protein modeling method AlphaFold with the
AbAdapt pipeline. By incorporating more accurate antibody

models, we observed improvement in docking, paratope
prediction, and prediction of antibody-specific epitopes. We
further applied AbAdapt-AF in an anti-receptor binding domain
(RBD) antibody complex benchmark and found AbAdapt-AF
outperformed three alternative docking methods. Also, AbA-
dapt-AF demonstrated higher epitope prediction accuracy than
other tested epitope prediction tools in the anti-RBD antibody
complex benchmark. We anticipate that AbAdapt-AF will
facilitate prediction of antigen-antibody interactions in a wide
range of applications.

Introduction

Highly specific antibody-antigen interactions are a defining
feature of adaptive immune responses to pathogens or other
sources of non-self molecules.[1] This adaptive molecular recog-
nition has been exploited to engineer antibodies for various
purposes, including laboratory assays and highly specific
protein therapeutics.[2] Despite their widespread use, exper-
imental identification of antibody-antigen complex structures,
or their interacting residues, is still a laborious process. Several
computational methods for predicting complex models[3–6] or
interface residues on antibody (paratope) or antigen (epitope)
have been developed,[7–10] but the problem of integrating these
methods to archive a robust and coherent solution remains
challenging. With the recent breakthroughs in protein structural
modeling by Deep Learning,[11–13] we revisit this important
problem and assess the impact of state-of-the-art protein

modeling on antibody-antigen docking and binding site
prediction.

AbAdapt is a pipeline that combines antibody and antigen
modeling with rigid docking and re-scoring in order to derive
antibody-antigen specific features for epitope prediction.[6] As
has been reported by others, the rigid docking and scoring
steps are sensitive to the quality of the input models.[14,15] By
default, AbAdapt accepts sequences as input and uses Reper-
toire Builder,[16] a high-throughput template-based method, for
antibody modeling. However, AbAdapt can also accept struc-
tures as input for antibodies, antigens, or both. Here, we
assessed the effect of using AlphaFold2 antibody models in the
AbAdapt pipeline in a large-scale benchmark using leave-one-
out cross validation (LOOCV) and also a large and diverse
Holdout set. In addition, the improved AbAdapt-AlphaFold2
(AbAdapt-AF) pipeline was tested using a set of recently
determined antibodies that target various epitopes on a
common antigen: the SARS-Cov-2 spike receptor binding
domain (RBD). We found that the use of AlphaFold2 signifi-
cantly improved the performance of AbAdapt, both at the level
of protein structure and predicted binding sites.

Results and Discussion

Improvement in antibody modeling using AlphaFold2

The CDRs constitute the greatest source of sequence and
structural variability in antibodies and also largely overlap with
their paratope residues. Here, we systematically evaluated the
performance of antibody variable region structural models by
Repertoire Builder and AlphaFold2 using the LOOCV and
Holdout datasets. The accuracy of antibody modeling improved
significantly in both the LOOCV (Figure S1A) and Holdout
(Figure S1B) sets. The improvement of AlphaFold2 over Reper-
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toire Builder was particularly apparent in the modeling of the
most challenging CDR loop, CDR� H3: the average RMSD by
AlphaFold2 for the LOOCV set dropped from 4.38 Å to 3.44 Å, a
21.50% improvement over Repertoire Builder (Table S1). Similar
results were obtained for the Holdout set (4.44 Å to 3.62 Å, a
18.43% improvement). We note that 58% of the 720 queries
were released to the PDB before 30 April 2018, which means
that these PDB entries could have been used for training
AlphaFold2.

