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3,4, Lourdes Maria Garcez1,2,5,

Fernando Abad-FranchID
2,3,6*
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Parasitária na Amazônia, Universidade do Estado do Pará, Belém, Pará, Brazil, 3 Núcleo de Medicina
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6 Grupo Triatomı́neos, Instituto René Rachou–Fiocruz, Belo Horizonte, Minas Gerais, Brazil

* abadfr@yahoo.com

Abstract

Attalea palms provide primary habitat to Rhodnius spp., vectors of Trypanosoma cruzi. Flying

from palms, these blood-sucking bugs often invade houses and can infect people directly or

via food contamination. Chagas disease (CD) risk may therefore increase when Attalea

palms thrive near houses. For example, Attalea dominate many deforested landscapes of

eastern Amazonia, where acute-CD outbreaks are disturbingly frequent. Despite this possi-

ble link between deforestation and CD risk, the population-level responses of Amazonian

Attalea and their resident Rhodnius to anthropogenic landscape disturbance remain largely

uncharted. We studied adult Attalea palms in old-growth forest (OGF), young secondary for-

est (YSF), and cattle pasture (CP) in two localities of eastern Amazonia. We recorded 1856

Attalea along 10 transects (153.6 ha), and detected infestation by Rhodnius spp. in 18 of 280

systematically-sampled palms (33 bugs caught). Distance-sampling models suggest that, rel-

ative to OGF, adult Attalea density declined by 70–80% in CP and then recovered in YSF.

Site-occupancy models estimate a strong positive effect of deforestation on palm-infestation

odds (βCP-infestation = 4.82±1.14 SE), with a moderate decline in recovering YSF (βYSF-infestation

= 2.66±1.10 SE). Similarly, N-mixture models suggest that, relative to OGF, mean vector

density sharply increased in CP palms (βCP-density = 3.20±0.62 SE) and then tapered in YSF

(βYSF-density = 1.61±0.76 SE). Together, these results indicate that disturbed landscapes may

support between ~2.5 (YSF) and ~5.1 (CP) times more Attalea-dwelling Rhodnius spp. per

unit area than OGF. We provide evidence that deforestation may favor palm-dwelling CD

vectors in eastern Amazonia. Importantly, our landscape-disturbance effect estimates explic-

itly take account of (i) imperfect palm and bug detection and (ii) the uncertainties about infes-

tation and vector density arising from sparse bug data. These results suggest that

incorporating landscape-disturbance metrics into the spatial stratification of transmission risk

could help enhance CD surveillance and prevention in Amazonia.
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Introduction

Chagas disease remains a major public-health concern across Latin America and, to a lesser

extent, the southern United States [1, 2]. Tens of thousands of people still get infected with

Trypanosoma cruzi each year, mainly through direct or indirect contact with parasite-carrying

vectors–a group of 150+ species of blood-sucking bugs known as triatomines [1, 3, 4]. Wild

populations of locally native triatomine-bug species are involved in most such transmission

events [5, 6]. For example, palm-dwelling bugs of the genus Rhodnius often invade, and some-

times breed in, human dwellings across southern Mesoamerica [7], northern South America

including Colombia and Ecuador [8, 9], the Orinoco basin [10, 11], the Cerrado and Caatinga

of central-northeastern Brazil [12–14], and Amazonia [14, 15].

Large-crowned palms of the genus Attalea provide primary habitat to wild Rhodnius popu-

lations in many forested, rural, and suburban landscapes across the Amazon basin [16–19].

Flying from the palm-crowns they breed in, adult (i.e., winged) bugs enter houses and other

premises, perhaps attracted to artificial light [20], and can transmit T. cruzi to people either

directly or via food contamination [21, 22]. Chagas disease transmission risk is therefore

thought to be higher in disturbed landscapes where Attalea palms are abundant near houses

[17, 18, 21, 22]. For example, Attalea palms dominate many rural landscapes of eastern Ama-

zonia–the region from which the vast majority of acute Chagas disease outbreaks has been

reported in the last decades [21–24] and one in which destruction of native rainforests has

been particularly extensive over the same time-period [25–27]. However, and in spite of the

public-health implications of a possible link between deforestation and Chagas disease risk,

the responses of Amazonian Attalea palms and their resident Rhodnius populations to anthro-

pogenic landscape disturbance remain largely uncharted (but see [14, 17, 18, 27]).

