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Mechanistic Quantitative Pharmacology 
Strategies for the Early Clinical Development 
of Bispecific Antibodies in Oncology
Alison Betts1,2,*  and Piet H. van der Graaf2,3

Bispecific antibodies (bsAbs) have become an integral component of the therapeutic research strategy to treat 
cancer. In addition to clinically validated immune cell re-targeting, bsAbs are being designed for tumor targeting 
and as dual immune modulators. Explorative preclinical and emerging clinical data indicate potential for enhanced 
efficacy and reduced systemic toxicity. However, bsAbs are a complex modality with challenges to overcome in 
early clinical trials, including selection of relevant starting doses using a minimal anticipated biological effect level 
approach, and predicting efficacious dose despite nonintuitive dose response relationships. Multiple factors can 
contribute to variability in the clinic, including differences in functional affinity due to avidity, receptor expression, 
effector to target cell ratio, and presence of soluble target. Mechanistic modeling approaches are a powerful 
integrative tool to understand the complexities and aid in clinical translation, trial design, and prediction of regimens 
and strategies to reduce dose limiting toxicities of bsAbs. In this tutorial, the use of mechanistic modeling to impact 
decision making for bsAbs is presented and illustrated using case study examples.

Cancer is a complex, multifactorial disease. Crosstalk between 
signaling cascades and multiple mediators of tumor survival and 
immune evasion exist. Genetic alterations lead to heterogeneity 
in tumor cell antigen expression within and between patients. 
Acquisition of resistance to therapy is associated with upregula-
tion of alternative receptors as well as pathway switching between 
receptors. Overall, this means that specific targeting of a single 
receptor is often insufficient for efficacy and standard of care con-
sists of combinations of therapies to kill tumor cells.1 However, 
development of individual drugs for a combination therapy can be 
a costly and time-consuming process requiring separate manufac-
turing processes and filing of the safety of each antibody compo-
nent separately.2,3

During the past decade, advances in protein engineering have 
resulted in the ability to robustly and cost-effectively synthesize 
bispecific antibodies (bsAbs) as an alternative to combination 
therapy or use of mixtures.4 This has led to an explosion of bsAbs 
in drug development–currently there are 57 bsAbs in clinical trials 
in patients with cancer,5 with a large diversity in formats.6 Thus far, 
blinatumomab (Blincyto; Amgen) is the only bsAb approved in on-
cology.7 Blinatumomab is a CD19/CD3 bispecific T-cell engager 
(BiTE), which was initially approved in 2014 for Philadelphia 
chromosome-negative relapsed or refractory (r/r) B-cell precursor 
acute lymphoblastic leukemia (ALL) in adults.8 Since then, it has 
gained approval for treatment in pediatric patients with ALL and 
for minimal residual disease-positive B-cell precursor ALL, where 
it is the first US Food and Drug Administration (FDA) approved 
treatment for this specific patient population. Despite the success of 
blinatumomab, there remains many opportunities to improve this 

modality in new generation bsAbs. For example, blinatumomab 
has a boxed warning due to cytokine release syndrome (CRS) and 
neurological toxicities experienced by patients.8 In addition, the 
small structure of blinatumomab and lack of an Fc domain leads to 
accelerated clearance and short half-life in patients, such that a con-
tinuous infusion regimen is required.9 This has opened the door to 
an evolution of ~ 100 different bispecific formats varying in size, 
arrangement, valency, flexibility, and geometry of their binding 
modules, as well as in their distribution and pharmacokinetic (PK) 
properties.6 In addition to immune cell re-targeting, bsAbs have 
the capacity to simultaneously target multiple disease pathways, 
releasing the potential for attractive new therapies with enhanced 
efficacy and tumor selectivity leading to reduced systemic toxicity 
and improved therapeutic index (TI). To this end, bsAbs are being 
utilized for several different applications in oncology, which are 
summarized below and illustrated in Figure 1.

Although bsAbs have great potential, their clinical develop-
ment is complex with many inherent challenges. To start with, 
it is difficult to translate from preclinical efficacy studies, which 
may be conducted in immunodeficient mice engrafted with 
human cancer cells and immune cells, or with immune compe-
tent syngeneic mice engrafted with human cancer cells using 
surrogate murine antibodies, or in transgenic mice to predict 
clinical efficacy. Many bsAbs in oncology have immune agonis-
tic properties and a minimal anticipated biological effect level 
(MABEL) approach is required for selection of clinical starting 
doses. Selection of clinical starting dose is highly dependent 
upon the type of in vitro assay chosen to determine MABEL 
and can result in selection of overly conservative doses and many 
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rounds of dose escalation before reaching efficacious doses in the 
clinic. In addition, the efficacious dosing regimen of the two tar-
gets cannot be independently controlled for a bsAb, as it would 
for a combination therapy of two monospecific antibodies. As a 
result, it may be challenging to optimize target engagement for 
two targets. For example, combination of a binding domain for 
an immune agonist with an immune antagonist would require 
different levels of target engagement necessitating different PK 
profiles from pulsatile to complete exposure. There are many fac-
tors impacting variability in the clinic, including affinity of the 
individual arms, potential for avidity, target expression, presence 
of soluble target, and PK, to name a few (Table 1). In addition, 

key safety concerns, such as CRS, require to be minimized and 
managed in the clinical setting.

The inherent complexity of bsAbs lends itself well to the use of 
mathematical modeling and simulation, in order to map out the 
mechanistic pathways and consider the impact of multiple vari-
ables. Mechanistic approaches, such as quantitative systems phar-
macology (QSP) models, combine computational modeling and 
experimental data to examine the relationships between a drug, 
the biological system, and the disease process.10,11 These models 
describe the biophysics of binding of bsAbs to their membrane re-
ceptors and soluble target in different compartments (e.g., blood, 
periphery, tumor, and immune tissues) using a system of ordinary 