As expected, the improvement of CDR loop modeling by
AlphaFold2 resulted in improved paratope modeling: the para-
tope RMSD dropped from 2.69 Å to 2.08 Å (a 22.73% improve-
ment) in the LOOCV set and from 2.83 Å to 2.12 Å (a 25.26%
improvement) in the Holdout set (Figure 1A and Table S1).
Using a threshold of paratope RMSD >4 Å to define low-quality
models, the ratio of low-quality models by AlphaFold2 dropped
from 14.35% to 7.74% in the LOOCV set and 21.0% to 11.0% in
the Holdout set, approximately a 2-fold decrease. These
improvements are of interest in antibody-antigen docking
because we previously observed that AbAdapt docking per-

formance was sensitive to paratope structural modeling errors.[6]

We also observed that the rank 1 AlphaFold2 models had the
lowest CDR� H3 and paratope RMSDs while rank 5 models had
the highest CDR� H3 and paratope RMSDs in both the LOOCV
and Holdout sets (Table S4). This result justifies to use of rank 1
models in the following analysis.

Improvement of AbAdapt pipeline using AlphaFold2
antibody models

After including the more accurate AlphaFold2 antibody models
in the AbAdapt pipeline, we evaluated the influence on each of
the main steps: paratope prediction, initial epitope prediction,
docking, scoring Piper-Hex clusters and antibody-specific epit-
ope prediction.

Paratope prediction

The Area Under the Curve (AUC) of Receiver Operating
Characteristic curve (ROC) and Precision-Recall (PR) curves for
paratope prediction for the LOOCV dataset were calculated for
AbAdapt and AbAdapt-AF (Figure 1B). We found close median
ROC AUCs for both training (0.927) and testing (0.913) by
AbAdapt-AF which showed slight improvement over AbAdapt
(0.923 for training and 0.911 for testing). The median PR AUC
for testing improved from 0.748 (AbAdapt) to 0.753 (AbAdapt-
AF). In the Holdout set, the median ROC AUC for paratope
prediction by AbAdapt-AF was 0.911, which was close to that of
the LOOCV set (0.913) (Figure 1B and 1 C). A dramatic improve-
ment of median PR AUC was also observed: from 0.706
(AbAdapt) to 0.743 (AbAdapt-AF) (Figure 1C). Thus, introducing
more accurate antibody models from AlphaFold2 clearly
improved paratope prediction.

Initial epitope prediction

In the case of initial epitope prediction, AbAdapt-AF exhibited a
median test ROC AUC of 0.694 in the LOOCV set and 0.695 in
the Holdout set which was identical to AbAdapt, as expected,
since both pipelines used the same antigen model from
Spanner[17] for training. Meanwhile, these values were far lower
than the median training ROC AUC: 0.863 (Table S2). The
difference between training and testing suggests that the initial
epitope predictor does not generalize well to unseen data and
highlights the inherent limitation in epitope prediction without
reference to a specific antibody. This issue is addressed in
section “Antibody-specific epitope predictions” by performing
epitope prediction with specific antibody-derived features.

Hex and Piper docking

We first analyzed the effect of AlphaFold2 models on the
frequency of “true” poses produced by Hex[18] or Piper[19] in the

Figure 1. Comparison of the performance of paratope prediction between
AbAdapt and AbAdapt-AF. (A) The paratope RMSD of antibody model in
LOOCV training set and Holdout set by AbAdapt or AlphaFold2. Wilcoxon
matched-pairs signed rank test was performed to compare the correspond-
ing performance between AbAdapt and AbAdapt-AF (***P�0.001). The
empty circle in each box indicated the average value. Comparison of the
paratope prediction performance of antibodies by AbAdapt and AlpahFold2
in LOOCV set (B) and Holdout set (C).
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LOOCV set. Here, as in our previous work,[6] a relatively loose
cutoff value of 15 Å for the RMSD of the interface residues
(IRMSD), along with epitope and paratope accuracies of 50%,
was used to define a “true” pose. To systematically compare the
docking performance between AbAdapt and AbAdapt-AF, two
more strict IRMSD cutoffs (10 Å and 7 Å) were also utilized. The
success ratio was defined as the fraction of queries with at least
one “true” pose among all poses (on average 562 poses were
generated by AbAdapt-AF). The median true pose ratio of the
Hex engine increased modestly from 1.50% to 1.53% (Fig-
ure S2C) using an IRMSD cutoff 15 Å, which was not statistically
significant (Figure S2A). This is somewhat expected, since Hex
was used for local docking, guided by the initial epitope
predictions, which themselves were not significantly affected by
the use of AlphaFold2 antibody models. In contrast to Hex, the
median Piper true pose ratio, which increased from 1.43% to
1.57%, significantly improved upon use of AlphaFold2 antibody
models (Figure S2A and S2 C). For the Holdout set, the median
true pose ratio for both Hex and Piper were not significantly
improved by use of AlphaFold2 (Figure S3A and S3 C). These
results indicate that simply supplying better models does not
guarantee improved docking. A similar observation was
reported in a recent study using AlphaFold2 models in the
ClusPro web server.[20]

