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Power Calculation of Multi-step 
Combined Principal Components 
with Applications to Genetic 
Association Studies
Zhengbang Li1,*, Wei Zhang2,*, Dongdong Pan3 & Qizhai Li2

Principal component analysis (PCA) is a useful tool to identify important linear combination of 
correlated variables in multivariate analysis and has been applied to detect association between 
genetic variants and human complex diseases of interest. How to choose adequate number of principal 
components (PCs) to represent the original system in an optimal way is a key issue for PCA. Note that 
the traditional PCA, only using a few top PCs while discarding the other PCs, might significantly lose 
power in genetic association studies if all the PCs contain non-ignorable signals. In order to make full 
use of information from all PCs, Aschard and his colleagues have proposed a multi-step combined 
PCs method (named mCPC) recently, which performs well especially when several traits are highly 
correlated. However, the power superiority of mCPC has just been illustrated by simulation, while 
the theoretical power performance of mCPC has not been studied yet. In this work, we attempt to 
investigate theoretical properties of mCPC and further propose a novel and efficient strategy to 
combine PCs. Extensive simulation results confirm that the proposed method is more robust than 
existing procedures. A real data application to detect the association between gene TRAF1-C5 and 
rheumatoid arthritis further shows good performance of the proposed procedure.

Identification of genetic variants associated with human complex diseases can help investigators further under-
stand genetic structure of diseases of interest. Compared with single-marker analysis, which tests every marker 
individually and is commonly employed in genome-wide association study, multiple-marker test has been well 
appreciated because of its potentially improved statistical power. Statistical methods for multiple-marker anal-
ysis can be summarized as synthesizing single-marker test statistics such as Hotelling’s T2 test1–3 and summa-
tion of squared univariate test4,5, weighted Fourier transformation6, variance-components score test7, principal 
components regression method8–10, and Kernel-machine-based test11. Performances of these methods have been 
explored by intensive computer simulations1,12,13. Their results showed that when the number of SNPs is relatively 
large, variance-component-based methods and principal components regression methods were found to have 
competitive power.

As it is well known that principal component analysis (PCA) is a useful tool to search for important charac-
teristics among correlated variables. A key issue in developing an effective PCA model is choosing an adequate 
number of principal components (PCs) to represent the system in an optimal way. Taking advantage of the size 
of variances, Hocking14 provided a firm rule for retaining PCs in the framework of regression models. Usually, in 
PCA, investigators only used a few top principal components and discarded the other PCs. Recently, some inves-
tigators have illustrated that commonly used method for choosing PCs is not always reasonable. In fact, as early 
as in 1982, Jollife15 showed an interesting counter-intuitive phenomenon that principal components explaining 
a small amount of variances can be as important as those explaining a large amount of variances when analyz-
ing non-genetic data. Aschard et al.16 confirmed this phenomenon when analyzing genetic data and proposed a 
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called multi-step combined principal component (mCPC) strategy. However, the performance of mCPC strongly 
depends on how to partition all PCs.

Without loss of generality, suppose a random vector T follows a multivariate normal distribution with a m ×​ 1 
mean vector μ and known m ×​ m covariance matrix V. We want to test the null hypothesis H0: μ =​ 0. Therefore, a 
Chi-squared statistic can be used for testing H0. However, when m is large, which is fairly common in genome-wide 
association studies, Chi-squared test might substantially lose power due to its large degrees of freedom. To reduce 
degrees of freedom, PCA is recommended. Based on orthogonal decomposition, we have V =​ QΛ​Qτ,  
where λ λΛ = diag( , , )m1  with λ λ λ≥ ≥ ≥ ≥ 0m1 2 , = Q q q q( : : : )m1 2 , and qi is called as the eigenvec-
tor corresponding to the eigenvalue λi, = i m1, 2, , . Define λ= τZ q T( ) /i i i

2  for = i m1, 2, , . We note that 
Zi is related to the ith PC for = i m1, 2, , . Under H0, χ∼Zi 1

2, a central Chi-squared distribution with 1 degree 
of freedom for = i m1, 2, , . Under the alternative hypothesis, χ∼ ΩZ ( )i i1

2 , a noncentral Chi-squared distri-
bution with 1 degree of freedom and non-centrality parameter μ λΩ = τq( ) /i i i

2 , for = i m1, 2, , .
For simplicity with m =​ 2, we consider a linear model with a normally distributed phenotype Y, which 

depends on two scaled genotypes G1 and G2 that are also normally distributed with mean 0 and variance 1. So the 
phenotype can be expressed as: Y =​ β0 +​ G1β1 +​ G2β2 +​ ε, where ε is the random error term which is distributed 
from the standard normal distribution. For this general model, the principal components of these two genotypes 
are = +PC G G1