Figure 1 Mechanism of action (MoA) of bispecific antibodies (bsAbs). MoA 1—CD3 T cell engagers. These bsAbs bind to CD3 expressed by 
the T cell and a specific antigen expressed by the tumor cell, resulting in the formation of an immune synapse. This stimulates the T cell and 
“re-directs” cytotoxicity against the tumor cell. MoA 2—Tumor targeting. These bsAbs direct binding toward the tumor by binding to a specific 
antigen on the tumor cell and to an immune receptor expressed on tumor infiltrating T cells (or other immune cells). For example, a bsAb 
binding to HER2 on tumor cells and 4-1BB on T cells is shown, which can result in a potent antitumor immune response. MoA 3—Targeting 
multiple immune modulatory receptors. These bsAbs can bind to different targets modulating immune responses, thus allowing combined 
biological effects and synergies. For example, a bsAb targeting PD-1 and LAG-3 expressed on exhausted T cells and/or TILs is shown, which 
inhibits the immunosuppressive mechanisms associated with these targets.
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differential equations. The receptor binding interactions can 
then be linked to downstream pharmacodynamic (PD) response 
and efficacy or toxicity. To do this, QSP models integrate data 
from diverse sources and assays, including drug assays (e.g., Kds 
or half-maximal effective concentration), system parameters (re-
ceptor expression and internalization rates), in vitro experimental 
data, preclinical in vivo studies, and clinical data. A quantitative 
framework is assembled that can provide mechanistic understand-
ing of bsAb function, enabling optimal experimental design and 
faster data interpretation. The model framework can be used at 
early stages to aid in the identification of optimal drug properties 
for next generation molecules, including optimal target, epitopes, 
and drug format. Once a lead compound has been selected, the 
QSP model can be used to translate from preclinical in vitro and in 
vivo studies to the clinic, to inform clinical study design, including 
prediction of clinical starting dose, efficacious dose, and regimen.

In this tutorial, the mechanism of action (MoA) of bsAbs in 
oncology drug development will be discussed, and specific clinical 
pharmacology challenges in early-stage clinical development will 
be considered and reviewed. The use of mechanistic modeling and 
simulation strategies to address these challenges will be presented, 
supported by case studies that exemplify the application and im-
pact of mechanistic modeling in the drug development process. 
Note that challenges and modeling strategies for bsAbs in lat-
er-stage clinical development are out of the scope of this tutorial 
and will not be discussed.

MECHANISM OF ACTION OF BISPECIFIC ANTIBODIES IN 
ONCOLOGY
Engagement of immune cells (adaptive immune response)
The majority of bsAbs in clinical trials are CD3 T cell engager 
(TCE) molecules. These bsAbs bind to CD3 in the T cell recep-
tor/CD3 protein complex expressed on the surface of T cells and 
to a tumor associated antigen (TAA) on the tumor cell surface. 
When both CD3 and TAA are engaged, the proximity of the 
T cell and the tumor cell result in the formation of an immune 
synapse, stimulation of the T cell, and “re-direction” of cytotox-
icity against the tumor cell (Figure 1). CD3 bsAbs have minimal 
tumor cell killing on their own,12 and efficacy and on-target toxic-
ity are driven by the formation of a trimolecular complex (hereaf-
ter trimer) between the bsAb, T cell, and tumor cell.13

CD3 bsAbs have exhibited clinical validation for hematologi-
cal malignancies through blinatumomab, and several other TCEs 
in clinical trials. These include BiTEs, half-life extended diabod-
ies/antibody fragments and full length heterodimeric IgGs tar-
geting TAAs, including CD20, BCMA, CD33, CD19, CD123, 
and others. There are a smaller number of CD3 bsAbs in clinical 
development for solid tumors, targeting, for example, HER2, 
DLL3, gpA33, and CEA for metastatic breast cancer, small-cell 
lung cancer, colorectal cancer, and other solid tumor indications, 
respectively. Blinatumomab and other CD3 bsAbs are reviewed 
extensively in the work by Yuraszeck et al.14

Engagement of immune cells (innate immune response)
In addition to T cells, other effector cells or immune cell subsets 
can also be recruited to tumor cells. For example, bsAbs have been 

developed to target natural killer (NK) cells, which are potent cy-
totoxic lymphocytes of the innate immune system. An example 
of an NK cell redirector is AFM-13, a tandem diabody construct 
targeting CD16 on NK cells and CD30 on tumor cells.15 In a 
phase I trial in patients with r/r Hodgkin’s lymphoma, treatment 
with AFM-13 resulted in activation of NK cells and a decrease in 
soluble CD30 in peripheral blood, and 3 of 26 patients had a par-
tial response.15 AFM-13 is now in a phase II trial for patients with 
Hodgkin’s lymphoma.

Tumor targeting
These bsAbs focus their immune-activating pharmacologic ef-
fects to the tumor environment, thereby achieving improved ef-
ficacy as well as reduced systemic immune-related adverse effects 
(Figure 1). They are an emerging class of bsAbs, which are mainly 
in the preclinical phase. However, explorative preclinical and 
emerging clinical data suggest great potential.16

4-1BB is a potent co-stimulatory receptor, which is upregulated 
on effector T cells, and upon stimulation promotes cytotoxic func-
tion as well as induction of immunological memory.17 It is a good 
candidate for tumor targeting as systemic activation can result in 
severe toxicity. For example, the initial clinical development of the 
agonistic 4-1BB monospecific antibody urelumab was terminated 
due to fatal hepatotoxicity, with a maximum tolerated dose of 
0.1  mg/kg q3w.18 A 4-1BB/HER2 bispecific molecule PRS-343 
is designed to facilitate T-cell co-stimulation by tumor-localized, 
HER2-dependent 4-1BB clustering, and activation (Figure 1).19 
In a phase I study in patients with HER2-positive cancer, PRS-343 
demonstrated single-agent antitumor activity, including partial re-
sponses, and was well-tolerated at doses up to 8 mg/kg q2w.20

Another popular target for tumor-focused bsAbs is CD47, an 
innate checkpoint receptor, which is widely expressed on many 
tumor types. Interaction with its receptor SIRPα on macrophages 
and dendritic cells acts as a “don’t eat me signal” enabling tumor 
cells to evade phagocytosis and clearance. Blockade of CD47 in 
preclinical studies using monospecific antibodies has resulted in 
encouraging efficacy. However, CD47 is expressed on the mem-
branes of all cells in mice and humans, including red blood cells, 
which can act as a substantial “antigen sink,” resulting in limited 
systemic use of CD47 inhibitors due to side effects. BsAbs, which 
target tumor-specific receptors with high binding affinity on one 
arm and CD47 with weaker affinity on the other arm, are a pop-
ular strategy for increasing tumor cell targeting and enhancing TI. 
A bispecific antibody targeting PD-L1 and CD47,21 showed sig-
nificantly enhanced tumor targeting and therapeutic efficacy vs. 
monotherapy. In addition, as critical innate and adaptive check-
points on tumor cells, CD47 and PD-L1 coordinate to suppress 
immune sensing.