Combined Piper-Hex clustering and scoring

The top Piper and Hex poses from the docking steps were co-
clustered and re-scored. Here, we observed an improvement in
the AbAdapt-AF pipeline compared with AbAdapt. In the
LOOCV set, the median clustered true pose ratio of Hex
improved from 1.16% to 1.31% while that for Piper improved
2.32% to 2.78%, resulting in a significantly improved median
combined Hex-Piper true pose ratio (2.42% versus 2.83%) for
AbAdapt versus AbAdapt-AF, respectively (Figure S2B and S2 C).
The median rank of the best true pose (with 1 being perfect)
dropped significantly from 17 to 13.5, a 20.59% improvement
(Figure S2D). We next imposed a stricter (7 Å) IRMSD cutoff;
even under this stricter criterion, the median true rank dropped
from 54.5 to 43, a 21.10% improvement (Figure S2D). This
improvement was also reflected in the ratio of queries with true
poses under the stricter 7 Å IRMSD cutoff (success ratio) in the
LOOCV set: The AbAdapt- AF success ratio was 55.81%,
compared with 46.67% for AbAdapt (Figure 2A).

For the unseen Holdout set, the median clustered true pose
ratio for Hex improved but was not statistically significant: 0.56
+ /� 8.15% (AbAdapt) versus 1.25+ /� 6.69% (AbAdapt-AF) (Fig-
ure S3B and S3 C). However, the median clustered true pose
ratio of Piper improved significantly: 2.18+ /� 3.97% (AbAdapt)
versus 2.66+ /� 3.72% (AbAdapt-AF), resulting in a significantly
improved median combined Hex-Piper true pose ratio (2.18+

/� 4.12% versus 2.7+ /� 3.9%) for AbAdapt versus AbAdapt-AF.
AbAdapt-AF outperformed AbAdapt in all three IRMSD cutoff
values and the success ratio was very close to that of the
LOOCV set (Figure 2A and 2B). Taken together, the performance

of scoring and clustering of Hex and Piper poses significantly
improved by using AbAdapt-AF.

Antibody-specific epitope predictions

After retraining the epitope predictor with docking features, we
observed significant improvement in antibody-specific epitope
prediction. In the LOOCV set, the median test ROC AUC
increased from 0.694 (initial epitope prediction) to 0.734 (anti-
body-specific epitope prediction) by AbAdapt-AF, compared
with 0.694 (initial epitope prediction) to 0.723 (antibody-specific
epitope prediction) by AbAdapt (Figure 2C and Table S2). An
even greater improvement was observed in the Holdout set:
AbAdapt-AF, the median test ROC AUC improved from 0.695
(initial epitope prediction) to 0.756 (antibody-specific epitope
prediction); for AbAdapt, the corresponding values were 0.695
(initial epitope prediction) and 0.721 (antibody-specific epitope