2
2 1

2
2 2, and = −PC G G2

2
2 1

2
2 2. By some algebras, we can get = +G PC PC1

2
2 1

2
2 2,  

and = −G PC PC2
2

2 1
2

2 2. Phenotype Y can be reexpressed as: β β β= + + +( )Y PC G0 1
2

2 1
2

2 2 2

β β ε− +( )2
2 1

2
2 2 , which indicates that PC2 may be very important as β β−2

2 1
2
2 2 is large, although the 

variance of PC2 is less than that of PC1. So we can not discard any PCs arbitrarily. In order to test H0: μ =​ 0, 
Aschard et al.17 proposed a multi-step combined principal component (mCPC) as following 

= − − + + + + − + + +− + + k F Z Z Z F Z Z ZmCPC( ) 2[ln(1 ( )) ln(1 ( ))]k k m k k k m1 2 1 2 , where Fk (·) is 
cumulative distribution function of a central Chi-squared random variable with k degrees of freedom. Moreover, 
they used simulation to compare the power of various PCA-based strategies when analyzing up to 100 correlated 
traits, and showed that their method with combining the signals across all PCs could have greater power. 
However, there has not been an in-depth study of the theoretical properties of mCPC in Aschard et al.’s paper16. 
Obviously, Aschard et al.16 find an unusual way to fully utilize all PCs. Another key issue is to decide the value of 
k. A commonly used method for selecting k is based on cumulative contribution rates, which are equal to 
λ λ∑ ∑ ×= =/ 100%i

k
i i

m
i1 1 ,  and denoted by ck for = k m1, , ,  respectively.  Let λ= ∑ =k kmin{ /c i

k
i1

λ∑ ≥ = .= c k m; 1, , }i
m

i1 , for any c ∈​ [0, 1]. Aschard et al.16 followed the traditional way to use mCPC (k) with 
k being determined by cumulative contribution rate of 80%.

In this work, we focus on the theoretical power of mCPC and find that the maximum power of mCPC is 
related to the maximum noncentral parameters under alternative hypothesis. We also find that the noncentral 
parameter corresponding to the top PC (the first PC which corresponds to the largest eigenvalue) is greater than 
0 under most scenarios and those of other PCs do not possess this property when only a few means of all PCs are 
non-zero under alternative and the correlation coefficients among original variables are relatively large. Herein 
we propose a method tCPC. Based on numerical results, the tCPC is more powerful than the existing procedures 
under most of the considered scenarios.

Results
Theoretical Properties of mCPC (k).  For the multiple genetic variants association studies, the above random 
vector can be written as = T T T T( , , , )m1 2 , where Ti is the statistic that is used to test for the association between 
the phenotype of interested and the ith genetic variants, = i m1, 2, , . V is the covariance matrix of the random 
vector T. Through the eigen-decomposition of the covariance matrix, we have V =​ QΛ​Qτ, where 

λ λΛ = diag( , , )m1  with λ λ λ≥ ≥ ≥ ≥ 0m1 2 , = Q q q q( : : : )m1 2 , and qi is the eigenvector corresponding 
to the eigenvalue λi, = i m1, 2, , . Then we can obtain transformed statistics as λ= τZ q T( ) /i i i

2 , = i m1, 2, , . 
Furthermore, under H0, Zi follows a central Chi-squared distribution with 1 degree of freedom for = i m1, 2, , . 
Under the alternative hypothesis, χ∼ ΩZ ( )i i1

2 , a noncentral Chi-squared distribution with 1 degree of freedom and 
non-centrality parameter Ωi, = i m1, 2, , .

For = i 1, 2, , let ⋅−F ( )i
1  be the inverse function of Fi (·). Note that for any given x ∈​ [0, 1], 

= ∑ + ∑−
=

−
− = +k F F Z F F ZmCPC( ) [ ( )] [ ( )]k i

k
i m k i k

m
i2

1
1 2

1
1 . Under H0, both ∑ =F Z( )k i

k
i1 , and ∑− = +F Z( )m k i k

m
i1  follow 

uniform distribution on [0, 1] and they are independent to each other. So both ∑−
=F F Z[ ( )]k i

k
i2

1
1 , and 

∑−
− = +F F Z[ ( )]m k i k

m
i2

1
1  follow Chi-square distributions with 2 degrees of freedom, then mCPC (k) follows a central 

