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Abstract

Background: Limb prosthetics, exoskeletons, and neurorehabilitation devices can be intuitively controlled using
myoelectric pattern recognition (MPR) to decode the subject’s intended movement. In conventional MPR,
descriptive electromyography (EMG) features representing the intended movement are fed into a classification
algorithm. The separability of the different movements in the feature space significantly affects the classification
complexity. Classification complexity estimating algorithms (CCEAs) were studied in this work in order to improve
feature selection, predict MPR performance, and inform on faulty data acquisition.

Methods: CCEAs such as nearest neighbor separability (NNS), purity, repeatability index (RI), and separability index
(SI) were evaluated based on their correlation with classification accuracy, as well as on their suitability to produce
highly performing EMG feature sets. SI was evaluated using Mahalanobis distance, Bhattacharyya distance, Hellinger
distance, Kullback–Leibler divergence, and a modified version of Mahalanobis distance. Three commonly used
classifiers in MPR were used to compute classification accuracy (linear discriminant analysis (LDA), multi-layer
perceptron (MLP), and support vector machine (SVM)). The algorithms and analytic graphical user interfaces
produced in this work are freely available in BioPatRec.

Results: NNS and SI were found to be highly correlated with classification accuracy (correlations up to 0.98 for both
algorithms) and capable of yielding highly descriptive feature sets. Additionally, the experiments revealed how the
level of correlation between the inputs of the classifiers influences classification accuracy, and emphasizes the
classifiers’ sensitivity to such redundancy.

Conclusions: This study deepens the understanding of the classification complexity in prediction of motor volition
based on myoelectric information. It also provides researchers with tools to analyze myoelectric recordings in order
to improve classification performance.
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Background
Decoding of motor volition via myoelectric pattern rec-
ognition (MPR) has many clinical applications such as
prosthetic control [1], phantom limb pain treatment [2],
and rehabilitation after stroke [3]. Research on MPR has
focused on classifiers [4], pre-processing algorithms [5],
and electromyography (EMG) acquisition [6], among
other factors that influence the classification outcome.
Reaz et al. studied different attributes of EMG signals,
such as signal-to-noise ratio, that decrease the complex-
ity of MPR [7]. However, limited studies have been

conducted on the complexity of the classification task it-
self. Information on complexity prior to classification
can inform on specific conflicting classes and flawed
data acquisition. Understanding of classification com-
plexity can also be used to select optimal features and
evaluate trade-offs between the amount of classes and
their separability.
Most MPR algorithms use EMG features extracted

from overlapping time windows as the classifier input.
Therefore, the resulting classification accuracy is
dependent on the features used to describe the EMG
signals. The performance of a variety of such features,
and feature selection algorithms, have been studied
previously [8, 9]. Two feature selecting algorithms,
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namely minimum redundancy and maximum rele-
vance [10], and Markov random fields [11], were ap-
plied to an electrode array by Liu et al. [12], who
used Kullback–Leibler divergence and feature scatter
to rate the relevance and redundancy of features. The
features were then ranked and selected into sets ac-
cording to these ratings. Similarly, Bunderson et al.
defined three data quality indices – namely, repeat-
ability index (RI), mean semi-principal axis, and sep-
arability index (SI) – to evaluate the changes in data
quality over repeated recordings of EMG [13].
Classification complexity estimation was not investi-
gated in the aforementioned studies, but algorithms
intended to quantify attributes relevant to the com-
plexity of pattern recognition tasks were introduced.
Classification complexity has been studied outside

the field of MPR. Singh suggested two nonparametric
multiresolution complexity measures: nearest neighbor
separability (NNS) and purity [14]. These complexity
measures were compared with common statistical
similarity measures, such as Kullback–Leibler
divergence, Bhattacharyya distance, and Mahalanobis
distance, and were found to yield a higher correlation
with classification accuracy. These classification
complexity estimating algorithms (CCEAs), along with
Hellinger distance, were investigated in the present
study with a focus on their relevance for MPR.
In the present study, CCEAs were evaluated based on

their correlation with offline classification accuracy and
real-time classification performance. Consequently,
different attributes were revealed about the CCEAs,
classification algorithms, and features descriptiveness.
One such attributes – channel correlation dependency –
was investigated further. The CCEAs that were found to
yield high correlation with classification accuracy (NNS
and SI) were then used for feature selection and
benchmarked against features sets found in the
literature.
The result of these experiments provided evidence

of the suitability of CCEAs to predict MPR perform-
ance. The algorithms used in this work were
implemented and made freely available in BioPatRec,
an open-source platform for development and bench-
marking of algorithms used in advanced myoelectric
control [15, 16].