Aiming to address this gap, here we investigate the effects of anthropogenic landscape dis-

turbance on eastern-Amazonian populations of Attalea palms and palm-dwelling Rhodnius.
Importantly, we used field-sampling methods and statistical-modeling strategies that allowed

us to explicitly account for the imperfect detection of both palms and bugs. Taken together,

our findings suggest that deforestation may favor palm-dwelling populations of Chagas disease

vectors in Amazonia, and hint at critical areas for future work including field research and dis-

ease prevention.

Methods

Study setting

Fieldwork took place in the municipality of Araguatins, on the right bank of the Araguaia

River in northern Tocantins state, Brazil (S1 Fig), in October 2014, April 2015, and June 2015.

The original vegetation cover of Araguatins primarily corresponds to eastern Amazonian

broadleaf forests, with some patches of Cerrado savanna to the south and east [14]. The Insti-

tuto Brasileiro de Geografia e Estatı́stica (IBGE) reports that by 2017 about one-third of the

land had already been converted to cattle pasture (~88,500 ha, of which ~7600 were ungrazed),

while natural forests covered some 17% of the land (~43,500 ha) [28]. We chose to work in

Araguatins because invasion of houses by adult, palm-dwelling Rhodnius spp. is common in

the municipality, with 1356 invasion events recorded by routine surveillance in 2010–2016

[14].

Study localities, landscape classes, and sampling design

In consultation with municipal and state health officials, we selected two rural localities (which

we will call simply “L1” and “L2” hereafter) located ~30 km apart (~50 km by road) and with
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similar settlement and land-use patterns–small house clusters plus scattered farms

(yielding < 2.0 residents per km2) on land originally covered by moist broadleaf forest but

now including three landscape classes clearly differing in their degree of anthropogenic distur-

bance [27]:

i. Old-growth forest (“OGF” hereafter), i.e., relatively large patches (> 500 ha) of mature,

well-preserved forest–either apparently uncut or in late-stage recovery;

ii. Cattle pasture (“CP” hereafter), with forest replaced by planted grasses that are maintained

by periodic slash-and-burn of forest regrowth; and

iii. Young secondary forest (“YSF” hereafter) patches (> 200 ha) in the early stages of recovery

after land converted to cattle pasture is abandoned.

In each locality, and based on field observations and inspection of satellite imagery, we

selected survey areas representing each landscape class; we then established one linear transect

in YSF and CP and three linear transects in the more heterogeneous OGF. In total, then, we

worked in 5 transects × 2 localities = 10 transects: six in OGF, two in YSF, and two in CP

(Table 1). Naturally-growing Attalea palms were present in all survey areas and transects.

Transects were approximately straight; length was planned to be 2 km, but one OGF transect

was only ~1.2-km long because of terrain difficulties. We therefore sampled across ~19.2 km

overall (Table 1). We walked a central trail along each transect to sample palms and triato-

mines. For palms, we used a distance-sampling approach [29], and, for bugs within palms, a

repeated-sampling approach [17, 18, 30, 31]. These approaches provided us with the informa-

tion we needed to estimate palm and bug detection probabilities and, hence, correct presence

and abundance (or density) estimates after accounting for detection failures; we now explain

each sampling strategy in detail.

Table 1. Attalea palm distance sampling. Observed abundance and density (per hectare, ha) of adult Attalea palms along 10 linear transects in three landscape classes of

two eastern-Amazonian localities.

Locality Landscape Transect Attalea palms recorded

Code Length (m) Area (ha) Number Density (ha−1)

L1 Old-growth forest OGF1 1200 9.6 140 14.58

Old-growth forest OGF2 2000 16.0 416 26.00

Old-growth forest OGF3 2000 16.0 251 15.69

Overall OGF L1 - 5200 41.6 807 19.40

Cattle pasture CP1 2000 16.0 82 5.13

Young secondary forest YSF1a 2000 16.0 80 5.00

L2 Old-growth forest OGF4 2000 16.0 174 10.88

Old-growth forest OGF5 2000 16.0 175 10.94

Old-growth forest OGF6 2000 16.0 195 12.19

Overall OGF L2 - 6000 48.0 544 11.33

Cattle pasture CP2 2000 16.0 180 11.25

Young secondary forest YSF2a 2000 16.0 163 10.19

Both Old-growth forest - 11,200 89.6 1351 15.08

Cattle pasture - 4000 32.0 262 8.19

Young secondary forest - 4000 32.0 243 7.59

Total All All 19,200 153.6 1856 12.08

aVisual inspection of Landsat satellite imagery (https://earthexplorer.usgs.gov/) suggested that, at the time of sampling, secondary forest had been growing for ~4–5 y in

L1 and for ~7–10 y in L2.

https://doi.org/10.1371/journal.pone.0252071.t001
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Palms: Distance sampling. One observer walked the central trail of each transect and

recorded every adult (i.e., flowering/fruiting) Attalea palm he saw on the trail or to either side

of it (Fig 1). Using a laser meter (DLE 40; Bosch, Gerlingen, Germany), the observer measured

the perpendicular distance between the center of the trail and the stem of each palm (Fig 1).