Chi-squared distribution with 4 degrees of freedom.
According to Sankaran17, probability density function of a noncentral Chi-squared distribution with d degrees 

of freedom and non-centrality parameter ξ is = ∑ξ
ξ

=
∞

Γ +

ξ− + +

( )
f x( )d

e
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. Denote η = ∑ Ω=i
k

i1 1 , and 

η = ∑ Ω= +i k
m

i2 1 . For any x >​ 0, and ∈ k m{1, 2, , }, the probability density function of ∑−
=F F Z[ ( )]k i

k
i2

1
1  is

=
− η

−

− >
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h x k
x f F F x

g F F x
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exp { [ ( )]}

{ [ ( )]}
,
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1
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m k x
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2 2 .

Let C1−α be 1 −​ α quantile of a central Chi-squared distribution with 4 degrees of freedom. The power of 
mCPC (k) under the significance level α is

∫ ∫
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Based on the above notations, the non-centrality parameter of the distribution of Z1 which corresponds to the 
first PC is μ λΩ = τq( ) /1 1

2
1, where μ is the mean vector of T under the alternative hypothesis. Ω1 =​ 0 if and only if 

the mean vector μ belongs to the space that expanded by the other m −​ 1 eigenvectors 
q q q, , , m2 3 , that is 

μ ∈ + + +a q a q a q{ }m m2 3 3 3 , a a a, , , m2 3  are m −​ 1 real numbers. However, for a m-dimensional space, 
μ ∈ + + + =a q a q a qPr( { }) 0m m2 3 3 3 . Hence, the non-centrality parameter of the Chi-squared distribution 

of the statistic Z1 is not equal to 0 almost everywhere. Besides this, and since the top PC possesses the largest 
variation among all PCs and k =​ 1 is a boundary point of the set consisting of  m1, 2, , , herein we propose to 
use the following strategy (named tCPC) to combine all PCs

= = − − + − + + .− F Z F Z ZtCPC mCPC(1) 2 [ ln(1 ( )) ln(1 ( ))] (4)p m1 1 1 2

Under null hypothesis of no association at any locus, tCPC follows a central Chi-squared distribution with 
4 degrees of freedom.

Simulation Settings and Numerical Results.  In this subsection, we conduct simulation studies to com-
pare powers between tCPC to some exiting approaches such as Hotelling’s T2 test (HT)1–3, ordinary PCA 

= + +. .
k Z Z(oPC( ) )k0 8 1 0 8

, summation of squared univariate test statistic (SSU)4, sequence kernel association 
test (SKAT)11 and multi-step combine principal component test mCPC (k0.8)17.

Consider testing association between m genetic variants (or SNPs) and a complex human disease. Let 
= τ

T T T T( , , , )m1 2  be a test statistic, where τ means the transpose of a vector or matrix. For example, we can 
construct T using the method in Chatterjee et al.18 to detect genetic association between m SNPs and a binary trait as
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where gi,j denotes the genotype of the jth SNP for the ith individual and n1 and n2 are the sample size of the case 
group and control group, respectively. Under the null hypothesis that these m SNPs are not associated with the 
disease of interest, T follows a multivariate normal distribution N (μm×1, Vm×m) asymptotically with the mean 
vector μm×1 and covariance matrix =× +

V Vm m
n n

n n G
1 2

1 2
, in which VG is the pooled-sample covariance matrix of all 

SNPs.
In order to obtain T and Vm×m, we first generate a latent vector with length of 20 from a multivariate normal 

distribution with covariance structures of a compound symmetry with equal pairwise correlation ρ. Then, this 
latent vector is dichotomized to yield a haplotype with predesignated minor allele frequency (MAF). We repeat 
the above process 100,000 times to form a large population. Without loss of generality, we designate the first SNP 
as disease-causal SNP with MAF being p, and other SNPs as noncausal SNPs with MAFs all being q. Both sizes 



www.nature.com/scientificreports/

4Scientific Reports | 6:26243 | DOI: 10.1038/srep26243

of case samples and control samples are set to be 1,000. Case or control status of one subject is generated from a 
logistic regression model

β β β
=
=

= + + +

Y
Y

g gln Pr( 1)
Pr( 0)