Combining check-point inhibition and immune modulating 
receptors
BsAbs are also being used to combine checkpoint inhibitors or for 
dual targeting of checkpoint inhibitors and co-stimulators of the 
immune response, or inhibitors of exhaustion markers (Figure 1). 
These compounds may combine the activity of the original drugs, 
but also allow for additional synergies and unexpected novel 
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biological effects that could not be achieved by combining the cor-
responding monospecific antibodies. A potential disadvantage of 
such compounds may be the risk of toxicity due to strong immune 
activation. Most of these bsAbs block two inhibitory checkpoint 
pathways, such as PD-1 or PD-L1 combined with other immu-
nosuppressive targets, such as TGF-β, LAG-3, and TIM-3. For 
example, MGD-013 is a bsAb based on the dual affinity re-tar-
geting (DART) platform that targets PD-1 and LAG-3, which 
are both expressed on exhausted T cells and tumor infiltrating 
lymphocytes (Figure 1). Inhibition of these targets has been 
shown to exert a synergistic effect on tumor immunity in mice.22 
MGD-013 is currently in phase I clinical trials. There are many 
other dual immunomodulator bsAbs in preclinical development, 
including MCLA-134, which targets PD-1/TIM-3 and XmAb-
20717, which targets CTLA-4/PD-1.16

The MoA of T cell engagers, tumor targeting bsAbs, and bsAbs 
targeting multiple immune modulating receptors are shown picto-
rially in Figure 1.

EARLY CLINICAL PHARMACOLOGY CHALLENGES FOR 
BISPECIFIC ANTIBODIES
Selection of clinical starting dose: How to define MABEL
To ensure maximum clinical benefit of phase I dose escalation 
clinical trials, particularly for patients in early dose cohorts, it is 
important to select a safe starting dose and then rapidly escalate 
to the efficacious dose. To select a starting dose of bsAbs, includ-
ing CD3 bsAbs, a MABEL approach is recommended due to their 
immune agonistic properties.14 The principal of MABEL is that it 
is better to start with the lowest dose believed to be active, rather 
than the highest dose thought to be safe. However, MABEL can 
be difficult to interpret, and this can result in selection of a start-
ing dose that is far below doses required for efficacy in patients 
and consequently dose escalation trials can take several years.23 
For example, Amgen’s BCMA BiTE (AMG-420) entered clinical 
trials in 2015 with a starting dose of 0.2 µg/day. The first positive 
clinical results were reported 3 years later in patient cohorts that 
were dosed several logs higher than the initial cohort, with a dose 
of 400 µg/day finally selected as the efficacious dose for further 
investigations.24 Another example is Roche’s cibisatamab (CEA-
TCB), a novel T-cell-bispecific (TCB) antibody targeting CEA, 
which started phase I clinical trials in 2014, at a starting dose of 
52 µg.25 In the dose expansion cohort, doses up to 600 mg have 
been evaluated over a period of 5 years.26

An important issue is the approach used for determining 
MABEL of CD3 bsAbs. Traditionally, MABEL is based upon 
doses that achieve receptor occupancy (RO) of ~ 10–20%, how-
ever, this approach is not recommended for CD3 bsAbs as they are 
immune agonists with low and variable RO required for efficacy.27 
The most popular method is to use a PK driven approach, where 
the recommended clinical starting dose is calculated by setting the 
predicted drug exposure below 20% of the maximal effective con-
centration (EC20), which is selected as a threshold from in vitro 
assays.27,28 This method is easy to accomplish, and regulatory 
agencies typically accept proposed starting doses corresponding 
to 10–30%, or even in some cases 50% pharmacological activ-
ity,27 depending on the target biology and other factors, including 

the proposed application, available data, and impact of the mod-
el-based decision. However, this approach can be misleading as it is 
calculated using bsAb concentration rather than trimer concentra-
tion, which is required to drive efficacy and toxicity.13 It is highly 
dependent upon the experimental conditions of the in vitro assay 
used to determine EC20, which can result in substantially different 
MABEL doses. These assays include cytokine release, cytotoxicity, 
and T-cell activation/proliferation assays, which are commonly 
used to determine bsAb activity. In order to observe activity in 
vitro in short time frames, the assays are generally completed under 
nonphysiological conditions, including effector:target (E:T) cell 
ratios of > 5:1, which are significantly higher than those observed 
in patient tumors and use cell lines that overexpress target. In ad-
dition, often the most sensitive assay is selected for MABEL deter-
mination. Depending on the in vitro experimental conditions, an 
overly conservative in vitro threshold can be selected, which may 
result in a starting dose that results in many rounds of subeffica-
cious dose escalation, or a starting dose could be selected that is 
too close to the efficacious dose such that it gives safety concerns. 
A better method is to use a mathematical modeling approach for 
selection of clinical starting doses for bsAbs, which can integrate 
in vitro data generated under different experimental conditions to 
estimate a single EC20 based on trimer concentrations, rather than 
bsAb concentrations. The mathematical model can be translated 
to the clinic and the in vitro trimer EC20 can be used as a threshold 
to predict a relevant clinical starting dose, which is independent of 
experimental conditions. A QSP modeling approach to MABEL is 
discussed in detail below.

Determining clinical efficacious dose: Nonintuitive dose-
response relationships of bsAbs in early clinical trials
Historically, in oncology drug development, efficacy has been 
assumed to be dose related and cancer drugs are escalated to the 
maximum tolerated dose in phase I clinical trials, which is subse-
quently defined as the efficacious dose.29 However, bsAbs have a 
complex MoA, which can make dose response relationships non-
intuitive and difficult to rationalize. For example, a specific com-
plexity of CD3 bsAbs is efficacy and on-target toxicity are driven 
by trimer formation between the bsAb, T cell, and tumor cell.13 
A bell-shaped concentration vs. response relationship can be ob-
served, which is a well-described phenomenon for ternary com-
plexes.30–32 When bsAb concentrations are low, conditions favor 
bivalent binding and the formation of trimers. As bsAb concen-
tration is increased, an optimal concentration is reached for tri-
mer formation. If additional bsAb is added, it will be in excess and 
favor monovalent binding to form dimers between bsAb and T 
cells or bsAb and tumor cells. This results in decrease in response 
as dimers cannot trigger cytotoxicity (Figure 2). The width of the 
bell shape, or efficacy window of the bsAb (Figure 2), will depend 
upon variables impacting trimer formation, such as receptor ex-
pression, E:T ratio and the binding affinity of the bsAb for CD3 
and its specific tumor antigen.33 As a result, the bell-shaped rela-
tionship will be different for every bsAb and could be different 
for every patient treated with a given bsAb. This could potentially 
impede interpretation of phase Ia dose escalation trials and im-
pact selection of doses for phase Ib expansion cohorts, or even 
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recommended phase II doses. For example, it may be difficult to 
determine whether a dose close to the projected efficacious dose is 
ineffective due to being on the right-hand side of the bell-shaped 
response and when to stop dose escalation. The bell-shaped rela-
tionship has been confirmed preclinically for CD3 bsAbs34,35 and 
mechanistic modeling can be used to predict it and to optimize 
variables to minimize its impact on efficacy and toxicity. For ex-
ample, Schropp et al. developed an equilibrium binding model for 
bsAbs and investigated how changes in receptor and bsAb concen-
tration impacted the formation of the trimolecular complex and 
the efficacy window of the bell-shaped curve.33