Figure 2. Comparison of the performance of pose clustering and epitope
prediction between AbAdapt and AbAdapt-AF. The success ratio of pose
clustering in LOOCV set (A) and Holdout set (B) after clustering and
combining the pose from Piper and Hex. When setting the true cutoff of
interface RMSD (RCUT) 15, 10 and 7 Å, the corresponding success ratio
(queries with at least one correctly predicted pose among all poses) was
shown above each bar. The final epitope prediction performance in LOOCV
set (C) and Holdout set (D) after introducing the post-docking features of
specific antibodies.
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prediction), as shown in Figure 2D and Table S2. There are
relatively few antigen residues that make up the epitope (class
imbalance of epitope and non-epitope residues). The PR ROC
baseline is given by the ratio Ntrue/Nfalse (number of epitope
residues/number of non-epitope residues). By this definition,
the median PR AUC baseline was 0.094 in the Holdout set
(Figure S4). In the Holdout set, the median PR AUC of the
antibody-specific epitope prediction reached 0.204 (a 117.02%
improvement over the baseline) by AbAdapt-AF, while the
corresponding value was 0.189 for AbAdapt, representing a
smaller (101.06%) improvement over the baseline (Figure 2D).
This result supports the conclusion that the inclusion of
AlphaFold2 significantly improved the final epitope predictions,
even for inputs that have never been seen by the ML models.

We note that, in the current AbAdapt-AF pipeline, antibody
models were built by AlphaFold2 while antigen models were
built by the template-based modeling engine Spanner.[17] To
investigate the sensitivity of performance to the antigen
models, we repeated the antigen modeling using AlphaFold2.
Here antibody-specific epitope prediction median test ROC AUC
values were 0.745 (0.721 by AbAdapt) and median test PR AUC
values were 0.195 (0.189 by AbAdapt) (Table S3). Compared to
the median test ROC AUC of the antibody-specific epitope
prediction using AbAdapt (0.721), AbAdapt-AF achieved better
performance, using either Spanner antigen models (0.756) or
AlphaFold2 antigen models (0.745) as input. These results
suggest that the main impact on AbAdapt was due to the use
of AlphaFold2 for antibody modeling.

Anti-RBD docking performance

To assess AbAdapt on a realistic test case, we prepared 25 non-
redundant SARS-Cov-2 anti-RBD antibodies that were not
among the training data used by AbAdapt or AlphaFold. These
antibodies targeted 16 epitope clusters in the RBD (Figure S5).
We next assessed the performance of AbAdapt-AF along with
ZDOCK,[3] HawkDock,[4] HDOCK,[5] and AbAdapt,[6] as shown in
Figure 3A and 3B. In terms of rank1 models, AbAdapt-AF, a total
of 4 (16%) acceptable or better models were produced by
AbAdapt-AF. The corresponding success rates for the other
methods were: ZDOCK (1), AbAdapt (0), HawkDock (0), HDOCK
(1). Similarly, in terms of 100 top-ranked models, a total of 15
(60%) acceptable or better models were built by AbAdapt-AF.
The corresponding success rates of the other tested methods
were: AbAdapt (8), HawkDock (8), HDOCK (10). AbAdapt-AF
performed better than AbAdapt to a similar degree that
described in the LOOCV and Holdout assessment. Considering
all cluster representatives (mean value 539 per query), by CAPRI
criteria,[21] the AbAdapt-AF success ratio was 84% (21 queries)
which was close to 75.65% in the LOOCV and 79% in the
Holdout set (Figure 2A, 2B and 3B).

Antibody-specific RBD epitope predictions

We next analyzed epitope prediction in the RBD benchmark. In
addition to using Abadapt and Abadapt-AF, we also evaluated
epitope prediction tools that are not based on docking. These
included: BepiPred2[8] for linear epitope prediction,
DiscoTope2[7] for structural epitope prediction, EpiPred[10] for
antibody-specific epitope prediction, and EpiDope,[9] which uses
a deep neural network based on antigen sequence features.
AbAdapt-AF achieved the highest ROC AUC (0.793) and PR AUC
(0.411) using the antibody-specific epitope prediction proba-
bility (Figure 4A). We found the average AbAdapt-AF ROC AUC
(0.793) of the RBD benchmark was close to the values in LOOCV
(0.709) and Holdout (0.727) runs (Figure 2C and 2D). The
improvement of average ROC AUC in the RBD benchmark
(7.02%) was similar to that observed in Holdout set (4.85%) by
AbAdapt-AF (Figure 2D and 4 A), thus again demonstrating the
robustness of antibody-specific epitope prediction using AbA-
dapt-AF. Meanwhile, AbAdapt-AF achieved the highest preci-
sion (0.324), F1 score (0.378) and MCC (0.325) among the six