,
(6)

i

i
i i0 1 ,1 20 ,20

with β0 =​ −1.5, β1 ∈​ {ln (1.4), ln (1.6)} denoting the log odds ratio for the disease-causal SNP, and 
β β= = = 02 20  denoting log odds ratios for the non-causal SNPs, where Yi =​ 1 or 0 represents disease or 
healthy status of the ith individual, = i 1, , 2000. The nominal significance level is 0.05 throughout the whole 
simulation, and the number of replicates is 1,000. All parameter settings and their relevant results are displayed in 
Table 1. Table 1 shows that all these tests can control type I error rate correctly. For example, when the correlation 
coefficient of these 20 SNPs are equal to ρ =​ 0.50, β1 =​ 0 and p =​ q =​ 0.20, the empirical type I error rates of HT, 
oPC (k0.8), SSU, SKAT, mCPC (k0.8), and tCPC are 0.051, 0.052, 0.043, 0.049, 0.051, and 0.045, respectively. The 
results of power comparison shows that tCPC performs more robustly than the other methods. For example, 
when the correlation coefficients of these 20 SNPs are uniformly equal to 0.20 and β1 =​ ln 1.4, p =​ q =​ 0.20, the 
empirical powers of HT, oPC (k0.8), SSU, SKAT, mCPC (k0.8), and tCPC are 0.754, 0.736, 0.772, 0.766, 0.700, and 
0.766, respectively. The empirical power of tCPC is a little lower than that of SSU in this scenario. However, when 
ρ =​ 0.50, β1 =​ ln 1.4, and p =​ q =​ 0.20, the empirical powers of HT, oPC (k0.8), SSU, SKAT, mCPC (k0.8), and tCPC 
are 0.724, 0.756, 0.810, 0.816, 0.702, and 0.856, respectively. It is obvious that tCPC performs the best among all 
the considered procedures in this setting.

Next we consider a decreasing correlation structure. As a preliminary step, a latent vector with length of 20 
is generated from a multivariate normal distribution with covariance matrix being (ρ|i−j|)20×20. Other simula-
tion settings are similar as above and are shown in Table 2. As presented in Table 2, the empirical powers of all 
the tests are close to the nominal significance level which indicates that they can control type I error rate cor-
rectly. For instance, when ρ =​ 0.50, β1 =​ 0 and p =​ q =​ 0.20, the empirical type I error rates of HT, oPC (k0.8), SSU, 
SKAT, mCPC (k0.8), and tCPC are 0.036, 0.032, 0.04, 0.044, 0.038, and 0.042, respectively. For power comparison, 
tCPC still performs more robustly than the other methods. For example, when correlations of these 20 SNPs are 
decreasing with distance as ρ =​ 0.80, β1 =​ ln 1.4, p =​ 0.20, and q =​ 0.20, the empirical powers of HT, oPC (k0.8), 
SSU, SKAT, mCPC (k0.8), and tCPC are 0.77, 0.846, 0.772, 0.762, 0.788, and 0.836, respectively. The empirical 
power of tCPC is a little lower than that of oPC (k0.8) in this case. However, when ρ =​ 0.95, β1 =​ ln 1.4, p =​ 0.20, 
and q =​ 0.20, the powers of HT, oPC (k0.8), SSU, SKAT, mCPC (k0.8) and tCPC are 0.746, 0.898, 0.858, 0.858, 0.86 
and 0.864, respectively. It indicates that tCPC gives the maximum power among the six methods in this scenario. 
Compared Tables 1 and 2 comprehensively, we can see that, when linkage disequilibrium extents among all SNPs 
are relatively strong, tCPC performs more robustly than existing statistical methods.

Applications to gene TRAF1-C5 associated with Rheumatoid Arthritis.  We apply tCPC and the 
other five existing tests to detect the association between gene TRAF1-C5 and rheumatoid arthritis using the 
data from the Genetic Analysis Workshop 1619. Our goal is to detect whether there is an association between 
gene TRAF1-C5 and rheumatoid arthritis. This gene has been reported to be deleterious previously20. There are 
2,062 subjects including 868 cases and 1,194 controls in this study. The gene TRAF1-C5 consists of 38 SNPs. The 
p-values of HT, oPC (0.8), SSU, SKAT, mCPC (k0.8) and tCPC of detecting associations between gene TRAF1-C5 
and rheumatoid arthritis are 5.21 ×​ 10−5, 7.58 ×​ 10−3, 5.95 ×​ 10−4, 6.50 ×​ 10−5, 7.56 ×​ 10−5 and 3.75 ×​ 10−5, 
respectively. If we use the p-value threshold of 5 ×​ 10−5 as the moderate association at the genome-wide level 