In addition to CD3 bsAbs, the bell-shape relationship could af-
fect other bsAbs that form ternary complexes by binding in trans 
to link effector and target cells, including NK cell engagers, tumor 
targeting agents, and dual immunomodulators. To optimize drug 
dosing and scheduling in the clinic, a rational dose selection ap-
proach using mathematical modeling is recommended, which 
will account for the variables discussed above. This mathematical 
framework could be updated with emerging clinical data (such as 
PK or receptor expression data) to refine dosing protocols in real 
time and to help in the interpretation of complex data.

Specific features of bsAbs impacting variability in clinical 
response
A major challenge in oncology drug development is interindivid-
ual variability in drug response, which affects both efficacy and 
toxicity. BsAbs are a complex drug modality, binding to two dis-
tinct targets, often with two separate mechanisms of action. As a 
result, many different variables can impact the concentration vs. 
response and toxicity relationship for bsAbs in individual patients. 
These variables can be categorized as “drug specific” and “system 
specific” parameters.36 Drug-specific parameters typically in-
clude pharmacologic parameters, such as affinity and avidity, and 
PK parameters, including clearance, volume of distribution, and 
elimination half-life. System-specific parameters include receptor 
expression, concentrations of soluble target, receptor internaliza-
tion/turnover rates, and E:T ratio. In Table 1, some of these vari-
ables are listed along with quantitative methods of analysis and 
ranges of values possible for bsAbs and their targets. The PK of 
bsAbs has already been reviewed and will not be covered here.37 

In addition, variability due to comorbidities, comedications, and 
disease severity are other important factors influencing variability 
in clinical responses, especially at later stages of clinical develop-
ment, which are out of scope in this tutorial. Further discussion on 
some of the unique features of bsAbs, which may impact response 
across patients are reviewed below.

Impact of avidity. A key variable of bsAbs, especially those with 
multi-valency, is their ability to have enhanced functional affinity 
due to avidity.16,38 Affinity is defined as the strength, expressed 
in thermodynamic terms, of the binding interaction between a 
single antigen and a single region of the mAb.38 Avidity, however, 
is the accumulated strength of multiple affinities summed up 
from multiple binding interactions and is commonly referred to as 
a functional affinity.38 The strength of avidity is likely a function 
of tethering producing an increased local concentration of the 
antibody due to restriction of diffusion to the cell membrane, and 
epitope and format-specific steric variability.39

Avidity arising from binding of a bsAb to two receptors on a 
target cell may lead to greater efficacy than a combination with two 
antibody molecules, each binding only a single receptor.40 Avidity 
often correlates with receptor expression,39–41 and it is therefore 
believed that the avidity effect could, in some circumstances, be 
exploited to reduce systemic toxicity, due to the higher density of 
receptors on tumor cells leading to enhanced avidity of bsAbs com-
pared with normal cells expressing a lower concentration of recep-
tors.42 To benefit from the potential advantages of avidity, protein 
engineers are modulating bsAbs to have weaker affinity for their 
receptors in order to minimize normal tissue binding, without im-
pairing the potency for target cells.43 This is seen in nature, where 
T cells can distinguish between high and low antigen expressing 
cells by means of relatively low affinity T cell receptors that can still 
achieve high affinity binding to target cells expressing high levels 
of target antigen.44 However, these are complex interactions and 
the interplay of factors, such as affinity, avidity, and format valence, 
in relation to the ability of a bsAb to promote target selectivity is 
not yet well understood.42 Because avidity can vary with receptor 
expression, it is likely to result in different observed functional af-
finities/potencies of bsAbs across patients. To understand avidity 
and predict its variability and impact on tumor targeting, efficacy, 
and potential to reduce systemic toxicity, it is important that it can 
be quantified. First of all, the intrinsic affinity of the monovalent 
interaction in equilibrium binding experiments should be deter-
mined.41 The avidity could then be predicted using a mathematical 
model of the bivalent interaction and related to receptor expres-
sion, ratios of targets, and affinity under different conditions rele-
vant to the clinic.39–41,45,46

Impact of soluble target. Another factor that can impact the PK/
PD of bsAbs and lead to patient variability in the clinic is the 
presence of soluble target, or the shed ectodomain (ECD) of a 
membrane bound target, which can act as a significant sink for 
bsAbs restricting the amount of drug free to distribute to the 
tumor47 and potentially impacting efficacy.48 This is especially 
prevalent for bsAbs in immune oncology, which are often potent 
activators of the immune system requiring low doses for efficacy.27 