Methods
Data sets
Two data sets were used in this study and both were
recorded on healthy subjects. The first set contained
individual movements (IM data): 20 subjects, four
EMG channels, 14 bits Analog to Digital Conversion
(ADC), and 11 classes (hand open/close, wrist
flexion/extension, pro/supination, side grip, fine grip,

agree or thumb up, pointer or index extension, and
rest or no movement) [15]. The second set contained
individual and simultaneous movements (SM data):
17 subjects, eight EMG channels, 16 bits ADC, and
27 classes (hand open/close, wrist flexion/extension,
pro/supination, and all their possible combinations)
[17]. Disposable Ag/AgCl (Ø = 1 cm) electrodes in a
bipolar configuration (2 cm inter-electrode distance)
were used in both sets. The bipoles were evenly
spaced around the most proximal third of the
forearm, with the first channel placed along the ex-
tensor carpi ulnaris. Subjects were seated comfortably
with their elbow flexed at 90 degrees and forearm
supported, leaving only the hand to move freely. The
data sets, along with details on demographics and
acquisition hardware, are available online as part of
BioPatRec [16]. Table 1 summarizes these data sets.

Signal acquisition, pre-processing and feature extraction
BioPatRec recording routines guided the subjects to
perform each movement three times with resting
periods in between. The instructed contraction time,
as well as the resting time, was 3 s. The initial and
final 15% of each contraction was discarded as this
normally corresponds to delayed response and
anticipatory relaxation by the subject, while the
remaining central 70% still preserves portions of the
dynamic contraction [15].
Time windows of 200 ms were extracted from the

concatenated contraction data using 50 ms time
increment. Features were then extracted from each
time window and distributed in sets used for training
(40%), validation (20%), and testing (40%) of the
classifiers. The testing sets were never seen by the
classifier during training or validation. A 10-fold
cross-validation was performed by randomizing the
feature vectors between the three sets before training
and testing.
The following EMG signal features were used as

implemented in BioPatRec [15, 16, 18]. In the time
domain: mean absolute value (tmabs), standard
deviation (tstd), variance (tvar), waveform length
(twl), RMS (trms), zero-crossing (tzc), slope sign
changes (tslpch), power (tpwr), difference abs. Mean
(tdam), max fractal length (tmfl), fractal dimension
Higuchi (tfdh), fractal dimension (tfd), cardinality

Table 1 Summary of data sets

Reference Movements Subjects Channels ADC (bits) Classes

IM data Individual 20 4 14 11

SM data Simultaneous 17 8 16 27

Summary of the data sets used in the experiments of this study. The reference
column contains the name used when referring to that data set throughout
the report
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(tcard), and rough entropy (tren). In the frequency
domain: waveform length (fwl), mean (fmn) and me-
dian (fmd). Feature vectors were constructed by sets
of these features extracted from all channels, as com-
monly done in MPR and implemented in BioPatRec
(for a detailed explanation see reference [15]).

Classification complexity estimating algorithms
The classification complexity estimating algorithms
(CCEAs) were designed to return classification complex-
ity estimates (CCEs) for each movement separately (indi-
vidual result), and averaged over all movements (average
results). Individual results provide information that facil-
itates the choice of movements to be included in a given
MPR problem by distinguishing conflicting classes. Aver-
age result considers the complete feature space, includ-
ing all movements, and can therefore be used to
evaluate and compare feature sets used to build the fea-
ture space. The CCEAs used are outlined below.

Separability index
Separability index (SI) was implemented as introduced
by Bunderson et al.; that is, the average of the distances
between all movements and their most conflicting
neighbor [13]. Figure 1a illustrates the distance and con-
flict between two classes in an exemplary two-
dimensional feature space.
The aforementioned distance was defined by Bunder-

son et al. to be half the Mahalanobis distance, resulting
in the following equation:

SI ¼
XK
i¼1

min
j¼1;…;i−1;iþ1;…;K

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μi−μj
� �T

S−1i μi−μj
� �r !

where K is the number of classes or movements, and μx
and Sx are mean vectors and covariance matrices for
class x, respectively.