40.5 cmType ρ β1 p q HT oPC (0.8) SSU SKAT mCPC (k0.8) tCPC

40.1 cmI 
40.5 cm error

0.20 0 0.20 0.20 0.047 0.047 0.044 0.048 0.044 0.048

0.50 0 0.20 0.20 0.051 0.052 0.043 0.049 0.051 0.045

0.80 0 0.20 0.20 0.053 0.049 0.051 0.052 0.050 0.051

0.95 0 0.20 0.20 0.046 0.053 0.049 0.052 0.047 0.047

0.20 ln 1.6 0.05 0.30 0.448 0.054 0.140 0.446 0.610 0.404

0.20 ln 1.4 0.20 0.20 0.754 0.736 0.772 0.762 0.700 0.766

0.20 ln 1.4 0.30 0.05 0.884 0.922 0.996 0.886 0.856 0.996

0.50 ln 1.6 0.05 0.30 0.450 0.106 0.288 0.430 0.524 0.496

40.8 cm Power

0.50 ln 1.4 0.20 0.20 0.724 0.756 0.810 0.816 0.702 0.856

0.50 ln 1.4 0.30 0.05 0.886 0.928 0.996 0.894 0.874 0.988

0.80 ln 1.6 0.05 0.30 0.450 0.144 0.352 0.440 0.456 0.528

0.80 ln 1.4 0.20 0.20 0.740 0.778 0.918 0.918 0.754 0.924

0.80 ln 1.4 0.30 0.05 0.872 0.942 0.984 0.818 0.910 0.964

0.95 ln 1.6 0.05 0.30 0.484 0.246 0.300 0.368 0.500 0.520

0.95 ln 1.4 0.20 0.20 0.736 0.940 0.972 0.972 0.924 0.948

0.95 ln 1.4 0.30 0.05 0.880 0.996 0.962 0.684 0.988 0.920

Table 1.   Empirical type I error rates and powers of HT, oPC (k0.8), SSU, SKAT, mCPC (k0.8) and tCPC for 
Constant correlations.
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as Burton et al.21, only the proposed tCPC can detect the moderate-strong association signal between the gene 
TRAF1-C5 and rheumatoid arthritis.

Discussion
Principal component analysis is a common tool to grasp important features of correlated variables and has been 
applied in genetic association studies. In principal component analysis, cumulative contribution rate of 80% or 

40.5 cmType ρ β1 p q HT oPC (0.8) SSU SKAT mCPC (k0.8) tCPC

40.1 cm I 
40.5 cm error

0.20 0 0.20 0.20 0.062 0.048 0.054 0.052 0.052 0.040

0.50 0 0.20 0.20 0.036 0.032 0.040 0.044 0.038 0.042

0.80 0 0.20 0.20 0.052 0.038 0.042 0.044 0.056 0.046

0.95 0 0.20 0.20 0.036 0.046 0.052 0.054 0.042 0.048

0.20 ln 1.6 0.05 0.30 0.470 0.060 0.110 0.470 0.650 0.386

0.20 ln 1.4 0.20 0.20 0.746 0.756 0.766 0.738 0.700 0.688

0.20 ln 1.4 0.30 0.05 0.886 0.926 0.998 0.890 0.864 0.998

0.50 ln 1.6 0.05 0.30 0.490 0.074 0.126 0.466 0.568 0.390

40.8 cm Power

0.50 ln 1.4 0.20 0.20 0.722 0.784 0.742 0.706 0.686 0.662

0.50 ln 1.4 0.30 0.05 0.882 0.914 0.996 0.862 0.856 0.996

0.80 ln 1.6 0.05 0.30 0.482 0.120 0.148 0.350 0.478 0.400

0.80 ln 1.4 0.20 0.20 0.770 0.846 0.772 0.762 0.788 0.836

0.80 ln 1.4 0.30 0.05 0.888 0.946 0.994 0.852 0.912 0.988

0.95 ln 1.6 0.05 0.30 0.480 0.192 0.266 0.358 0.464 0.510

0.95 ln 1.4 0.20 0.20 0.746 0.898 0.858 0.858 0.860 0.864

0.95 ln 1.4 0.30 0.05 0.866 0.972 0.982 0.732 0.962 0.936

Table 2.   Empirical type-1 error rates and powers of HT, oPC (k0.8), SSU, SKAT, mCPC (k0.8) and tCPC for 
decreasing correlations.