Figure 3. Docking performance of 25 anti-RBD antibody complexes. (A) The
CAPRI quality of the best model from top 1/5/10 ranked models by ZDOCK,
top 1/5/10/30/50/100/all ranked models by AbAdapt and AbAdapt-AF, and
top 1/5/10/30/50/100 by HawkDock and HDOCK. The color of each cell was
their corresponding CAPRI quality showed as acceptable (grey) and medium
(orange). (B) The number of successful queries by ZDOCK, AbAdapt,
AbAdapt-AF, HawkDocK, HDOCK.
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tested methods when setting a fixed epitope probability
threshold (Figure 4B) as described in section “RBD epitope
prediction”.

The prediction performances of DiscoTope2, EpiDope, and
BepiPred2, which do not take antibody into consideration, were
systematically lower than those of the other methods. We
noticed that BepiPred2 achieved the highest recall (0.781), but
this value was obtained at a precision of only 0.140. Although
EpiPred considers antibody information, the results were not
very sensitive to the antibodies in this set, as all epitope
predictions were in the same region of the RBD (Figure 4C).

Conclusion

In this study, we demonstrated that introducing a more
accurate antibody model in the AbAdapt antibody-specific

epitope prediction pipeline had a significantly positive effect at
various levels. Nevertheless, there is still much room for
improvement. Considering the RBD benchmark, we evaluated
six methods for epitope prediction on the SARS-CoV-2 spike
RBD, an antigen that can be targeted by one or more antibodies
on almost its entire molecular surface.[22] We found AbAdapt-AF
showed higher epitope prediction accuracy than tested
methods in this benchmark. Nevertheless, the ROC AUC (0.793)
and precision (0.324) values imply that many false-positive
epitope predictions are expected. To compare the epitope
prediction performance of AbAdapt-AF and other tools fairly
and systematically, a broader benchmark containing various
antigens will be needed. At present, the use of AlphaFold2 in
the context of AbAdapt suggests that this combination
represents a robust but incremental way of improving anti-
body-specific epitope predictions. Newly released antibody
modeling tools such as Ablooper[12] and DeepAb[13] showed
better performance than AlphaFold2 in the Rosetta Antibody
Benchmark,[12] and these methods should also be considered
when running AbAdapt with structural models as input.

Experimental Section
Datasets: The preparation of data for LOOCV and Holdout tests was
described previously.[6] In brief, crystal structures of antibody-
antigen complexes were gathered from the Protein Data Bank
(downloaded May. 24, 2021).[23] We filtered the complexes using the
following criteria: Complete heavy (H) and light (L) variable chain,
antigen length equal to or greater than 60 amino acids and
resolution less than 4 Å. This filtering process resulted in 1862
Ab� Ag complexes. In the antigen and antibody modeling process
by the AbAdapt pipeline, 290 Ab� Ag complexes were discarded
due to the poor modeling quality: Root Mean Square Deviation
(RMSD) of either the paratope or epitope were higher than 6 Å.
Also, antigens that were themselves antibodies were removed (5
queries). Antibody Complementarity-determining regions (CDR)
sequences were annotated with the AHo numbering scheme[24] by
the ANARCI program.[25] Next, the sequence redundancy was
removed as follows: A pseudo-sequence of each antibody com-
posed of heavy and light variable domain was constructed and
clustered using CD-HIT[26] at an 85% identity threshold. Any
sequences that resulted in failure by third-party software in
subsequent steps were also removed (3 queries). This filtering
resulted in 720 non-redundant antibody-antigen model pairs. For
training, LOOCV was performed using 620 randomly chosen anti-
body-antigen queries. The remaining 100 queries functioned as an
independent Holdout set for testing. We also collected anti-SARS-
Cov-2 RBD antibodies on Sept. 5, 2021 from the PDB.[23] Antibody
pseudo-sequences were constructed as described above and
clustered with the LOOCV training dataset using CD-HIT at an 85%
sequence identity threshold. After superimposing all common
epitopes for all pairs of antibodies, the C-alpha root-mean-square
deviation (RMSD) was used to cluster the antibodies by single-
linkage hierarchical clustering with a 10.0 Å cutoff. We previously
used average-linkage hierarchical clustering to classify antibodies
that target overlapping epitopes based on structural alignments.[27]

