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Abstract: Nickel nanopillar arrays were electrodeposited onto silicon substrates using porous
alumina membranes as a template. The characterization of the samples was done by scanning electron
microscopy, X-ray diffraction, and alternating force gradient magnetometry. Ni nanostructures
were directly grown on Si by galvanostatic and potentiostatic electrodeposition techniques in three
remarkable charge transfer configurations. Differences in the growth mechanisms of the nanopillars
were observed, depending on the deposition method. A high correlation between the height of the
nanopillars and the charge synthesis was observed irrespective of the electrochemical technique.
The magnetization measurements demonstrated a main dependence with the height of the nanopillars.
The synthesis of Ni nanosystems with a controllable aspect ratio provides an effective way to produce
well-ordered networks for wide scientific applications.
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1. Introduction

Complex nanostructures with well-organized matrix distribution and multi-modal physical
behaviors are potential candidates for implementation in nanotechnology [1]. Specifically, nanowires
(NWs) and nanopillars (NPillars) of Ni have many potential applications in a broad spectrum of
areas, including data storage, magneto-electronics, quantum magneto-optics, biomedical science,
spintronics, electrolysis, and lithium battery electrodes [2–8]. These technologies have a common
interest in developing devices at low cost and with high throughput to produce diverse nanosystems [9].
In this context, electrochemical methods can be considered potential candidates for Npillars and NWs
fabrication since they can be synthesized with various aspect ratios [10]. These structures were reported
to enhance the magnetic properties with respect to Ni thin films because they present two principal
axes of polarization [11]. In particular, Ni-NW and Ni-Npillars can be grown using well-distributed
pores of anodic aluminum oxide (AAO) templates [12,13]. Generally speaking, Ni-NWs directly
attached to semiconductors typically need several steps to be produced [14]. However, potentiostatic
and galvanostatic electrochemical techniques can greatly simplify and increase the synthesis efficiency
of Ni nanostructures [15].
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Potentiostatic and galvanostatic electrochemical fabrication methods produce Ni-Npillars with
magnetic properties due to the creation of polycrystalline grains with different shapes [16]. For example,
Ni-NWs with diameters of 30 nm and 60 nm and a height of 10 µm have been electrodeposited on
AAO templates using a potentiostatic procedure with AC and DC. The magnetic characteristics in the
long axis of the wires, such as coercivity (||Hc), increased with decreasing diameter [17]. Similar results
are reported for the galvanostatic electrodeposition of Ni-NWs of 20 nm and 200 nm diameter and
60 µm height [18]. However, in these samples, the perpendicular saturation field (⊥Hs) is smaller
for the potentiostatic electrodeposited Ni-NWs compared to their galvanostatic counterpart [13].
Additionally, the magnetic properties of Ni-Npillars and NWs have an attractive implication due to the
symmetrical angular propagation of electromagnetic waves [19]. This behavior has been well reported
for Ni-NWs and can be explained by the strong correlation between the magnetic characteristics and
shape anisotropy [20]. The effect of the morphology on the magnetic hysteresis loops is strongly
pronounced for magnetically soft particles, such as Ni [21]. In addition, the preparation of Ni-Npillars
with controlled dimensions covering areas on the order of cm2 attached to a semiconductor surface
becomes an attractive topic in applied science [22]. For instance, Ni-Npillars have been used to develop
potential lithium-ion battery electrodes [8,23]. Sn nanospheres were directly grown on Ni-Npillars
to improve the volume charge in a lithium-ion battery anode; this alloy stabilizes the structure and
suppresses the expansion during the reaction [24].

In this manuscript, a study of electrodeposited ordered arrays of Ni-Npillars on Si substrates
using a porous alumina membrane (PAM) as a template is presented. The Ni-Npillars were directly
grown onto the substrate, which is highly relevant from the scientific and technical points of view
since it allows us to obtain cylindrical nanostructures with scalable ratios and immediate applications.
The Ni-Npillars were fabricated by galvanostatic and potentiostatic electrochemical techniques and
exhibited different growth mechanisms and magnetic properties, which depended on the respective
fabrication method.