Given the 40-m reach of the laser meter, we recorded only palms within 80-m strips (40 m on

either side of the trail; Fig 1); we then marked each individual palm with a metal plate bearing

a unique number. Thus, sampling covered ~19,200 × 80� 1,536,000 m2 (~153.6 ha), in which

we listed all adult Attalea palms detected and their perpendicular distances to the trails

(Table 1). This distance-sampling approach relies on the assumption that palms located on the

trail (at “zero distance”) are detected with probability 1.0 (or 100%); the probability then

decreases as a function of distance from the observer [29, 32] (see Fig 1 and Data analyses

below).

Bugs: Repeated sampling. Using a systematic-sampling frame, we selected 30 adult

Attalea palms for bug sampling in each transect; in two transects, however, a few palms

could not be sampled because of safety concerns, so the final sample comprised 280 instead

of 300 palms. These palms were approximately evenly spaced (every ~50–60 m) along the

Fig 1. Field-sampling design, main data features, and data-analytical strategy. We sampled 10 transects by walking a central trail and measuring the perpendicular

distance (red lines) between each adult Attalea palm seen (green star-like shapes) and the center of the trail. Palm detection was assumed certain for palms at zero distance

(black-outlined palm). A systematic sample of evenly-spaced palms (darker green) was selected for triatomine-bug sampling in each transect. The right-hand-side picture

illustrates bug searches, which included one direct catch on the palm plus a second, independent catch in palm debris collected in a bag; the white arrow points to a palm-

fruit cluster. Palm-trail distances, bug detections/non-detections and repeated bug counts were used for descriptive/exploratory analyses and for inferential statistical

modeling–in which we estimated covariate-adjusted landscape-disturbance effects after taking palm and bug detection failures into account. Joint analyses of palm and

bug density allowed us to derive estimates of bug density per unit area in three landscape classes–old-growth forest, cattle pasture, and young secondary forest. We thus

were able to make inferences about whether and how anthropogenic landscape disturbance is associated with three putative proxies for Chagas disease risk–palm density,

palm infestation, and vector density.

https://doi.org/10.1371/journal.pone.0252071.g001
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transects (Fig 1), and were independently sampled for bugs by two observers. One observer

climbed the palm using a ladder and manually collected bugs directly from the crown and

upper stem during ~10 min (“direct catch”). Then, he gathered fibers, dead leaves, epi-

phytes, and other plant debris present on the palm and placed them in a large bag; this was

done until the bag was filled or there was no more debris to collect, and the bag was then

handed to a second observer. Unaware of the results of the direct catch, the second

observer spread bag contents on a white canvas and searched them for bugs during 5 min

(“bag catch”). The results of each direct catch and each bag catch were recorded separately;

this yielded, for each palm in our sample, a “vector detection/non-detection history” (bugs

detected, coded “1”; or not, coded “0”) and two “vector counts” (number of bugs caught by

each method) (Fig 1). We identified the bugs (as R. pictipes and R. robustus s.l.) by their

external morphology; however, nymphs of R. robustus, R. neglectus, and R. marabaensis, all

of which occur in the study region [4, 12, 14], are either indistinguishable or yet to be

described, and we therefore pooled all Rhodnius spp. for quantitative analyses (see below).

Bugs were collected under license Sisbio 22404–2 issued by the Sistema de Autorização e

Informação em Biodiversidade, Ministério do Meio Ambiente, Brazil.

Data analyses

Our dependent variables were defined as follows: (i) for palm abundance/density analyses, the

perpendicular distances between the center of the trail and the stem (at the height of the

observer’s chest) of each palm seen from that trail (S1 Dataset); (ii) for the analyses of palm

occupancy by triatomines, the history of bug detections and non-detections by each of two

independent observers in each palm (S2 Dataset); and (iii) for bug density analyses, the counts

of bugs seen by each of two independent observers in each palm (S2 Dataset). Anthropogenic

landscape disturbance was the focal predictor in all our analyses; it was indexed by a three-

level factor (OGF, CP, YSF) as described above, with OGF always used as the reference level.