This definition only considers the covariance of the
target movement (Si), and not that of the comparing
movement (that is, Sj). We considered this particular
formulation as a potential limitation, so we introduced
additional distance definitions. The distance definitions
were used under the assumption of normality as Maha-
lanobis distance was defined under the same assumption
[19]. The introduced distance definitions are described
in Table 2.

Nearest neighbor Separability
Nearest neighbor separability (NNS) was inspired by the
algorithm with the same name defined by Singh [14]. It
is based on the dominance of nearest neighbors, in fea-
ture space, belonging to the same class (movement) as a
target data point. The contributions of the nearest
neighbors are weighted by their proximity to the target
point and the result is normalized to be a value between
0 and 1. Let

b pt ; pið Þ ¼ 1;
0;

�
if pt ; pi∈C
if pt∈C; pi∉C

Where pt. is the target point, pi is pt.:s i-th nearest neigh-
bor and C is a class. The aforementioned dominance is
then defined as:

dt ¼
Xk
i¼1

1
i

 !−1Xk
i¼1

b pt ; pið Þ
i

A target point and its six nearest neighbors are illus-
trated in Fig. 1b.
The end result is the average dominance:

NNS ¼ 1
N

XN
i¼1

di

Where N is the total number of samples.
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Fig. 1 Illustration of a two-dimensional feature space. Inset a shows the distance between two classes in a two-dimensional features space. The
ellipses representing the classes are constructed according to the covariance of the two-dimensional data. The figure emphasizes the overlap of
classes, which is a big challenge in pattern recognition. Inset b shows the six nearest neighbors of the marked target data point. NNS is based on
the fraction of the neighbors from the same class as the target point
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Unless stated otherwise, the parameter k is set to 120,
which is the maximum number of nearest neighbors
from the same class for the data sets of this study.

Purity
Purity was computed by dividing the feature hyperspace
into smaller hyper cuboids called cells [14]. The cells
were rated individually and high dominance of one class
in one cell meant high purity for that cell. The final
purity of a data set was the average over all cells and dif-
ferent cell resolutions.

Repeatability index
The repeatability index (RI) measures how much indi-
vidual classes varies between different occurrences using
Mahalanobis distance [13]. The three repetitions during
the recording session were the occurrences that were
evaluated. The end result is the average Mahalanobis
distance between the first repetition and the following
ones for all movements.

Classifiers and topologies
Three common classifiers for MPR were used in this
study: linear discriminant analysis (LDA), multi-layer
perceptron (MLP), and support vector machine (SVM).
A quadratic kernel function was used for SVM. The
classifiers were utilized as implemented in BioPatRec
[15] (code available online [16]), where LDA and SVM
were implemented using Matlab’s statistical toolbox.
MLP and SVM are inherently capable of simultaneous

classification when provided with the feature vectors of
mixed (simultaneous) outputs, hereafter referred as
“MIX” output configurations; that is, there is one output
for every individual movement and combinations of
movements produce the corresponding mix of outputs
to be turned on. LDA’s output is computed by majority
voting, which means it cannot produce simultaneous
classification by creating a mixed output. However, clas-
sifiers like LDA can still be used for simultaneous classi-
fication using the label power set strategy, where the
classifier is constructed having the same number of out-
puts as the total number of classes. This configuration is
referred to here as “all movements as individual” (AMI).
Ortiz-Catalan et al. showed that AMI could also favor
classifiers capable of mixed outputs [17]; therefore, MLP
and SVM were evaluated in both MIX and AMI configu-
rations for simultaneous predictions. In addition, LDA
was also used in the One-Vs-One topology (OVO), as
this has been shown to improve classification accuracy
for individual movements [17, 20].