2. Results

Figure 1 shows scanning electron microscopy (SEM) micrographs of the sample synthesized by
galvanostatic electrodeposition at 1 C charge. Figure 1a shows a top view image of the PAM after
Ni electrodeposition. A well-defined hexagonal pattern generated by the anodization process can
be observed. Moreover, Figure 1b shows a top view of the Ni-Npillars after removing the PAM.
The nanostructures follow the hexagonal arrangement of the template and show a quasi-circular
cross-section with a mean diameter of 58.4 ± 8.8 nm and an interpore distance of 95.8 ± 7.2 nm,
estimated based upon histograms of the AAO pattern distribution, as in Figure 1a. Initially, the
Ni-Npillars tend to grow mainly parallel to each other, as observed in Zone 1 marked in Figure 1b.
However, when their aspect ratio exceeds a critical value, the pillars tend to form bundles, as shown in
Zone 2 of Figure 1b. Figure 1c shows a side view SEM micrograph of the Ni-Npillars after the template
removal. As expected, the Ni-Npillars have grown perpendicular to the Si substrate with a rather
broad height distribution. Only one sample was chosen to represent the morphological characteristics
since similar trends were observed for all other samples, irrespective of the deposition technique and
adjusted charge.
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Figure 1. SEM micrographs. (a) Top view of the porous alumina membrane with Ni-Npillars
electrodeposited inside the pores. (b) Top view and (c) side view of Ni-Npillars on Si substrate after
removing the PAM template.

Figure 2 summarizes the histograms of the height distribution of all Ni-Npillars samples as a
function of the electrical charge and the electrodeposition method. This information has been obtained
from a set of cross-section SEM micrographs, as shown in Figure 1c. The samples fabricated by
the potentiostatic process (Figure 2a,c,e) demonstrate a rather broad height distribution, with the
presence of a double peak for the two first synthesis charges. For the array with a synthesis charge of
2 C (Figure 2c), a much less pronounced double peak structure is seen, with one peak being much
pronounced, having a mean height of 666 nm. In the case of the array with a synthesis charge of 3 C,
a wider single peak distribution can be seen, with an average height of 844 nm (Figure 2e). For samples
fabricated with the galvanostatic method, a synthesis charge of 1–3 C (Figure 2b,d,f), generally narrower
single-peak distributions with mean values of 477 nm, 828 nm, and 1157 nm respectively, can be
observed. For the galvanostatic depositions, the Ni-Npillars distribution tends to be wider, with an
increase in the height mean value. In contrast, the potentiostatic technique generates high current
densities with a high growth rate at the beginning of the process, leading to a large number of crystal
nuclei [25].
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Figure 2. Histogram plots of the respective height distribution of all Ni-Npillars samples for both
fabrication techniques as a function of the electrical charge. Potentiostatic at: (a) 1 C, (c) 2 C, and (e) 3 C.
Galvanostatic at: (b) 1 C, (d) 2 C, and (f) 3 C.
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Figure 3 depicts the resulting XRD measured by grazing incidence for all fabricated samples.
At first glance, similar diffraction peaks can be found irrespective of the fabrication technique and
electrical charge. Samples fabricated at 3 C of synthesis electrical charge, regardless of the used
technique, demonstrate small differences in their spectra, which can be traced back to the formation
of NiO during air exposure [26,27]. To analyze the crystallographic nature of the Ni nanostructures,
the spectra of Figure 3 was deconvoluted. The double peaks observed near 38◦ and 65◦ correspond to
a mixture of the same diffraction maxima, generated by two slightly different X-ray frequencies, CuKα