Figure 2 Bell-shaped concentration response relationship observed 
for CD3 bispecific antibodies. Emax, maximum effect.
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As a result, circulating concentrations of soluble target/ECD are 
not saturated at dose levels administered in clinical trials. Levels 
of soluble target/ECD can also vary significantly across species, 
complicating preclinical to clinical translation. They are often 
higher in patients who overexpress tumor target and are variable 
across patients, impacting doses driving efficacy and toxicity. 
For example, high levels of shed HER2 ECD have been detected 
in patients with cancer (2.21  µg/mL) compared with those in 
healthy subjects (<  15  ng/mL).49 For the anti-HER2 antibody 
trastuzumab, high levels of serum HER2 ECD are associated 
with rapid clearance and decreased benefit from trastuzumab 
therapy.49–51 BCMA was bound to be shed and is elevated in 
patients with multiple myeloma (MM), correlating with disease 
status and survival.52 Ghermezi et al. showed that serum BCMA 
(sBCMA) was significantly lower in 43 aged-matched healthy 
donors (median 36.8 ng/mL), than 46 patients with smoldering 
MM (median 88.9 ng/mL) and 44 patients with active MM prior 
to treatment (median 505.9  ng/mL).53 There was significant 
variability in each group; for example, the active untreated group 
had sBCMA levels ranging from undetectable to ~  5,500  ng/
mL.53 The sBCMA levels were found to directly correlate with 
response to treatment and clinical status. Specifically, patients 
with complete response had significantly lower sBCMA levels 
(median 38.6 ng/mL) than those with partial response (median 
99.7  ng/mL) or nonresponsive disease (median 195.3  ng/mL).53 
There are several bsAbs targeting HER2 and BCMA in clinical 
development and levels of shed target are likely to impact patient 
variability to drug treatment and resulting efficacy. For targets 
less well understood, measurement of soluble target levels is also 
recommended to de-risk impact on efficacy and toxicity. For the 
CD3 bsAbs, binding to circulating T cells expressing CD3 can 
also act as significant sink for the drug. Leong et al. showed that 
high affinity CLL1/CD3 TCEs were more potent in vitro but had 
comparable potency to lower affinity variants in vivo.54 This was 
due to differences in PK, with higher affinity variants showing 
higher clearance in vivo due to binding to CD3 on circulating 
T cells. Given the ability to impact the therapeutic efficacy of 
bsAbs, binding to soluble target needs to be accounted for in all 
experimental systems and species in order to provide meaningful 
PK and dose predictions. QSP modeling is an ideal way to do this 
and will be discussed later in this tutorial.

Impact of target burden. Target burden is an important factor, 
which can vary substantially across patients and correlate with 
doses driving efficacy/toxicity and the likelihood of clinical 
success of bsAbs. Target burden is a function of the number of 
receptors expressed per cell and the number of cells. For bsAbs, 
targets can be expressed on both tumor cells and immune cells, 
and can vary substantially depending on tumor burden, E:T 
ratio, disease status, and patient-specific factors, such as prior 
treatment. Immune targets can also be inducible with potential 
to vary during treatment in response to therapy. In addition, 
tumor targets can display significant intratumoral heterogeneity 
resulting in bsAbs only targeting a subpopulation of cells where 
receptor is expressed.55 An analysis of the CEA/CD3 TCB 
cibisatamab showed that activity strongly correlated with CEA 

expression, with higher potency observed in high CEA-expressing 
tumor cells with a threshold of ~ 10,000 CEA binding sites per 
cell required for efficient tumor cell killing.44 In line with this, 
cibisatamab was unable to induce T-cell mediated killing of 
primary epithelial cells expressing <  2,000 CEA binding sites 
per cell in vitro.44 The measurement of target burden is therefore 
recommended as an important factor impacting the success of 
bsAb clinical trials and may require adaptation of clinical trial 
design to include comprehensive longitudinal tissue collection 
protocols. Incorporation of target burden into predictions of 
efficacious doses using QSP modeling are exemplified in the case 
studies presented below.

USE OF MODELING AND SIMULATION IN DECISION MAKING 
FOR BISPECIFIC ANTIBODIES
Model-based approaches are increasingly being used to support 
decisions spanning the entire drug development process, from 
preclinical development through to postmarketing.56 In early 
clinical trials, mechanistic modeling can be used to select a clini-
cal starting dose so that patients in early cohorts can benefit from 
clinical trials. Modeling approaches can also be used to select opti-
mal regimens and step-dosing protocols to avoid cytokine release 
syndrome, and other toxicities. Mechanistic modeling can be used 
to predict efficacious dose so that phase I first-in-human trials 
can be designed to escalate efficiently to doses where most ben-
efit to patients is predicted.57 Quantitative modeling approaches 
can be used to determine which biomarkers are predicted to best 
correlate with efficacy or toxicity.10 In the face of significant vari-
ability, modeling can be used to deconvolve efficacy from variabil-
ity to predict a robust dose and regimen for phase Ib expansion 
trials, or recommended phase II dose. Mechanistic modeling can 
be used to optimize predictions in specific patient populations or 
for different indications and for defining patient selection criteria 
so that the trials have greater chance of success. Simulation based 
on mechanistic models could be used as a basis for selecting com-
bination therapies, which is generally more empirically derived, 
and unfeasible to determine experimentally via a “trial and error” 
process.10,58

In this section, the utility of mechanistic models to drive deci-
sion making and enable success for bsAbs in early clinical trials will 
be discussed, including preclinical to clinical translation, determin-
ing clinical starting and efficacious doses, considerations for early 
clinical trial design, and predicting toxicities. In addition, consid-
eration of good QSP practice, including model verification, valida-
tion, and uncertainty quantification will be reviewed.

Translational strategies
Preclinical to clinical translation of bsAbs is required to predict 
efficacious doses in patients and is a key determinant of clinical 
success.23 It is particularly challenging for bsAbs, as they have 
(at least) two targets and mechanisms of action to translate, with 
multiple inter-related factors impacting efficacy. In oncology, 
mouse xenograft models have become the mainstay of clinical 
translation, as efficacy (tumor growth inhibition) in response 
to drug can be measured dynamically over time.59 However, for 
bsAbs in immune oncology, in vivo models are not ideal and often 
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contrived, with very different conditions to those observed in 
patients. Two classes of in vivo models are currently most widely 
used: (i) immunocompromised mice with engraftment of human 
cancer cells and immune cells (ii) immunocompetent syngeneic 
mice engrafted with human cancer cells.59 The latter are perhaps 
more translationally relevant as they possess fully intact immune 
systems, however, they require mouse surrogate bsAbs to be used 
instead of human bsAbs to avoid immunogenicity.60 Non-human 
primates serve as good toxicology species; however, they lack 
tumor tissue and are therefore not relevant for understanding ef-
ficacy. The complex MoA of bsAbs and the distinct conditions of 
preclinical in vivo models demands an integrated analysis to trans-
late to the clinic. QSP modeling and simulation approaches can 
incorporate and systematically analyze in vitro, preclinical, and 
clinical data to simultaneously assess the individual effect of, as 
well as the dynamic interactions among, various factors.34 Some 
examples of the use of QSP models to translate preclinical data to 
the clinic are emerging in the literature for the CD3 bsAbs. For 
example, Campagne et al.61 developed a PK/PD model for a bispe-
cific CD123/CD3 DART molecule in non-human primates. The 
model describes DART molecule binding to peripheral CD3 ex-
pressing cells and CD123-positive cells, T-cell trafficking, activa-
tion, and expansion, and resulting peripheral depletion of CD123 
cells. By integrating primary PK and pharmacology, the model 
represents an efficient translational framework to provide quan-
titative predictions of drug disposition and potency in humans, 
and to predict dosing strategies to inform ongoing clinical trials. 
A translational QSP model is presented for CD3 bispecific mole-
cules by Betts et al.,13 which integrates in silico, in vitro, and in vivo 
data in a mechanistic framework, to quantify and predict efficacy 
across species. This is discussed in more detail in case study 1.