Figure 1.  Powers of mCPC (k) and oPC (k) under significant level α = 0.05 for Scenarios (S1) to (S4). 
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90% is commonly adopted to choose PCs. However, this adoption is not always suitable since PCs with low con-
tribution rate might be much more strongly correlated with the outcome than those with large contribution rate. 
To overcome this drawback, a mCPC method was developed recently16. In this study, we explored theoretical 
powers of mCPC deeply and find out that the maximum power of mCPC depends on the maximum noncentral 

Covariance matrix Scenarios Mean vectors

Uniform correlation with ρ =​ 0.8

(S1) μ μ= = = 21 20

(S2) μ μ= = = . 0 81 10 , μ μ= = = 011 20

(S3) μ μ= = = . 0 81 5 , μ μ= = = 06 20

(S4) μ = 21 , μ μ= = = 02 20

Uniform correlation with ρ =​ 0.2

(S5) μ μ= = = 21 20

(S6) μ μ= = = . 1 51 10 , μ μ= = = 011 20

(S7) μ μ= = = . 1 51 5 , μ μ= = = 06 20

(S8) μ = 21 , μ μ= = = 02 20

Decreasing correlation with ρ =​ 0.8

(S9) μ μ= = = . 1 51 20

(S10) μ μ= = = . 1 51 10 , μ μ= = = 011 20

(S11) μ μ= = = 21 5 , μ μ= = = 06 20

(S12) μ = .2 51 , μ μ= = = 02 20

Decreasing correlation with ρ =​ 0.2

(S13) μ μ= = = 11 20

(S14) μ μ= = = . 1 51 10 , μ μ= = = 011 20

(S15) μ μ= = = 21 5 , μ μ= = = 06 20

(S16) μ = .2 51 , μ μ= = = 02 20

Table 3.   Parameter settings about means and covariance matrices.

Figure 2.  Powers of mCPC (k) and oPC (k) under significant level α = 0.05 for Scenarios (S5) to (S8). 
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parameters of Chi-squared distributions for all PCs under the alternative hypothesis. However, it is difficult to 
obtain this information beforehand in practice. In view of this, we propose a novel and robust strategy to com-
bine PCs. We also propose a test for genome-wide association studies and compare powers of this test to mCPC 
(k0.8) and some other existing procedures such as Hotelling’s T2 test (HT), oPC (k0.8) SSU and SKAT by extensive 
simulations. All simulation results show that our proposed procedure is more robust than mCPC, HT, oPC 
(k0.8), SSU and SKAT. Results of real data analysis further demonstrates good performances of our proposed test. 
We suggest researchers to employ our robust strategy when they consider using principal component analysis 
method in the future.

i

S1–S4 S1 S2 S3 S4 S5–S8 S5 S6 S7 S8

λi ci (%) Ωi Ωi Ωi Ωi λi c (%) Ωi Ωi Ωi Ωi

1 16.2 81% 4.94 0.20 0.05 0.01 4.8 24% 1.67 2.34 0.59 0.04

2 0.2 82% 0.00 4.92 1.56 0.28 0.2 28% 0.00 0.00 0.00 0.00

3 0.2 83% 0.00 0.68 0.07 0.00 0.2 32% 0.00 3.61 0.19 0.21

4 0.2 84% 0.00 1.26 2.46 0.00 0.2 36% 0.00 0.02 1.31 0.00

5 0.2 85% 0.00 1.88 3.83 0.00 0.2 40% 0.00 1.74 3.09 4.29

6 0.2 86% 0.00 0.58 2.68 17.22 0.2 44% 0.00 0.45 0.25 0.00

7 0.2 87% 0.00 0.01 0.01 0.00 0.2 48% 0.00 0.00 0.16 0.00

8 0.2 88% 0.00 0.08 0.09 0.00 0.2 52% 0.00 0.65 0.00 0.00

9 0.2 89% 0.00 0.06 0.13 0.00 0.2 56% 0.00 0.2 0.16 0.00

10 0.2 90% 0.00 0.09 0.06 0.00 0.2 60% 0.00 0.38 0.16 0.00

11 0.2 91% 0.00 0.08 0.01 0.00 0.2 64% 0.00 0.28 0.05 0.00

12 0.2 92% 0.00 0.47 0.19 0.00 0.2 68% 0.00 2.11 1.47 0.00

13 0.2 93% 0.00 0.07 0.08 0.00 0.2 72% 0.00 0.80 0.09 0.00

14 0.2 94% 0.00 0.16 0.01 0.00 0.2 76% 0.00 0.62 0.49 0.00

15 0.2 95% 0.00 0.07 0.25 0.00 0.2 80% 0.00 1.39 0.14 0.00

16 0.2 96% 0.00 2.41 0.07 0.00 0.2 84% 0.00 0.80 2.48 0.12

17 0.2 97% 0.00 0.23 0.39 0.00 0.2 88% 0.00 0.12 0.23 0.00

18 0.2 98% 0.00 0.10 0.09 0.00 0.2 92% 0.00 0.10 0.23 0.00

19 0.2 99% 0.00 0.12 0.01 0.00 0.2 96% 0.00 0.00 0.00 0.00

20 0.2 100% 0.00 2.73 0.01 1.50 0.2 100% 0.00 0.79 0.06 0.13

Table 4.   Eigenvalues, cumulative contribution rates and non-centrality parameters for Scenarios (S1) to (S8).