and CuKβ. Moreover, the band close to 45◦ has two contributions, which can be attributed to Ni and
NiO, thus resulting in a broader and asymmetric peak. For further analysis, all double and asymmetric
peaks were deconvoluted, and only the bands belonging to CuKα radiation were selected. The exposed
spectra exhibit five distinguished peaks: two for Ni (45.2◦ and 52.3◦) and three for NiO (38.4◦, 44.8◦,
and 64.8◦). Similar values were reported elsewhere [28–30]. The respective maximum positions
indicate the type of unit cell and lattice parameters for Ni and NiO. The unit cell of both materials was
determined to be face-centered cubic (fcc) and polycrystalline, with an interatomic distance of 3.53 Å
for Ni and 4.67 Å for NiO, calculated using Bragg’s law [31]. Moreover, by computing the full width at
half maximum (FWHM), average values of 1.15 rad for potentiostatic and 1.07 rad for galvanostatic
samples were estimated. Furthermore, using the Debye–Scherer equation [32], the calculated grain
sizes of the Ni-Npillar arrays were 8.3 nm and 9.6 nm for the potentiostatic and the galvanostatic
routes, respectively.
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Figure 4 shows a set of hysteresis curves measured for two different directions of the external
magnetic field with respect to the long axis of the Npillars. The inset in Figure 4a shows the parallel (||)
and perpendicular (⊥) room temperature magnetization isotherms. Based upon these curves, a change
of the magnetic behavior can be observed depending on the fabrication technique and parameters. It is
observed that the easy axis is perpendicular to the Ni-Npillars orientation for the 1 C potentiostatic
sample and parallel to the pillars axis for the 2 C and 3 C samples. Moreover, there is no preferent
magnetization to the wire axis for the 1 C and 2 C galvanostatic samples, but an easy axis parallel
to the pillar axis is revealed for the 3 C galvanostatic sample. For both fabrication techniques, the
saturating field decreases in the parallel direction as the synthesis charge increases from 1 C to 3 C.
In general, for both axes, an increase in the charge promotes a bigger coercivity. In the same direction,
from Figure 2 it is observed that the mean heights (L) of the Ni-Npillars increase with the charge
level. This implies that the magnetic response can be tuned with the morphological aspect ratio of the
nanostructures [33]. To study the interdependency between the parameters, such as the coercivity field
(Hc), saturation field (Hs), remanence (Mr), and the mean heights (L) of the Ni-Npillars, the correlations
between these variables have been estimated. The respective summary is given in Table 1.
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Table 1. Parallel and perpendicular magnetic properties of Ni-Npillars and their correlation variables.
The blanks are either one between the same variable, or the same value with respect to its symmetry.

Method
Potentiostat Galvanostat Correlation

1 C 2 C 3 C 1 C 2 C 3 C L ||Hc ⊥Hc ||Mr ⊥Mr ||Hs

L (nm) 486 655 818 481 812 1130 - - - - - -
||Hc (Oe) 633 814 741 703 690 1036 0.81 - - - - -
⊥Hc (Oe) 133 263 427 187 212 288 0.5 0.39 - - - -

||Mr (M/Ms) 0.13 0.28 0.25 0.21 0.18 0.43 0.81 0.99 0.48 - - -
⊥Mr (M/Ms) 0.11 0.13 0.14 0.12 0.13 0.15 0.92 0.79 0.75 0.83 - -

||Hs (Oe) 3641 3000 2738 3391 3296 2440 −0.87 −0.87 −0.79 −0.91 −0.94 -
⊥Hs (Oe) 2380 2293 2738 2811 2640 2851 0.49 0.37 0.34 0.41 0.49 −0.45

Based on Table 1, it is possible to observe that parallel magnetic properties are strongly related.
These relations may be attributed to the well-correlated height of the Npillars. It is essential to
distinguish that ||Hs has a good correlation with all variables (negative absolute value), in contrast to
⊥Hs, which cannot be related to other properties since every pillar is above a critical length (Lc). It is
expected for ⊥Hs to be affected if the Npillars are below Lc due to an in-plane magnetic anisotropy.
This value can be estimated as Lc = 1.27 D3/d2, where D is the interpore distance and d is the diameter
pore [34]. The critical value from the average parameters of this work was computed at 283.2 nm,
which is less than every Npillar height. Moreover, there is no good correlation between the height
of the Npillars and ⊥Hc [35]. Nevertheless, these Npillars are polycrystalline and do not show an
extraordinary preferential magnetic orientation [36].