Jiang et al.34 proposed a mechanism-based PK/PD model based 
on target cell-biologic effector cell complex formation and used it 
to describe and predict in vitro cytotoxicity. The model was also 
used to translate from in vitro data to the clinic, validated using 
blinatumomab data. The model reasonably projected the expo-
sure-response relationship of blinatumomab in patients with ALL 
by incorporating drug-specific parameters identified from in vitro 
cytotoxicity data and system-specific parameters based on human 
physiology and pathology data for multiple T-cell redirecting 
bsAbs under different experimental conditions. A similar approach 
was taken by Hua et al.62 who developed in vitro and human QSP 
models for an Epcam/CD3 bsAb, solitomab, and used the model 
to show that number of trimers/T cell required to drive cytotoxic-
ity in vitro could be used as a target engagement metric to translate 
to human and predict clinical efficacious dose. The inherent com-
plexities of bsAbs mean that clinical translation will be challenging 
to determine empirically, but may be aided by mechanistic models 
that capture the pathophysiology of the disease and the mecha-
nisms of action of each agent.14

Optimizing design of clinical trials
A holistic, mechanistic methodology to select MABEL-based clin-
ical starting doses of bsAbs is to use a QSP modeling approach.28 
For CD3 bsAbs, an in vitro QSP model can be used to estimate 
the trimer concentration that results in 20% tumor cell killing 

(trimer EC20). The model describes bsAb binding to CD3 on T 
cells and TAA on tumor cells to form dimers and then trimers, 
which are linked to cytotoxicity and/or T cell proliferation. The 
model accounts for the specific conditions of the in vitro assay, in-
cluding the number of cells, E:T ratio, and receptor expression on 
tumor cell lines used in the experiment. It can then be translated 
to human by incorporation of a PK model, and updating param-
eters (including E:T ratio and receptor expression) to reflect pa-
tient tumors, in order to determine the dose required to achieve 
trimer concentrations approximating trimer EC20 in the clinic. 
This approach accounts for tumor trimer concentrations driving 
efficacy/toxicity and normalizes for differences between in vitro 
experimental conditions and the clinic. This method was used to 
predict clinical starting dose of a P-cadherin/CD3 bsAb using the 
MABEL approach and is described in case study 2. Another ad-
vantage of using a QSP model is that it provides a translational 
framework where the same model can be used for determining the 
starting and efficacious doses. Clinical trials can subsequently be 
designed for rapid escalation from the predicted starting dose to 
the efficacious dose, to reduce patients receiving subtherapeutic 
doses, and reducing overall time in phase I.63 The QSP approach 
to MABEL can be integrated with other clinical trial design strat-
egies, such as use of single patient cohorts early in the early stages of 
dose escalation and even intrapatient dose escalation. The model 
can also be used for a sensitivity analysis to determine key param-
eters driving efficacy and toxicity. Such a QSP modeling approach 
was described in case study 1. The mathematical model can be up-
dated with emerging clinical data and used to refine drug dosing 
and scheduling as well as guiding go/no-go decisions.

Predicting toxicities associated with bsAbs
The key safety concerns with bsAbs, mainly from clinical data on 
CD3 bsAbs, are excessive release of cytokines, which may trans-
late to potentially life-threatening CRS and target organ toxicity 
due to redirection of T cells to normal tissues expressing the TAA 
(off-tumor/on-target cytotoxicity).63 These toxicities can prevent 
efficacious doses of bsAbs being reached in the clinic before the 
onset of adverse events (AEs) and consequently limit the clinical 
utility of bsAbs.

Since the development of the first CD3 bsAb, clinical trials have 
shown that they can cause rapid and uncontrolled T cell mediated 
CRS, even at very low doses.64,65 Mechanisms for mitigating CRS 
in the clinic have been implemented, including a “priming” dose 
strategy (i.e., a lower initial dose followed by a higher maintenance 
dose), timely supportive care, corticosteroids administered prophy-
lactically or upon onset of symptoms, and IL6/IL6R mAbs (e.g., 
tocilizumab) upon onset of CRS.66,67 New generation CD3 bsAbs 
are being designed with reduced CD3 affinity, or with novel CD3 
epitopes that limit cytokine release but maintain cytotoxic activ-
ity, or with different mAb formats to reduce potential for CRS.68 
However, predicting the incidence and severity of CRS from 
preclinical experiments remains a challenge and selection of dose 
priming regimens in the clinic is mostly based on an empirical trial 
and error approach. These challenges could be addressed through 
mathematical modeling, and an example of a “fit-for-purpose” PK/
PD approach is discussed in case study 3.
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Due to the small number of TAA required on target cells, 
off-tumor/on-target toxicities can become an issue with CD3 
bsAbs69 and result in dose-limiting toxicities, limiting TI in some 
cases.70 For example, in a phase I clinical study with solitomab, an 
EpCAM/CD3 BiTE construct, treatment of r/r EpCAM + solid 
tumors was associated with AEs, including severe diarrhea and 
increase in liver enzymes, which precluded dose escalation to po-
tential therapeutic levels.70 EpCAM was subsequently shown to 
be expressed in the gastrointestinal tract epithelia and liver bile 
duct of patients.70 The AEs associated with solitomab treatment, 
therefore, likely represent off-tumor/on-target toxicity due to T 
cell activation and killing of nonmalignant cells. A QSP model 
developed for solitomab demonstrated that trimers/T cell re-
quired for in vitro cell killing (~  200–400) were similar to the 
number predicted at the maximum tolerated dose observed in 
the clinical study. The TI for solitomab was predicted to be close 
to 1 based on the trimers/T cell formed in tumor and in normal 
tissue. Multiple ways to mitigate potential off-tumor/on-target 
toxicities are currently being investigated in preclinical develop-
ment. If the TAA is overexpressed in tumors, relying on avidity is 
one potential way to selectively target the tumor.43 An alternative 
mechanism, shown in non-human primate studies, is the use of 
masked antibodies, where the mask is only cleaved in the tumor 
microenvironment.71

Good QSP practice
QSP models are complex, with a variety of data used in model 
development, often from disparate sources. Many calculations 
require propagation between models. In addition, models often 
span multiple time scales from binding to disease modification. 
As such, QSP models need to be rigorously evaluated and con-
form to a set of best practices before enabling clinical decisions. 
A process of good QSP practice is recommended based on model 
verification, validation, and uncertainty quantification paradigm. 
A white paper has been published that presents a minimum set 
of recommendations to guide QSP practitioners.72 Some critical 
considerations are also discussed below.