Evaluation and comparison
In order to evaluate the correlation between Classification
Complexity Estimates (CCEs) and classification accuracy,

all features were used individually to classify all move-
ments from each subject in both data sets, which provided
a wide range of classification accuracies and their related
CCEs. Correlations were then calculated considering the
classification of each movements individually (individual
results), or the average over all movements (average
results).
The CCEAs were further used to select one set of two,

three, and four features. CCEs were calculated for all
possible combinations of features and the three sets –
one for every number of features – predicting the high-
est accuracy were selected. The selected sets are referred
hereafter as the best sets and were obtained using the IM
data set.
Ortiz-Catalan et al. used a genetic algorithm to find

optimal feature sets of two, three, and four features
based on classification performance [8]. Their proposed
sets of two and three features were used as benchmark-
ing sets in this study, along with the commonly used
four-feature set proposed by Hudgins et al. [21]. These
sets are referred in this study as reference sets:

� Ref 2F: tstd, trms [8]
� Ref 3F: tstd, fwl, fmd [8]
� Ref 4F: tmabs, twl, tslpch, tzc [21]

The best and reference sets of equal number of features
were compared to each other based on the resulting
classification accuracy, as given by the three different
classifiers. Classification accuracy corresponds to offline
computations unless otherwise stated. Real-time testing
was done using the Motion Tests as implemented in
BioPatRec [15, 22]. CCEAs’ proficiency at predicting
real-time performance was evaluated by their correlation
with the completion time obtained from motion tests,
which is the time from the first prediction not equal to
rest until 20 correct predictions are achieved. Similar to
offline computations, one prediction was the classifica-
tion of one 200 ms time window, and new predictions
were produced every 50 ms (time increment). The subject
was instructed to hold the requested movement until 20
correct predictions were achieved. If the number of cor-
rect predictions was less than 20 after 5 s, the completion
time was set to 5 s. The real-time results were obtained
from IM data set and related Motion Tests [22].
Wilcoxon signed-rank test (p < = 0.05) was used to

evaluate statistical significant differences. Correlations were
calculated using Spearman’s rho, since there was no clear
linearity in the dependencies between accuracy and CCE.

Results
Separability index (SI)
The correlations found between classification accuracy
and SI using different distance definitions are summarized

Nilsson et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:68 Page 5 of 18



Table 3 Correlations for the different distance definitions

Average result Individual results

LDA (AMI)
Single/OVO

MLP AMI/MIX SVM AMI/MIX LDA (AMI) Single/OVO MLP AMI/MIX SVM AMI/MIX Data set

Mahalanobis 0.72/0.91 0.90/0.91 0.79/0.80 0.81/0.92 0.84/0.85 0.70/0.68 SM

0.78/0.88 0.86/NA 0.71/NA 0.85/0.91 0.80/NA 0.60/NA IM

Bhattacharyya 0.74/0.97 0.98/0.97 0.79/0.82 0.69/0.91 0.93/0.91 0.66/0.65 SM

0.83/0.96 0.96/NA 0.68/NA 0.79/0.89 0.94/NA 0.68/NA IM

Kullback–Leibler 0.60/0.88 0.93/0.90 0.65/0.70 0.54/0.76 0.84/0.82 0.63/0.60 SM

0.51/0.72 0.80/NA 0.32/NA 0.65/0.75 0.87/NA 0.65/NA IM

Hellinger 0.68/0.94 0.98/0.96 0.75/0.77 0.69/0.90 0.93/0.91 0.66/0.65 SM

0.80/0.95 0.97/NA 0.66/NA 0.79/0.89 0.94/NA 0.68/NA IM

Modified Mahalanobis 0.92/0.97 0.92/0.95 0.94/0.95 0.79/0.91 0.88/0.89 0.74/0.71 SM

0.93/0.94 0.87/NA 0.83/NA 0.85/0.90 0.86/NA 0.71/NA IM

Correlations under “individual results” were calculated using classification accuracies and SIs from every individual movement, subject and feature, while those
under “average result” were derived using the average SI and classification accuracy per subject and feature. Both methods provide one correlation, although
“individual results” use more data. Classifiers were configured using AMI or MIX. Classifiers were used in the conventional “single” topology, apart from LDA, which
was used in “single” and OVO. The highest correlation values per column are highlighted in bold. All correlations were found to be statistically significant at
p < 0.01. The MIX configuration is not applicable (NA) for individual movements since there is not mixed outputs
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Fig. 2 The distribution of distance definitions and classifiers data using individual movement (IM set). Plot matrix where the insets show classification
accuracy plotted against the SI for the individual movements data set. One marker represents the average over all movements for one subject and one
feature. The classifiers are grouped in rows and the distance definitions for the SI are grouped in columns. Classifiers were used in the conventional “single”
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is marked by a thicker frame around the plot
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in Table 3, where the highest value for every classifier
is highlighted. Figures 2 and 3 shows plots of average
result for IM and SM data sets, respectively, with the
most correlating distance definition highlighted for
classifiers individually. Table 3, Figs. 2 and 3 indicates
that the most adequate distance definitions vary with
the classifier.