Here, the antigens in the anti-SARS-Cov-2 RBD antibody dataset
were aligned well using sequence information, and appeared to
form discrete clusters. Thus, we utilized single-linkage hierarchical
clustering in this case. Within each cluster, the PDB entry with the
most recent release date was chosen as the representative. This

Figure 4. Epitope prediction of 25 anti-RBD antibody complexes. The
comparison of epitope prediction performance using probability (A) and a
threshold for epitope classification (B). The performance indices are
calculated in evaluation metrics and averaged. Bold character indicated the
highest value of each item. (C) Epitope map visualization of representative
queries. The native epitope (column 1) and predicted epitope by EpiPred
(column 2), AbAdapt (column 3), and AbAdapt-AF (column 4) are colored
red on the RBD surface. The probability of prediction by AbAdapt and
AbAdapt-AF are shown in columns 5 and 6. The value below each prediction
is indicated as F1 score (left) and ROC AUC (right).
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procedure resulted in the identification of 25 novel anti-RBD
antibody-antigen complexes.

Epitope and Paratope definition: The epitope (paratope) residues
were defined as any residue with at least one heavy atom within
5 Å of the antigen (antibody), as measured by Prody 2.0.[28]

Antibody modeling by AlphaFold2: The antibodies from the
LOOCV and Holdout sets were modeled independently from
antigens using the full AlphaFold2 pipeline with default
parameters.[11] We concatenated the sequences of H and L chains in
the Fab region via a poly-glycine linker (32G). After cleaving the
linker, the rank-one model was used in all subsequent calculations.
Antibody CDRs were annotated as described in section “Datasets”.
To evaluate the modeling accuracy of the CDRs, we first super-
imposed the+ /� 4 flanking amino acid residues of each CDR in
predicted models onto native antibody structures. Next, we
calculated the RMSD of the CDRs by Prody 2.0.[28] The paratope
RMSD was computed similarly after superimposing the paratope of
the model onto the native structure.

AbAdapt and AbAdapt-AF pipelines: AbAdapt was run using
default parameters, as described previously.[6] In brief, antibodies
were modeled using Repertoire Builder[16] and antigens were
modeled using Spanner.[17] Here, any templates with bound anti-
bodies overlapping with the true epitope were excluded. Two
docking engines (Hex[18] and Piper[19]) were used to sample rigid
docking degrees of freedom. Machine learning models were used
to predict initial epitope and paratopes, score Hex poses, score
Piper poses, score clusters of Hex and Piper poses, and predict
antibody-specific epitope residues. The description of above
machine learning models are summarized in Supplementary Table.
5. For LOOCV calculations, each time an antibody-antigen pair was
used as a query, each ML model was re-trained. For the Holdout
datasets, training was performed on the entire LOOCV dataset. For
the AbAdapt-AF pipeline, the only procedural difference was that
AlphaFold2 was used for antibody prediction instead of the default
Repertoire Builder method. Naturally, all ML models were re-trained
specifically for this use case.