i

S9–S12 S9 S10 S11 S12 S13–S16 S13 S14 S15 S16

λi ci (%) Ωi Ωi Ωi Ωi λi c (%) Ωi Ωi Ωi Ωi

1 7.23 36.1% 5.97 1.49 0.45 0.01 1.49 7.50% 11.60 6.51 1.25 0.01

2 4.32 57.8% 0.00 2.26 1.65 0.08 1.46 14.8% 0.00 6.60 3.54 0.05

3 2.45 70.0% 0.64 0.16 2.37 0.20 1.42 21.8% 1.25 0.70 4.31 0.11

4 1.47 77.4% 0.00 0.21 1.49 0.39 1.36 28.6% 0.00 0.00 2.95 0.19

5 0.96 82.1% 0.20 0.05 0.21 0.62 1.29 35.1% 0.42 0.24 1.06 0.27

6 0.67 85.5% 0.00 0.82 0.12 0.88 1.22 14.2% 0.00 0.79 0.11 0.37

7 0.50 88.0% 0.09 0.02 0.57 1.14 1.15 47.0% 0.20 0.11 0.00 0.45

8 0.38 89.9% 0.00 0.35 0.32 1.38 1.08 52.4% 0.00 0.01 0.01 0.53

9 0.31 91.4% 0.05 0.01 0.00 1.56 1.02 57.5% 0.10 0.06 0.02 0.58

10 0.26 92.7% 0.00 0.65 0.56 1.68 0.96 62.2% 0.00 0.31 0.24 0.61

11 0.22 93.8% 0.02 0.01 1.11 1.72 0.90 66.8% 0.06 0.03 0.45 0.62

12 0.19 94.7% 0.00 0.42 0.62 1.67 0.86 71.0% 0.00 0.03 0.33 0.60

13 0.17 95.6% 0.01 0.00 0.01 1.55 0.81 75.1% 0.03 0.02 0.07 0.55

14 0.15 96.3% 0.00 0.56 0.34 1.36 0.78 79.0% 0.00 0.17 0.01 0.48

15 0.14 97.0% 0.00 0.00 0.80 1.12 0.75 82.7% 0.01 0.01 0.07 0.39

16 0.13 97.7% 0.00 0.46 0.41 0.86 0.72 86.3% 0.00 0.05 0.44 0.30

17 0.12 98.3% 0.00 0.00 0.00 0.59 0.70 89.8% 0.00 0.00 0.00 0.21

18 0.12 98.9% 0.00 0.53 0.47 0.35 0.69 93.3% 0.00 0.11 0.10 0.12

19 0.11 99.4% 0.00 0.00 0.93 0.16 0.68 96.7% 0.00 0.00 0.18 0.06

20 0.11 100% 0.00 0.49 0.46 0.04 0.67 100% 0.00 0.07 0.09 0.01

Table 5.   Eigenvalues, cumulative contribution rates and non-centrality parameters for Scenarios (S9) to (S16).
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It should be noted that our proposed procedure is built upon test by Chatterjee et al.18 which was designed 
to detect association between a marker and a binary trait. It can be easily extended to other application fields. 
For instance, it has been used in pleiotropic genetic study to identify deleterious genetic variants associated with 
multiple traits16. In addition, our proposed test can also be used to detect the association between genetic variants 
and quantitative traits in framework of linear model, and ordinal traits on basis of proportional odds model. If 
quantitative traits do not follow normal distribution, one can consider constructing a multivariate nonparametric 
trend test22 and then employ our proposed strategy to combine them.