Mahalanobis distance
Mahalanobis distance was found as the distance defin-
ition that most closely correlated with LDA in an OVO
topology for individual results using SM data. The cor-
responding classification accuracy against SI is plotted in
Fig. 4a.

Kullback–Leibler divergence
Kullback–Leibler divergence was not found to yield
higher correlation than any other distance definition for
any of the classifiers; however, it was found to correlate
most closely with the average results of MLP using both
topologies. This correlation is visualized in Figs. 2 and 3.
Owing to its low correlation with classification accuracy,

Kullback–Leibler divergence was not used in the reaming
experiments.

Bhattacharyya distance
Bhattacharyya distance was the most correlating dis-
tance definition for MLP in both AMI and MIX configu-
rations. Plots of classification accuracy for the two
classifiers against SI based on Bhattacharyya distance is
shown in insets B and C of Fig. 4. Individual results are
presented and IM data and SM data are used for AMI
and MIX configurations, respectively.

Hellinger distance
Bhattacharyya distance and Hellinger distance are highly
related as they are both based on the Bhattacharyya
Coefficient. Table 3 confirms their resemblance as the
correlations related to the two distance definitions are
very similar in all cases. Naturally, Hellinger distance
and Bhattacharyya distance are the distance definitions
that most closely correlate with MLP MIX and AMI for
individual result, and with MLP AMI for average result.
MLP AMI classification accuracy is plotted against
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Fig. 3 The distribution of distance definitions and classifiers data using simultaneous movements (SM set). Plot matrix where the insets shows
classification accuracy plotted against the SI for the simultaneous movements data set. One marker represents the average over all movements
for one subject and one feature. The classifiers are grouped in rows and the distance definitions for SI are group in columns. Classifiers were configured
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frame around the plot
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Hellinger distance based SI in Fig. 4e, where individual
results using IM data is represented.

Modified Mahalanobis
Modified Mahalanobis was found as the distance defin-
ition that correlates most closely with average results of
LDA and SVM classification accuracy for all topologies
and configurations. The same is true for individual
results, except for LDA in an OVO topology. Insets E
and F of Fig. 4 show LDA AMI and SVM MIX classi-
fication accuracy plotted against SI based on Modified
Mahalanobis. Modified Mahalanobis was the version
of Mahalanobis distance used in the remaining results

because of its overall higher correlation with classifi-
cation accuracy.

Nearest neighbor separabillity (NNS)
A summary of correlations with all classifiers for both
data sets is presented in Table 4.
Table 4 also shows the influence of the parameter k.

Figures 5 and 6 show plots of average result for the IM
and SM data, respectively.
NNS is most correlated with LDA in an OVO top-

ology, which is equivalent to the results obtained by SI
based on Bhattacharyya distance for the same classifier.
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Fig. 4 Data distribution for the most correlating distance definitions. Plot matrix where the insets show classification accuracy plotted against the
SI. One dot represents one movement, one subject, and one feature, which means that the number of dots is the number of movements
multiplied by the number of subjects times the number of features. The plots represent the highlighted correlations in Table 3

Table 4 Correlations between classification accuracy and nearest neighbor separability