RBD-antibody complex prediction: A model of SARS-Cov-2 RBD
(329-532 aa) was built using Spanner[17] and used as the antigen in
all subsequent docking steps. The modeling of 25 anti-RBD
antibodies was performed using AlphaFold2 on the ColabFold
platform (v1.2) using the AlphaFold2-ptm model type with
templates and Amber relaxation.[29] The rank-one antibody model
was used in the downstream workflow of docking and complex
modeling. We used three third-party docking methods to bench-
mark AbAdapt and AbAdapt-AF performance on RBD-antibody
docking. The global protein-protein docking program ZDOCK
(https://zdock.umassmed.edu/, v3.0.2)[3] was utilized with default
parameters for antibody-RBD binding prediction. The top 10
models were retained for analysis. We used the HawkDock server
with default parameters (http://cadd.zju.edu.cn/hawkdock) for anti-
body-RBD binding prediction. HawkDock integrates the ATTRACT
docking algorithm, the HawkRank scoring function, and the
Molecular Mechanics/Generalized Born Surface Area free energy
decomposition for protein-protein interface analysis.[4] The top 100
models were retained for analysis. HDOCK (http://hdock.phys.hust.
edu.cn)[5] was utilized with the template-free. The top 100 models
were retained for analysis. To evaluate the accuracy of all RBD-
antibody poses, DockQ (https://github.com/bjornwallner/DockQ)[30]

was utilized with CAPRI criteria.[21]

RBD epitope prediction: We used the following third-party
methods for epitope prediction: DiscoTope2, which predicts
discontinuous B-cell epitopes (https://services.healthtech.dtu.dk/
service.php?DiscoTope-2.0);[7] BepiPred2, which uses a random

forest regression algorithm (https://services.healthtech.dtu.dk/serv-
ice.php?BepiPred-2.0);[8] EpiDope (https://github.com/flomock/Epi-
Dope), which uses a deep neural network to predict linear B-cell
epitopes based on antigen amino acid sequence.[9] For binary
labeling of the predicted epitopes, the default thresholds of 0.5 for
BepiPred2[8] and 0.818 for EpiDope[9] were used. To predict the
structural epitopes specific to a given antibody, EpiPred (http://
opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/epipred)[10] was
used with 25 anti-RBD antibody models from AlphaFold2 and an
RBD model from Spanner. The rank-one epitope prediction from
EpiPred was chosen for all subsequent analysis. For AbAdapt-AF
and AbAdapt, a threshold of 0.5 for final epitope prediction was
used.[6]

Statistical analysis and Visualization: Wilcoxon matched-pairs
signed rank test and descriptive analysis were performed using
GraphPad Prism 8 (GraphPad Software, San Diego, CA). For graph-
ing, the Python package Seaborn (v 0.11.0) and Matplotlib (v 3.3.1)
were used. We visualized the RBD-antibody complexes and RBD
structure with its corresponding epitope map using PyMOL (The
PyMOL Molecular Graphics System, v 2.3.3 Schrödinger, LLC.)

Performance measures: To evaluate the performance of epitope
and paratope prediction by a threshold-dependent measurement,
four performance indices (Precision [Eq. 1], Recall (Sensitivity)
[Eq. 2], F1 score [Eq. 3], and Matthews correlation coefficient (MCC)
[Eq. 4]) were calculated by the following equations.

Precision ¼
TP

TPþ FP (1)

Recall ¼
TP

TPþ FN (2)

F1 score ¼
2TP

2TPþ FPþ FN (3)

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p (4)

Where TP refers to true positive; FN refers to false negative; TN
refers to true negative; FP refers to false positive. For Threshold-
independent measurement, the Area Under the Curve (AUC) of
Receiver Operating Characteristic curve (ROC) and Precision-Recall
(PR) curves for paratope and epitope prediction were also
calculated, based on the predicted probabilities. The performance
indices of epitope and paratope prediction were calculated using
the Python package Scikit-learn (v 0.23.2).[31]
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