First, a “right sized” model should be used that is suitable for the 
question asked and has reasonable assumptions. A model verifica-
tion step should be included to determine that the computational 
model and analysis accurately represent the underlying mathemat-
ical model and its solution. The model should be validated to de-
termine if it is an accurate representation of the real world from 
the perspective of intended use. Finally, to quantify the accuracy 
of the prediction and the data, an uncertainty quantification step 
should be undertaken. These steps are a requirement to evaluate 
QSP models, to increase understandability to enable model reuse, 
and to enable routine and unbiased calculation of prediction un-
certainty to better understand the consequence of parameter error 
and patient variability.

CASE STUDIES
The following case studies were selected as useful representative 
examples where QSP or other mechanistic modeling approaches 
have impacted early clinical development strategies for particular 
bsAbs, with the ability to be repurposed for other bsAbs. Case 

Study 1 exemplifies the impact of a QSP modeling approach to 
translate from preclinical in vivo studies to the clinic to predict 
efficacious dose of a CD3 bsAb.13 Case study 2 uses the same 
modeling framework to predict clinical starting dose and demon-
strates in vitro to clinical translation.28 Case study 3 demonstrates 
a QSP approach to predict and therefore minimize CRS toxic-
ities upon bsAb dosing.73 In each case, the focus is on the stra-
tegic applications of the mechanistic modeling and its impact. 
Technical details, including specific models structures, equations, 
and parameter values, are not included, and can be found in the 
published manuscripts.13,28,73 The case studies all describe a gen-
eralized CD3 bsAb model based on CD3 engaged through trimer 
formation, as the important variable driving efficacy and on-tar-
get/off-tumor toxicity. As such, this model is a useful platform for 
all CD3 bsAbs and bsAbs, which bind in trans configuration (de-
scribed as MoA 1 and 2 in Figure 1). The CRS model has further 
applicability to immune modulators resulting in cytokine release. 
These models could play an important role in design and interpre-
tation of early clinical trials.

Case study 1: Preclinical to clinical translation of a 
P-cadherin/CD3 DART bsAb using QSP modeling
A QSP model was developed for a P-cadherin/CD3 DART bsAb 
(Pcad-LP-DART), capable of predicting trimer formation and 
linking it to tumor cell killing.13 The model was used to quantify 
the PK/PD relationship of Pcad-LP-DART in mouse xenograft 
models. The model, which had the general structure presented 
in Figure 3, integrated the PK of Pcad-LP-DART, its binding to 
soluble P-cadherin and circulating T cells in the systemic circu-
lation, its biodisposition in the tumor and the formation of a tri-
molecular complex with T cells, and P-cadherin expressing tumor 
cells in the tumor microenvironment. The model incorporated 
T cell kinetics in the tumor, including T cell proliferation and 
contraction. The concentration of the trimer in the tumor was 
used to drive efficacy in the mouse using a model of tumor cell 
growth and killing. A hybrid approach was used in the model-
ing where known parameters were fixed in the model up-front 
(binding kinetics, receptor expression, number of T cells, and 
tumor cells) and unknown parameters were estimated using the 
model to fit the data (tumor cell growth and killing parameters). 
A tumor static concentration was calculated and used as an esti-
mate of minimum efficacious trimer concentration across mouse 
tumor models. The tumor static concentration values were in 
the picomolar range, demonstrating the inherent potency of this 
mechanism.

The model was translated to the clinic by incorporating pre-
dicted human PK and clinically relevant measures, such as T cell 
concentration (circulating and tumor), tumor volumes, soluble 
P-cadherin levels, CD3, and P-cadherin expression. The model was 
subsequently applied to predict clinical PK, including impact of 
binding to soluble P-cadherin and prediction of clinical efficacious 
dose. The model was also used for sensitivity analysis and showed 
that P-cadherin expression and number of T cells in the tumor 
were sensitive parameters impacting clinical efficacy. The resulting 
QSP model and strategy offer a translational framework for CD3 
bsAbs, which could be used for decision making at different stages 
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of the drug discovery and development process from drug design 
through to candidate selection and clinical dose predictions.13

Case study 2: Predicting clinical starting dose of a 
P-cadherin/CD3 DART bsAb using a QSP model/MABEL 
based approach
A QSP modeling approach was used to project clinical starting 
dose based on MABEL principles for a P-cadherin/CD3 DART 
bsAb (Pcad-LP-DART; described in case study 1).28 The QSP ap-
proach was based on the principle that trimer formation among 
drug, T cell, and tumor cell is driving efficacy and not drug con-
centration alone. Orthogonal approaches, including PK based 
methods and receptor occupancy, were also investigated. In the 
QSP modeling approach, a mechanistic in vitro model was con-
structed describing binding of P-cad-LP-DART to T cells and 
tumor cells in a dish, to form inactive dimers and the active trimer 
species. Predicted trimer concentration was linked to in vitro T 
cell kinetic and cytotoxicity experiments to determine EC20 of tri-
mer driving T cell proliferation and tumor cell killing. The model 
was able to capture in vitro data at various E:T ratios using the 
same EC20 value, which was considered to be the in vitro MABEL. 
The in vitro MABEL was then translated to the in vivo MABEL 
in order to predict human MABEL dose, by incorporation of pre-
dicted human PK (which included binding to soluble P-cadherin) 
and physiological parameters (described previously in case study 
1). The MABEL human dose was determined as the predicted 
average tumor trimer concentration at steady-state equal to the 
in vitro MABEL (EC20, trimer). The predicted clinical MABEL 
dose using the QSP approach was 1.9 ng/kg/dose.