Average result Individual results

LDA (AMI)
Single/OVO

MLP AMI/MIX SVM AMI/MIX LDA (AMI)
Single/OVO

MLP AMI/MIX SVM AMI/MIX Data set

K = 20 0.86/0.98 0.96/0.97 0.90/0.90 0.83/0.93 0.92/0.92 0.72/0.72 SM

0.86/0.97 0.98/NA 0.74/NA 0.84/0.92 0.97/NA 0.70/NA IM

K = 120 0.90/0.97 0.92/0.95 0.92/0.92 0.87/0.90 0.87/0.89 0.73/0.73 SM

0.90/0.98 0.97/NA 0.78/NA 0.89/0.93 0.94/NA 0.73/NA IM

The correlation between classification accuracy and NNS with different values of the parameter k. Correlations under “individual results” were calculated using classification
accuracies and NNS from every individual movement, subject and feature, while those under “average result” were derived using one average NNS and classification accuracy
for every subject and feature. Both methods provide one correlation, although “individual results” use more data. Classifiers were configured using AMI or MIX. Classifiers were
used in the conventional “single” topology, apart from LDA, which was used in “single” and OVO. The highest correlation values per column are highlighted in bold. All
correlations were found statistically significant at p < 0.01. The MIX configuration is not applicable (NA) for individual movements since there are no mixed outputs
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Fig. 6 The distribution of data from simultaneous movement for NNS and all classifiers. Plot matrix where the insets shows classification accuracy
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The individual results for LDA using OVO are plotted
for both data sets in Fig. 7.

Purity and repeatability index
Purity and repeatability index resulted in low correlation
with classification accuracy for all classifiers. The corre-
lations for IM data can be found in Table 5. Figure 8
shows Individual results of MLP for the two algo-
rithms and the aforementioned data set. Because of
the low correlation, purity was excluded from the fol-
lowing experiments, and RI from the Feature Sets
experiment.

Feature sets
In this section, the best sets are compared with each
other and the reference sets. In Fig. 9, the best sets corre-
sponding to the distance definitions of SI are compared.
The modified Mahalanobis sets are significantly higher
than the other distance definitions sets in eight out of 12
cases, and averagely higher in all but the case where
MLP is used with sets of three features. In that case,

Bhattacharyya distance and Hellinger distance sets per-
forming higher average classification accuracy.
The influence of parameter k of the NNS algorithm is

shown in Fig. 10 by comparing the best sets for k = 120
and k = 20. The higher value of k leads to higher average
classification accuracy in all cases. However, it is statisti-
cally significant for SVM and three features only.
The members with the highest average classification

accuracy were selected from Figs. 9 and 10 – modified
Mahalanobis and k = 120, respectively – to be
compared with the reference sets in Fig. 11. The NNS
sets leads to significantly higher classification accuracy
than the reference in all but one case, while modified
Mahalanobis is significantly higher for nine out of 12.
The average classification accuracy for the NNS sets is
higher than modified Mahalanobis for all classifiers
except LDA in an OVO topology, where Modified
Mahalanobis is consistently higher.

Real time
Figure 12 summarizes the correlations between the mo-
tion test result completion time and CCEs corresponding
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Fig. 7 Highest correlation for NNS. LDA (OVO) classification accuracy plotted against NNS for individual result. One dot represents one movements, one
subject and one feature, meaning that the number of dots is the number of movements multiplied by the number of subjects multiplied by the number
of features. The plots illustrate the highest correlation from Table 4. a LDA (OVO) and IM data. b LDA AMI (OVO) and SM data

Table 5 Correlation for purity and repeatability index regarding classification accuracy

Average result Individual results

LDA (AMI)
Single/OVO

MLP AMI SVM AMI LDA (AMI)
Single/OVO

MLP AMI SVM AMI Data set

Purity 0.31/0.0062 −0.14 0.51 0.3/0.15 0.14 0.54 IM

Repeatability 0.64/0.8 0.85 0.57 0.23/0.36 0.45 0.16 IM

The correlation with classification accuracy for purity and repeatability index. Correlations under “individual results” were calculated using classification accuracies and
CCES from every individual movement, subject and feature, while those under “average result” were derived using one average CCE and classification accuracy for every
subject and feature. Both methods provide one correlation, although “individual results” use more data. Classifiers were configured using AMI. All correlations were found
to be statistically significant (p < 0.05)
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Fig. 8 The distribution of data from individual movement for all classifiers with purity and repeatability. Plot matrix where the insets shows classification
accuracy plotted against purity for row 1 and repeatability for row 2. The result is for the individual movements data set. One marker represents the
average over all movements for one subject and one feature. Classifiers were used in the conventional “single” topology, apart from LDA, which was used
in “single” and OVO. The classifiers are grouped in columns
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Fig. 9 Classification accuracy for the best sets corresponding to distance definitions of SI. Boxplot of average classification accuracy over all movements
when using the best sets representing the distance definitions found in the legends. The middle line of the box is the median, the marker is the mean,
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“single” and OVO
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to RI, NNS, and SI based on modified Mahalanobis and
Bhattacharyya distance. Statistically significant correla-
tions (p < 0.001) are highlighted by a darker frame.