In addition, we wanted to control for the possible effects of some key potential confounders.

These included (i) locality, for which we built a two-level factor, and, for palm infestation and

bug density analyses, individual-palm measures of (ii) stem height and (iii) the semi-quantita-

tive “organic score” of Abad-Franch et al. [33]. Stem height and organic score were standard-

ized to mean zero and standard deviation (SD) one for modeling.

Our overall analytic strategy is depicted in Fig 1. We first described and summarized our

data in tables and figures, and used generalized linear models (GLMs) fitted in R 3.6.3 [34]

with the glmmTMB 1.0.1 [35] and pscl 1.5.2 [36] packages to explore associations between the

dependent and independent variables described above. Inferential analyses were also run in R

3.6.3 [34] and comprised four main steps:

i. First, we estimated Attalea palm abundance using distance-sampling data and models [29].

We used the Distance 1.0.1 package [32] to select the “key function” describing how detec-

tion probability decreases from p = 1.0 at zero distance (i.e., for palms located on the trail)

to some lower value at the maximum distance (here, 40 m) (Fig 1). After exploratory analy-

ses (see below) suggesting substantial variation of palm detection probabilities across locali-

ties and landscapes, we fitted separate landscape-class models for each locality. We tried the

“half-normal” and “hazard-rate” key functions; Akaike information criterion (AIC) scores

selected the half-normal as the best-fitting function [29, 32, 37]. Locality-specific and overall

palm densities per hectare (ha) were then estimated for each landscape class. As for the rest

of our main analyses, we focus on relative palm abundance/density across landscape classes,

using OGF as the reference class.
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ii. Second, we estimated palm occupancy (or infestation) by Rhodnius spp. in each landscape

class using bug detection/non-detection data. To formally account for bug-detection fail-

ures, we used the single-season site-occupancy models of MacKenzie et al. [30, 38] imple-

mented in unmarked 0.13–2 [39]. Again, we focused on estimating landscape-disturbance

effects–i.e., how the odds of palm infestation varied in CP and YSF relative to the reference

class, OGF. Our focal model estimates these landscape-class effects while controlling for

variation between localities and among palms with different stem-height and organic-score

values. We also fitted a simplified model without the locality confounder to estimate aver-

age landscape-disturbance effects on palm infestation.

iii. Next, we used the repeated-counts (or N-mixture) models of Royle [31] and unmarked
0.13–2 [39] to estimate the effects of landscape disturbance on vector density–with CP and

YSF density estimates evaluated, as above, relative to those for OGF. These models use

repeated counts and a mixture of two discrete distributions: (i) a binomial distribution to

model vector detections/non-detections and (ii) a Poisson, zero-inflated Poisson, or nega-

tive-binomial distribution to model vector counts [39]; in our case, AIC selected the zero-

inflated Poisson as the best-fitting distribution for the bug-count submodel. We again used

a model with landscape class as the focal predictor and with locality, palm stem height, and

palm organic score as covariates; similar to palm infestation analyses, we also fitted a sim-

plified model without locality effects.

iv. Finally, we used our density estimates (i.e., palms per ha and bugs per palm) across land-

scape classes to derive a measure of relative bug density per unit area–that is, a measure of

how bug population sizes change in disturbed landscapes (CP and YSF) relative to better-

preserved forests (OGF) (Fig 1).

Implicit in these analyses is the notion that palm density, palm infestation, and bug density

can be viewed as putative proxies for Chagas disease risk (see, e.g., [7–13, 16–19, 21, 22, 33]).

Bug infection with Trypanosoma cruzi
We also aimed at estimating T. cruzi bug-infection frequency across landscape classes as a

more proximal measure of disease risk. To do this, we ran duplicate quantitative PCR (qPCR)

assays targeting the repetitive region of the T. cruzi nuclear satellite DNA (following [40]; see

details in S1 Text) on DNA extracted from the abdomens of (i) the bugs caught during the

field activities described above and (ii) 11 additional bugs (not included in bug presence/den-

sity analyses) caught in a separate field trip to the same transects. Replicate qPCRs yielded a T.

cruzi detection/non-detection history for each bug, and we used single-season site-occupancy

models [30, 38, 39] to estimate qPCR sensitivity and bug-infection frequency with unmarked
0.13–2 [39]. Bug-infection data, however, turned out to be too sparse to confidently model

landscape-disturbance effects, and we therefore will mention these results only briefly; full

details on methods and findings are provided in S1 Text.