Methods
Maximum Powers of mCPC and ordinary PCA over extensive scenarios.  For fixed m, the powers 
of mCPC (k) mainly depend on k, μ and Vm×m. We set different mean vectors under the alternative hypothesis 
among different covariance matrices Vm×m. We also consider two types of Vm×m: one is that m-dimension varia-
bles are uniformly correlated, which means covariance matrix Vm×m is a symmetry positively definite matrix with 
diagonal elements all being 1 and non-diagonal elements all being ρ; the other is that all correlations among these 
m variables are decreasing considering the “physical” distance (SNP location), which means Vm×m =​ (ρ|i−j|)m×m. 
Without loss of generality, ρ is chosen to be 0.8 for strong linkage disequilibrium and 0.2 for weak linkage dise-
quilibrium. Here, we consider m =​ 20. Note that, a test based on ordinary PCA can be gained, which is denoted 
by oPC (k) with = ∑ = ∑=

−
=k Z F F ZoPC( ) [ ( )]i

k
i k k i

k
i1

1
1 , where = k m1, 2, , . Obviously, powers of oPC (k) are 

also affected by k when Ω Ω, , m1  are given. In order to view powers of mCPC (k) and oPC (k) comprehensively, 
we set α to be 0.05, and calculate powers of mCPC (k) and oPC (k) by numerical integration in R software under 
scenarios S1 to S16. All parameter settings about scenario S1 to S16 are displayed in Table 3. We calculate eigen-
values of Vm×m, ci, Ωi of all scenarios S1 to S16 for = i m1, , , and display all results in Tables 4 and 5. All power 
results of mCPC and ordinary PCA are displayed in Figs 1–4. Under the same correlation structure and mean 
vector, the powers of mCPC (k) and oPC (k) are affected strongly by selection of k. From Tables 3–5 and Figs 1–4, 
we can find that both the maximum powers of mCPC (k) and oPC (k) are related to the maximum non-centrality 
parameters of all PCs as k is from 1 to 20. For example, in Scenario S15, the non-centrality parameter of the sec-
ond PC is the maximum among those of all PCs, and mCPC (2) has the maximum power. In another example, 
under the scenario S2, the non-centrality parameter of the third PC is the maximum, mCPC (4) has the maxi-
mum power, and powers of mCPC (3) and mCPC (4) are close. We can also find out that ordinary way to select k 

Figure 3.  Powers of mCPC (k) and oPC (k) under significant level α = 0.05 for Scenarios (S9) to (S12). 
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to construct mCPC (k) is not always desirable. For example, in Scenario S12, k0.8 =​ 5, but oPC (5) has power as low 
as 0.115. It is verified that mCPC is more desirable than ordinary PCA based on Figs 1–4. It is also verified that the 
selection of k according to the cumulative contribution rate is not robust. One can just follow the common adop-
tion and choose c =​ 80% or 90% for oPC (kc), but it will result in loss of power substantially under some situations. 
Furthermore, we draw a conclusion that mCPC (kc) performs more robust than oPC (kc) similar, since mCPC (kc) 
has reasonable powers over all the considered scenarios. For example, in Scenario S2, these 20 variables are uni-
formly correlated with ρ =​ 0.8 and μ μ= = = . 0 81 10 , μ μ= = = 011 20 , the power of oPC (k0.8) is 0.073, 
which is far less than the power of mCPC (kc), which is 0.57.

A novel robust strategy to combine PCs.  A further investigation of the maximum powers of mCPC 
(k) and oPC (k) shows that both of them are related to non-centrality parameters of the Chi-square distributions 
under the alternative hypothesis. For example, about scenario S16 in Table 5, the non-centrality parameters of 
all 20 PCs are 0.01, 0.05, 0.11, 0.19, 0.27, 0.37, 0.45, 0.53, 0.58, 0.61, 0.62, 0.60, 0.55, 0.48, 0.38, 0.30, 0.21, 0.12, 
0.06 and 0.01 respectively, and non-centrality parameter being 0.62 which belongs to the 11th PC is the largest 
one among the non-centrality parameters of all 20 PCs. mCPC (10) takes the maximum power with 0.248 and 
the power of mCPC (11) is 0.247, which is very close to that of mCPC (10). The difference maybe are caused by 
numerical computing errors. The cumulative contribution rate of the top 10 PCs are 62.25%, which is much less 
than 80%. It is worth noted that the non-centrality parameters are determined by means and covariance matrix, 
which are hard to know in practice. Therefore, if we can know some prior information on means and covariance 
matrix, then the optimal strategy for selection of k become more prone to obtain. Aschard et al.17 proposed to use 
mCPC (k) with k being determined by cumulative contribution rate of 80%.

As shown above, using 80% cumulative contribution rate might not be a robust strategy, and it will give a very 
low power in some cases (e.g., Fig. 1). According to numerical results in Scenarios S1 to S16, we propose to use 
the tCPC method to combine all PCs.
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