Feature attribute
As the correlations used to evaluate the CCEAs were
derived by use of one feature at a time, attributes of

features individually were revealed. Examples of such
attributes are average classification accuracy and clas-
sification accuracy variance. These two attributes are
illustrated in Figs. 13 and 14 for IM and SM data, re-
spectively. Figure 13 shows the five features that re-
sulted in the highest and lowest average classification
accuracy for classifiers separately.
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Fig. 10 Classification accuracy for the best sets corresponding to distance definitions of the SI. Boxplot of average classification accuracy over all
movements when using the best sets representing the distance definitions found in the legends. The middle line of the box is the median, the
marker is the mean, and the box extends to the 25th and 75th percentiles for the bottom and the top, respectively. The different insets compare
sets of different number of features. The result is derived from the IM data set. Classifiers were used in the conventional “single” topology, apart
from LDA, which was used in “single” and OVO
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Fig. 11 Classification accuracy for the best sets compared to the reference sets. Boxplot of average classification accuracy over all movements
when using the best sets representing SI with modified Mahalanobis as distance definition, NNS with k = 120 and the reference sets. The
value of k is found in the legend. The middle line of the box is the median, the marker is the mean, and the box extends to the 25th and the
75th percentiles for the bottom and the top, respectively. The different insets compare sets different number of feature algorithms. The result
is derived from the IM data set. Classifiers were used in the conventional “single” topology, apart from LDA, which was used in “single”
and OVO
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One attribute that was observed to highly influence
the CCEAs’ correlation with classification accuracy was
channel correlation; that is, correlation between feature
sequences extracted from the channels separately using
only the feature considered. To illustrate this attribute,

average determinants of the channel correlation matrices
over all subjects for the different features were extracted
from SM data and shown in the bar diagram in Fig. 15.
The features marked by red color have low average cor-

relation matrix determinants, which means a high
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Fig. 13 High- and low-performing features for the IM data. Ellipses representing clusters for features in classification accuracy against SI plots for
results using the IM data set. The SI distance definition is modified Mahalanobis. The ellipses are centered around the means of the feature clusters and
constructed according to their covariance matrices. Every inset includes the features with the top five and bottom five average classification accuracies for
the classifier stated in the plot. The ellipses are coded by red and blue color for low and high average classification accuracy, respectively. Classifiers were
used in the conventional “single” topology, apart from LDA, which was used in “single” and OVO
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correlation between channels, while the blue color repre-
sents features of low channel correlation. Figure 16 shows
how the two groups of features, red and blue from Fig. 15,
cluster differently in classification accuracy against CCE
plots.
The blue group has similar dependency on classifica-

tion accuracy for the three classifiers, while the red
clearly varies between them.

Discussion
Offline results
Separability index
Modified Mahalanobis was the distance definition that
had the greatest correlation with classification accuracy
(Table 3). However, the distance definitions based on
Bhattacharyya coefficient, being Bhattacharyya distance
and Hellinger distance, had a higher correlation with
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MLP’s classification accuracy. The Feature Attributes
section shows that Bhattacharyya distance compensates
for the change in dependency to MLP classification ac-
curacy caused by input correlation that is found in the
other CCEAs. It should therefore be a more adequate
distance definition for estimation of MLP classification
complexity. However, as features are combined into sets,
the feature correlation tend to decrease as larger feature
vectors are formed using multiple features. This is prob-
ably a reason for the absence of significantly higher clas-
sification accuracy for Bhattacharyya distance (Fig. 9).

Nearest neighbor separability
NNS has high correlation with classification accuracy
for all classifiers, as shown in Table 4. Figure 10
shows that the best sets corresponding to NNS per-
form higher overall classification accuracy then both
the SI best sets and the reference sets. The greatest
benefit of NNS is that it does not assume normality
of the distribution, which makes it more general.
However, there is a dependency to input correlation,
as can be seen in Fig. 16; however, just as for modi-
fied Mahalanobis, this influence will decrease as fea-
tures are combined into sets and input correlation
decrease.

The drawback of NNS is that it is more computation-
ally demanding than SI. As implemented for this study,
the computation time for NNS using two features is ap-
proximately 20 and 16 times longer than for SI with
modified Mahalanobis as distance definition using the
IM and SM data, respectively. The absolute time to
compute SI in the aforementioned configuration for IM
data when using Matlab R2015b on a MacBook, 2 GHz
Intel Core 2 Duo, 8 GB RAM is approximately 26 ms.