Results

Descriptive results and exploratory analyses

Table 1 summarizes the results of distance sampling; overall, we recorded 1856 adult Attalea
palms (1489 A. speciosa, 367 A. maripa) along our 10 transects. As expected, the number of

palm detections declined as perpendicular distance to the trails increased (Fig 2). The number

of palm detections appeared to fall more steeply with distance in YSF than in the open CP tran-

sects, with a somewhat intermediate decline in OGF (Fig 2). More detailed graphs suggested
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that, for each landscape class, the rate at which palm detections decreased with distance varied

also between the two study localities (Fig 2, lower row); this led us to model landscape class-

specific palm-detection functions separately for localities L1 and L2 (see Inferential analyses:

modeling below).

We detected infestation by Rhodnius spp. in 18 of the 280 palms systematically sampled

along our 10 transects; these 280 palms had a mean stem height of 4.75 m (SD 1.4; range, 1.50–

8.33) and a mean organic score of 0.73 units (SD 0.8; range, 0.25–3.00) (Table 2, S2 Dataset).

An intercept-only GLM (binomial distribution, logit link function) quantified observed palm

infestation at 6.43% (95% confidence interval [CI] 4.09–9.97%). Exploratory GLMs suggested

that infestation odds varied little with palm organic-score values; moderately between localities

and with palm stem height; and substantially among landscape classes–with palm infestation

detected more frequently in disturbed landscapes, especially in CP but also in YSF, than in

OGF (see S1 Table).

The productivity of our bug-catch efforts was overall low. On a per-palm basis, bug catches

were somewhat lower in OGF (0.023 bugs per palm) than in YSF (0.067), and much higher in

CP (0.544 bugs per palm) (Table 2). Exploratory zero-inflated Poisson GLMs (log link) again

suggested that the main source of variation was the degree of landscape disturbance, with bug

densities much higher in CP than in OGF and a smaller, more uncertain difference between

YSF and OGF (see S2 Table).

Fig 2. Attalea palm detections. The histograms show the relative frequencies of adult Attalea-palm detections

(vertical axes, all scaled to a 30% maximum) as a function of perpendicular distance (horizontal axes; 0–40 m) from

linear trails established in 10 transects representing three landscape classes in two eastern-Amazonian localities (“L1”

and “L2”). The upper row shows overall and locality-specific results. Landscape class-specific results (middle row)

show how detections clustered at shorter distances in young secondary forest (“YSF”), but were spread over all

distances in deforested cattle pasture (“CP”); the pattern was somewhat intermediate for old-growth forest (“OGF”).

The lower row shows results stratified by landscape class and locality. The number of palm detections used to build

each graph is given in parentheses.

https://doi.org/10.1371/journal.pone.0252071.g002
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Duplicate qPCR assays detected T. cruzi infection in 5 bugs out of 44 (including 11 caught

in a separate field trip; 11.4%). Infected bugs were all nymphs (stages NI to NIII), each caught

in a different palm–four in CP and one in YSF. None of the four bugs caught in two OGF

palms yielded T. cruzi detections (see details in S1 Text).

Inferential analyses: Modeling

Attalea palm abundance/density. The rate of decline of palm-detection probabilities

with increasing distance was faster in the more densely vegetated transects, and particularly in

YSF, than in deforested CP (Fig 3). Thus, estimates of the detection function scale parameter

(i.e., the SD of the half-normal function) were consistently smaller in YSF than in OGF–and

the largest estimates were for CP transects (Table 3). After these differences in palm-detection

probabilities were accounted for, our analyses suggest that the density of Attalea palms

declined sharply in CP relative to OGF, with the former retaining only about 20–30% of the

adult palms present in preserved forest patches of the same localities. Recovery of adult palm

populations was apparent in our YSF transects, with density estimated as ~60% lower than in

OGF in locality L1, where YSF was ~4–5 years old, but as ~20% higher in locality L2, where

YSF was ~7–10 years old (Table 3). Thus, our analyses suggest that most adult Attalea palms

are felled during clearcut for cattle ranching, but also that palm populations recover fairly

quickly as deforested land is abandoned and secondary forest grows again.