Furthermore, since the height of the Ni-Npillars determines almost every magnetic parameter,
similar loop behaviors can be expected for both directions for the 1 C potentiostatic and 1 C galvanostatic,
as well as for the 3 C potentiostatic and 2 C galvanostatic samples. From Figure 4a,b, a similar loop for
the parallel direction can be observed. However, the potentiostatic array shows a smaller saturation
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field in the perpendicular direction. Figure 4d,e present different behaviors, despite their similar
average height. Moreover, the potentiostatic samples exhibit a more sensitive dependence in the
perpendicular direction and a monotonic increase in the ||Hc, with respect to the synthesis charge.
This can be attributed to different behaviors induced by distinct polycrystalline grain growth in
the Ni-Npillars, depending on the deposition method. This phenomenon can explain the observed
discrepancies. For instance, if the potentiostatic samples grow with more elongated grains in the
perpendicular direction, the ⊥Hc is expected to increase due to more overlapping grains or increased
heights [22]. Additionally, the easy axis orientation perpendicular to the applied field for the 1 C sample
could be explained with ellipsoid-like grains, which exhibit anisotropy in their long axis [33,36,37].
In contrast, the galvanostatic samples with 1 C and 2 C are more isotropic, while the sample with 3 C
presents the highest Npillars, thus implying the greatest anisotropy. The effect in the 3 C sample can
be mainly attributed to the large height that makes it easy to magnetize in the wire axis. Moreover,
the rather similar behavior observed in Figure 4b,d, although showing a height difference of 331 nm
between the individual nanostructures, can be associated with a more spherical grain shape distribution
for the galvanostatic sample [33]. In this context, it is also important to point out that potentiostatic
and galvanostatic methods tend to generate different crystalline phases [16]. Potentiostatic routes have
been shown to generate Ni-NWs with ellipsoidal grain shapes exhibiting similar hysteresis loops in
perpendicular and parallel directions [19,22]. In contrast, the galvanostatic electrodeposition of Ni and
Ni-W promotes multilayer deposition with a multi-nuclear growth mechanism, thus generating more
symmetric grains [38,39]. Additionally, no previous reports have been found for which Ni-NWs or
Ni-Npillars were electrodeposited by these methods, which could help to support our claims regarding
the different grain shapes. Therefore, further morphological characterization, such as a transmission
electron microscopy study, is required to determine the Ni and NiO phases, as well as the texture of
the grains.

Finally, it is worth mentioning that other Ni nanostructures have been used to coat semiconductors,
leading to interesting magnetic effects. For instance, carbon nanotubes decorated with Ni nanoparticles
have been applied for sensing quantum wave propagations in a variable magnetic field [40].
The advantage of Ni against carbon allotropes is their adhesive strength on substrates. These values
have been reported around 3.5 GPa for Ni-NWs [41] and 714.1 MPa for nanotubes [42]. Therefore, the
development of scalable Ni-Npillars seems to be an interesting way to design magnetic networks,
which are good candidates for developing magnetic memories, magneto-optical switches, and
thermo-optical amplifiers [43,44]. Moreover, considering that Ni-Npillars have a high surface area and
tunable aspect ratio, they can be a useful platform for the growth of NiO on the walls of the pillars to
obtain multifunctional metal/oxide devices. This is feasible to undergo, even at room temperature,
and was observed in the XRD-spectra of Figure 3. The size of the oxide grain can be controlled in
polycrystalline Ni and is well described by the Mott-Cabrera model for low-temperature oxidation [45].
The oxidation kinetics on a polycrystalline Ni surface occurs by ion transport on the metal phase
and mostly happens at the grain boundaries [45]. Since this process is viable in Ni-Npillars, they are
good candidates to support NiO as a nanostructured base for lithium-ion battery anodes [46,47].
The efficiency of the ion exchange is highly affected by the grain size of the NiO and is crucial to
developing these electrodes [48].