Purity and repeatability index
Purity and RI do not show as high correlation with
with classification accuracy as the other CCEAs
evaluated in this study, and were therefore not
included in the feature set experiment. However, the
correlation for RI average result is relatively high and
positive. It is worthy of notice that RI measures the
inconsistence during recording. Higher RI means
larger cluster shifts in feature space between record-
ing repetitions. Larger shifts were expected to limit
the classifiers abilities to identify boundaries and thus
reduce classification accuracy.

Real time
The statistically significant correlations with comple-
tion time in Fig. 12 argue that both NNS and SI are
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relevant for prediction of performance in real-time.
However, SI with modified Mahalanobis as distance
definition yields higher correlation with completion
time than NNS, while the offline tests show that the
NNS best sets are performing with higher classifica-
tion accuracy for both MLP and LDA also repre-
sented in the real-time test. The parametric models of
the distributions used for SI are probably more robust
to changes present in a real-time situation, similar to
what is shown for LDA, also dependent on the as-
sumption of normality [23].
We expected consistent intra-class distribution in fea-

ture space, as represented by RI, to be beneficial in the
real-time tests, but the low correlation with completion
time in Fig. 12 does not confirm that hypothesis.
Even though correlations between the CCEAs and

the completion time are significant for many CCEAs,
the correlations with offline accuracy are clearly
higher. The complexity of real-time testing is illus-
trated in Fig. 17, where classifier training data is
compared to corresponding real-time data for one
movement per inset.
The distribution clearly shifts between the time when

training data was recorded and the time when the real-
time test was executed.

Channel correlation dependency and feature attributes
The change in dependency between CCEs and classifica-
tion accuracy due to channel correlation of the features
presented in the Channel Correlation Dependency sec-
tion reveals some interesting attributes of the classifiers.
Figure 16 shows that features with high channel correl-
ation result in higher average classification accuracy for
MLP compared to LDA, but LDA used in an OVO top-
ology is less influenced by the feature correlation. MLP
uses the redundant information in the features more ef-
ficiently than what is observed for LDA, which suggests
that redundancy reduction is of higher importance
when selecting both channels and features for a LDA
application.
The feature attributes emphasized in Figs. 13 and 14

provide information about the performance of the fea-
tures in different setups. The variation in the top five
features shows how dependent the features’ performance
is to other conditions of the classification task, which
emphasizes the importance of dynamic feature selection
methods for MPR.

Data analysis tool: example
We implemented the best-performing CCEAs found in
this work in a new module for data analysis in BioPatRec

50 100 150 200 250
Dimension One

100

150

200

250

D
im

en
si

on
 T

w
o

Training Data for the Considered Movement
Training Data for the Most Overlapping Neghbor
Missclassified Real-Time Data of Considered Movement
Correctly Classified Real-Time Data of Considered Movement

15 20 25 30 35
Dimension One

0

50

100

150

200

250

D
im

en
si

on
 T

w
o
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[15]; namely, Separability Index with both Bhattacharyya
distance and Modified Mahalanobis, and the Nearest
Neighbor Separability. The graphical user interface of this
module is shown in Fig. 18. Scatter plots show the feature
space of different movements and their neighbors. Infor-
mation about the most conflicting classes based on their
interference with other movements is displayed in table
format. These attributes are derived from the selected
algorithm and are useful inputs when deciding whether
to re-record or exclude a particular movement(s).

Conclusion
This study compared algorithms that estimates the clas-
sification complexity of MPR. Two such algorithms,
Separability Index (SI) and Nearest Neighbors Separability
(NNS), were found to yield high correlation with classifica-
tion accuracy. The utility of these algorithms for MPR was
demonstrated with the high classification accuracy yielded
by the feature sets selected using these two algorithms. SI
was evaluated using different distance definitions, from
which best performance was achieved using a modified
version of the Mahalanobis distance, which also considers
the covariance of the neighboring class. Overall, the offline
results indicated that NNS is a more stable CCEA, while SI

is less demanding to compute. In addition, feature correl-
ation dependency was found to influence the correlation
between CCEs and classification accuracy.
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