Attalea palm occupancy by Rhodnius spp. Our focal site-occupancy model suggests that

there was substantial variation in palm infestation odds across landscape classes, localities, and

palm traits. Table 4 shows the adjusted effects estimated by this model, and Fig 4A illustrates

model predictions for each landscape class and locality. A simplified model without locality

effects suggests that bugs were present, on average, in just about 0.51% (CI 0.06–4.02%) of

“typical” palms (i.e., with stem height and organic score at the overall means of 4.75 m and

0.75 units, respectively) located in OGF, vs. 41.50% (CI 15.97–72.55%) of similar palms in CP

and 7.32% (CI 1.61–27.65%) in YSF (Fig 4A). Thus, relative to OGF, infestation estimates for

the “typical” palm were, on average, ~80.9 times higher in heavily disturbed CP landscapes

Table 2. Sampling for Rhodnius spp. in 280 adult Attalea palms: Descriptive results.

Locality Landscape Palms sampled Palms infesteda Bugs caught

L1 Old-growth forestb 84 0 0

Cattle pasture 16 11 23

Young secondary forestc 30 2 3

L2 Old-growth forestb 90 2 4

Cattle pasture 30 2 2

Young secondary forestc 30 1 1

Both Old-growth forest 174 2 4

Cattle pasture 46 13 25

Young secondary forest 60 3 4

Total All 280 18 33d

aNumber of palms in which we detected at least one triatomine bug (here, Rhodnius spp.).
bNote that three old-growth forest transects (but just one cattle pasture and one young secondary forest) were sampled in each locality.
cVisual inspection of Landsat satellite imagery (https://earthexplorer.usgs.gov/) suggested that, at the time of sampling, secondary forest had been growing for ~4–5 y in

L1 and for ~7–10 y in L2.
dEleven additional bugs caught in a separate field trip to the same transects were used for Trypanosoma cruzi detection assays, but were not included in our analyses of

palm infestation and bug density.

https://doi.org/10.1371/journal.pone.0252071.t002
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and ~14.3 times higher in recovering YSF (Fig 4A). Both the focal model and the simplified

model fitted the data much better, as judged by large AIC differences (> 40 units), than a

“null” model estimating only intercepts.

Density of Rhodnius spp. colonies in Attalea palm crowns. In line with the occupancy

analyses above, our focal N-mixture model estimates strong positive effects of anthropogenic

landscape disturbance on the mean density of Attalea palm-dwelling Rhodnius spp. The results

are summarized in Table 5 and Fig 4B. This N-mixture model predicts higher mean bug

Fig 3. Estimated decline of Attalea palm detection probabilities as a function of distance. Results are shown by

locality (“L1” and “L2”) and by landscape class (“OGF”, old growth forest; “CP”, cattle pasture; “YSF”, young

secondary forest) within localities. Gray bars are overall palm-detection frequencies.

https://doi.org/10.1371/journal.pone.0252071.g003

Table 3. Palm distance-sampling modeling results. Attalea palm detection (scale parameter of the half-normal function) and palm-density estimates across landscape-

disturbance classes.

Locality Landscape Palm detection (scale parameter) Palm density (per hectare)

Estimate SE Metersa Estimate SE Ratio 95% CI

L1 OGF 2.70 0.15 14.83 42.05 8.34 Ref. - -

CP 3.15 0.14 23.41 7.66 0.86 0.18 0.10 0.32

YSFb 2.33 0.16 10.31 15.49 1.31 0.37 0.19 0.70

L2 OGF 1.95 0.14 7.02 51.53 2.41 Ref. - -

CP 3.32 0.14 27.77 15.21 1.27 0.30 0.28 0.31

YSFb 1.66 0.14 5.28 61.62 3.72 1.20 1.19 1.21

OGF, old-growth forest; CP, cattle pasture; YSF, young secondary forest; SE, standard error; CI, confidence interval; Ref., reference class (palm density taken to be 1.0).
aExponentiated scale parameter; the lower the scale parameter value, the faster the decline of detection probabilities with increasing distance between palms and the

transect’s central trail.
bVisual inspection of Landsat satellite imagery (https://earthexplorer.usgs.gov/) suggested that, at the time of sampling, secondary forest had been growing for ~4–5 y in

L1 and for ~7–10 y in L2.

https://doi.org/10.1371/journal.pone.0252071.t003
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densities in our CP palms (~5.48±0.98 SE bugs per palm; median = 2.20, inter-quartile range

[IQR] 1.25–8.35) than in OGF palms (~0.26±0.03 SE; median = 0.15, IQR 0.09–0.26), with

intermediate expectations for palms sampled in YSF (~0.79±0.11 SE; median = 0.43, IQR

0.23–0.97 bugs per palm). A simplified model without locality effects suggests that individual

OGF palms (of mean stem height and mean organic score) harbored just about 0.27 (CI 0.05–

1.60) bugs on average, vs. 8.78 (CI 3.04–25.34) for CP palms and 1.37 (CI 0.28–6.64) for YSF

palms (Fig 4B). Thus, relative to OGF, bug-density estimates for the “typical” palm were, on

average, ~29.3 times higher in heavily disturbed CP landscapes and ~5.1 times higher in recov-

ering YSF (Fig 4B). AIC scores were> 30 units smaller for the focal and simplified models

than for a “null”, intercepts-only model.