3. Materials and Methods

3.1. Fabrication of Porous Alumina Membranes onto Si

To fabricate PAMs, high purity Al (99.995%) was deposited on polished n-type Si (100) wafers with
1–10 Ω/cm by electron beam evaporation under high vacuum conditions (~10−7 Torr base pressure).
Afterward, the Al film with a thickness of 3 µm was subjected to a double anodization process, leading
to a well-order porous alumina layer, as described in [49]. The pore characteristics can be tuned by
adjusting the anodization time and the chemical etching procedure. A pore pattern with a 60 nm
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diameter was created using an etching process with 5 wt% of phosphoric acid solution at room
temperature for 60 min. This step removes the oxide layer at the bottom of the PAM pores, leaving the
Si exposed for the Ni nucleation.

3.2. Synthesis of Ni Nanopillars

To study the growth mechanism, Ni-Npillars were synthesized by potentiostatic and galvanostatic
electrochemical techniques using the same cell configuration. The deposition procedures were carried
out using an electronic analyzer CHI1140B provided by CH Instruments (Texas, USA) with a working
solution of NiSO4·6H2O (0.050 M, Sigma-Aldrich, MO, USA), H3BO3 (0.040 M, Merck, MO, USA),
and Saccharin (0.016 M, Sigma-Aldrich), purged with Ar for 10 min. The Si substrates, previously
prepared with the PAM mask, were used as a working electrode with an exposed area of 0.4 cm2.
Additionally, a stainless steel plate was used as a counter electrode and an Ag/AgCl electrode as a
reference. Galvanostatic and potentiostatic electrodepositions were carried out using a current density
of 1.875 mA/cm2 and a potential of −1.75 V, respectively. Both methods were employed until charges
of 1 C, 2 C, and 3 C were reached. After the Ni nanostructures were deposited, the PAM templates
were removed with a solution of NaOH 1.25 M for 3 h. Finally, the samples were cleaned with MiliQ
water to remove any trace of oxide remaining on the Npillars.

3.3. Characterizations

The samples were characterized by scanning electron microscopy (SEM) using a LEO model
VP1400 (LEO Electron Microscopy Inc., New York, USA). The atomic structure of the Ni-Npillars
was performed by X-ray diffraction (XRD), using a diffractometer D8 Advance provided by Bruker
(Massachusetts, USA) and equipped with CuKα radiation source (1.56 Å). Additionally, a custom-built
alternating force gradient magnetometer (AGM) was used at room temperature to study the anisotropic
magnetic properties. Two distinguished propagation directions of the magnetic field were considered:
parallel (||) and perpendicular (⊥) to the long axis of the Npillars.

4. Conclusions

Within this work, galvanostatic and potentiostatic techniques have been used to successfully
grow Ni-Npillars onto Si substrate using a PAM as a template. The periodic pore distribution of the
AAO is crucial to obtain Npillars with a high aspect ratio to create an efficient magnetic nanosystem.
The electrodeposition technique and the charge level define the mean height distribution of the
Ni-Npillars. The XRD confirmed that the grain size of the polycrystalline structures is bigger in
the galvanostatic samples. The magnetic properties show a strong dependence on the growing
electrochemical method and the mean height of all samples. Npillar arrays with similar heights but
fabricated by different electrodeposited techniques exhibit different magnetization hysteresis in the
perpendicular direction. Differences related to the electrodeposition method led to the formation
of unique Ni nanostructures with remarkable vectorial magnetization dependence, which can be
considered for the development of multimode systems.
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