To build confidence in projecting the MABEL dose, addi-
tional approaches were explored, including a PK driven and 
receptor occupancy approach (Table 2). For the PK driven 
approach, MABEL was defined as the lowest EC20 (based on 
drug concentration) across a panel of in vitro assays, including 
cytotoxicity and cytokine release. The MABEL-based human 
starting dose was calculated by simulating the predicted human 
PK and identifying the dose to keep drug concentrations below 
the EC20 values defined from cytotoxicity and cytokine release 
assays. The resulting MABEL was 1.5  ng/kg dose, which was 
similar to the PK/PD approach. Finally, MABEL was estimated 
by determining drug concentration required for 10% RO, using 
equilibrium drug-receptor interaction theory and predicted 
human PK. This method resulted in MABEL doses of 360 
and 8,300 ng/kg/week for 10% P-cadherin and 10% CD3 oc-
cupancy, respectively, which were much higher than the QSP 
model or PK driven approaches. The RO-based approach is 
not considered to be appropriate for immune agonists.27 The 
MABEL doses using the PK, QSP, and RO approaches are sum-
marized in Table 2. Collectively, a dose of 1.5 ng/kg/week was 
suggested as the first-in-human trial starting dose consistently 
supported by the QSP-driven and PK-driven approaches.28 In 
this example, the QSP-based and PK-based approaches gave 
similar starting dose predictions, which increased confidence 
in the suitability of the proposed starting dose to ensure the 
safety of patients given the potency of Pcad-LP-DART. The 
same model was used to predict efficacious dose (case study 1) 
and, therefore, the clinical trial could be designed to escalate ef-
ficiently to the projected efficacious dose. The prediction using 

Figure 3 Model framework for trimer formation and tumor growth inhibition of CD3 bispecific antibodies (bsAbs). Formation of trimers among 
drugs, T cells, and tumor cells, is required for efficacy. The quantitative systems pharmacology model predicts trimer concentration and links 
it to tumor cell killing. The model shown here is for P-cadherin-LP-DART, which is a bsAb molecule that binds to P-cadherin (Pcad) on tumor 
cells and CD3 on T cells. Drug can also bind to soluble P-cadherin (sPcad) in the central compartment.
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the PK method, assumes drug concentration alone is driving 
efficacy and is very sensitive to conditions used in the in vitro 
assay (including E:T ratio, incubation times, and cell lines). For 
example, the predicted PK driven MABEL dose ranged from 
1.5  ng/kg/week to 79.5  ng/kg with only a small difference 
in E:T ratios (5:1 and 3:1) and incubation times (24, 48, or 
72 hours). If this in vitro experiment had been used to inform 
MABEL using the PK-driven approach, the clinical starting 
dose would have been much closer to the projected efficacious 
dose and potentially an inappropriate choice. The advantage of 
the QSP method is that it uses trimer concentration for driving 
efficacy and the predicted dose is independent of experimental 
conditions.

Case study 3: A model framework to characterize cytokine 
release upon CD3 bsAb therapy
In the work by Chen et al., 2019,73 a quantitative modeling 
framework was developed for characterizing cytokine profiles 
upon CD3 bsAb treatment, with the goal to facilitate the de-
sign of priming dose strategies to minimize CRS toxicities 
(Figure 4). The model describes cytokine release stimulated by 
CD3 bsAbs forming trimers by binding to CD3 on T cells and 
TAA on tumor cells. Tumor kinetics are accounted for in the 
model to determine the impact of tumor burden on the active 
trimer concentration. The release of cytokines is controlled by a 
time variant negative feedback loop, which prevents over activa-
tion of the immune system and accounts for the priming effect, 

Table 2 Projection of minimal anticipated biological effect level for P-cadherin LP-DART, reviewed in case study 2 

In vitro assay Efficacy variable MABEL
Starting dosea  
(ng/kg/week)

PK/PD-driven 
approach

In vitro kinetic cytotoxicity 
assay

Cytotoxicity 
EC20, syn = 1.2 × 10−6 nM

Maximum tumor synapse 
conc. < EC20, syn

1.9

PK-driven 
approach

In vitro cytokine release 
assay

Cytokine release 
EC20, CRA = 0.025 ng/mL

Cmax < EC20, CRA 1.5

In vitro cytotoxicity assay Cytotoxicity 
EC20, CTL = 0.01 ng/mL

Cave < EC20, CTL

RO In vitro binding RO 
EC10, RO = 6 (P-cad) and 134 (CD3) ng/mL

Cmax < EC10, RO 360 (P-cad) 
8,300 (CD3)

Cave, average concentration; Cmax, maximum concentration; EC10, effective concentration 10%; EC20, effective concentration 20%; MABEL, minimal anticipated 
biological effect level; PD, pharmacodynamic; PK, pharmacokinetic; RO, receptor occupancy.
Reproduced with permissions from ref. 28
aOne hour infusion.

Figure 4 Cytokine release pharmacokinetic/pharmacodynamic (PK/PD) model for CD3 bispecific antibodies, reviewed in case study 3. 
Reproduced with permissions from ref. 73. Briefly, an appropriate PK model accounts for the drug exposure. Depending on the tumor type 
(hematological or solid), the tumor kinetics are accounted for in the model to account for the impact of tumor burden on the active synapse 
concentration. For the cytokine PD model, the synapse exposure then stimulates cytokine release. A time-variant negative feedback loop 
accounts for the priming effect, where the negative inhibition increases with the increasing number of doses. T-bsAb, T-cell–engaging 
bispecific antibody.
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where negative inhibition increases with increasing number 
of doses. The model was able to describe cytokine release data 
for blinatumomab in patients and for P-cadherin LP DART 
in cynomolgus monkeys, across a wide range of dose levels and 
regimens. The model could be used to design optimal dosing 
regimens to be tested in clinical trials, and with more develop-
ment could be used to translate from cynomolgus monkeys to 
humans. In addition, based on similarities in underlying mech-
anisms, the current model could be used for other immune ago-
nistic bsAb therapeutics.

CONCLUSIONS
In conclusion, bsAbs are an exciting immunotherapeutic mo-
dality with potential to further improve clinical efficacy and 
safety in the treatment of cancer. Their inherent complexity 
leads to significant clinical pharmacology challenges, in a dis-
ease area that is already difficult to treat and characterized by 
heterogeneity and development of resistance. Mathematical 
modeling and simulation are powerful tools, which can be used 
to integrate diverse knowledge and data to predict/refine clin-
ical dosing regimens and design trials to optimize efficacy and 
TI. Modeling can be used to guide rational decision making, 
to inform precision medicine strategies, and to increase overall 
efficiency and effectiveness of the oncology clinical develop-
ment process. In the future, combination of QSP modeling with 
data science methods, including machine learning, will further 
strengthen the role of modeling as an essential quantitative tool 
in oncology.
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