Infection of Attalea-dwelling Rhodnius spp. with Trypanosoma cruzi. As noted above,

our bug-infection data were too sparse to allow modeling heterogeneity across landscape-dis-

turbance classes. A simple, intercepts-only site-occupancy model estimates mean bug-infec-

tion frequency at C = 0.118 (CI 0.050–0.256), and mean qPCR sensitivity at p = 0.80 (CI 0.50–

0.94) for each qPCR assay.

Joint analyses: Vector density per unit area

Table 6 shows a summary of our estimates of adult Attalea palm density (from the distance-sam-

pling models in Table 3) and of the mean predicted number of Rhodnius spp. per palm (from the

N-mixture model in Table 5) across landscape classes. Using those estimates, we derived an

approximation to the expected number of Rhodnius spp. per hectare in each landscape class

(Table 6). The results suggest that, in our two study sites of eastern Amazonia, disturbed land-

scapes supported from ~2.5 (YSF; approximate CI 1.7–3.2) to ~5.1 (CP; approximate CI 3.3–6.9)

times as many palm-dwelling Rhodnius per unit area as did better-preserved OGFs.

Discussion

Whether and how anthropogenic landscape disturbance affects human infectious-disease risk

is a debated topic with important implications for both disease prevention and biodiversity

Table 4. Adjusted effects (logit scale) of anthropogenic landscape disturbance on adult Attalea palm occupancy

by Rhodnius spp.

Term Estimate (SE) CI lower CI upper

Intercept −6.286 (1.215) −8.666 −3.905

Landscape disturbance

Old-growth forest Reference class - -

Cattle pasture 4.816 (1.141) 2.579 7.053

Young secondary forest 2.655 (1.100) 0.499 4.811

Confounders

Locality

L2 Reference class - -

L1 1.785 (0.821) 0.176 3.394

Palm traits

Organic score (0.8-unit increase)a 0.824 (0.369) 0.101 1.546

Stem height (1.4-m increase)a 1.297 (0.496) 0.325 2.268

SE, standard error; CI lower and CI upper, lower and upper limits of the 95% confidence interval.
aVariables standardized to mean 0.0 and standard deviation (SD) 1.0; effect estimates therefore correspond to an

increase of 1 SD in the covariate value (indicated in parentheses).

https://doi.org/10.1371/journal.pone.0252071.t004
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conservation [41–45]. The links between landscape disturbance and disease risk, however, can

be complex and elusive, particularly for multi-host, vector-borne pathogens like T. cruzi [41,

44–50]. In this study, we provide evidence suggesting that anthropogenic landscape distur-

bance and deforestation may favor Chagas disease vector populations infesting palms of east-

ern Amazonia. Using field-sampling methods and statistical-modeling approaches that

allowed us to formally account for detection failures, we found that landscape disturbance

driven by cattle ranching was associated with an overall decline of adult Attalea palm densities,

but also with clearly increased odds of Attalea palm infestation by Rhodnius spp. and with sub-

stantially higher Rhodnius population densities. Taken together, our results suggest that

Fig 4. Effects of deforestation on adult Attalea palm occupancy (or infestation) by Rhodnius spp. (A) and on the

number of Rhodnius spp. per palm (B). The graphs show model-predicted probabilities of palm occupancy (A) and

model-predicted mean number of bugs per palm (B) for three landscape classes in two localities (“L1” and “L2”) of

eastern Amazonia. “Avg.” values (diamonds) are average predictions derived from simplified models without locality

effects. All predictions are for “typical” palms with mean stem height (4.75 m) and mean organic score (0.73 units);

note that the y-axes are on log10 scale. Error bars are 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0252071.g004

Table 5. Adjusted effects (log scale) of anthropogenic landscape disturbance on the density of Rhodnius spp. in

adult Attalea palms.

Term Estimate (SE) CI lower CI upper

Intercept −2.115 (0.930) −3.938 −0.293

Landscape disturbance

Old-growth forest Reference class - -

Cattle pasture 3.203 (0.618) 1.991 4.414

Young secondary forest 1.613 (0.755) 0.134 3.091

Confounders

Locality

L2 Reference class - -

L1 1.085 (0.502) 0.100 2.070

Palm traits

Organic score (0.8-unit increase)a 0.677 (0.213) 0.259 1.095

Stem height (1.4-m increase)a 0.534 (0.534) 0.061 1.008

SE, standard error; CI lower and CI upper, lower and upper limits of the 95% confidence interval.
aVariables standardized to mean 0.0 and standard deviation (SD) 1.0; effect estimates therefore correspond to an

increase of 1 SD in the covariate value (indicated in parentheses).

https://doi.org/10.1371/journal.pone.0252071.t005
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eastern-Amazonian deforested landscapes may support between 2.5 and 5.1 times more Atta-
lea-dwelling Rhodnius spp. per unit area than better-preserved old-growth forests.

Palms, bugs, and anthropogenic landscape disturbance in eastern

Amazonia

The process of anthropogenic landscape disturbance in Amazonia typically starts when mature

forests are felled and the land transformed into cattle pasture [27]. Large palms such as arbo-

rescent Attalea may be spared during clearcut because they provide shade for the livestock and

because their fruits, seeds, and fronds are used for many purposes [27]. Pastures are usually

maintained through slash-and-burn of forest regrowth; when they are abandoned, secondary

forest recovers–and, if left undisturbed, matures back into old-growth forest [51]. Our three

landscape classes were selected to roughly represent the main stages of this “cycle” of distur-

bance, recovery, and maturation (Fig 5). Below we discuss, based on our findings, how adult

Attalea and their associated Rhodnius populations may respond to each stage of the cycle; we,

in addition, outline a series of hypotheses about what major processes may underpin the pat-

terns we discovered, and suggest future research directions.

Stage I: Clearcut. Our findings indicate that deforestation for cattle ranching has a nega-

tive impact on adult Attalea populations; the intuition (or perception) that palms are more

abundant in CP than in preserved landscapes [17, 27, 33, 52] seems to be driven by the fact

that palms are just easier to see in open land than in denser forest (Table 3, Fig 3). Our results

suggest that as many as ~70–80% of adult Attalea palms may be felled as OGF is converted to

CP. However, since almost all trees and undergrowth are also felled, the few uncut palms may

become the most abundant (or even only) arboreal habitats available in CP [27]. Disturbance-

tolerant arboreal vertebrates might therefore end up using palm crowns more often in CP than

in well-preserved OGF. If this leads to a higher and steadier availability of vertebrate hosts,

then bug colonies in CP palms could be less prone to local (palm-level) extinction and could

Table 6. Estimates of adult Attalea palm density, mean number of Rhodnius spp. per palm, and expected Rhodnius spp. per hectare (ha) across three landscape clas-

ses in two localities of eastern Amazonia.

Landscape class Palms/ha Bugs/palma CIb Bugs/hac CI

Estimates

Old-growth forest 47.13 0.26 (0.03) 0.20 0.33 12.37 9.22d 15.53d

Cattle pasture 11.44 5.48 (0.98) 3.52 7.44 62.65 40.24d 85.06d

Young secondary forest 38.56 0.79 (0.11) 0.56 1.01 30.26 21.46d 39.07d

Ratios

Old-growth forest (ref.) 1 1 - - 1 - -

Cattle pasture 0.24 20.87 13.54e 28.62e 5.06 3.25f 6.87f

Young secondary forest 0.82 2.99 2.15e 3.89e 2.45 1.73f 3.16f

aMean (standard error) of palm-specific predictions from the N-mixture model of Table 5.
bApproximate confidence interval calculated as the mean ± 2 standard errors [e.g., disregarding rounding errors, 0.20 = 0.26 − (2 × 0.03), and 0.33 = 0.26 + (2 × 0.03)].
cComputed as the product of palm density per hectare (second column) and bug density per palm (third column) (e.g., disregarding rounding error,

12.37 = 47.13 × 0.26).
dApproximate confidence interval computed as the product of palm density per hectare and the lower and upper limits of the bug-density CI (e.g., disregarding

rounding error, 9.22 = 47.13 × 0.20).
eApproximate confidence interval computed as the ratio of each CI limit and the mean per-palm bug-density estimate for old-growth forest (e.g., disregarding rounding

error, 13.54 = 3.52/0.26).
fApproximate confidence interval computed as the ratio of each CI limit and the mean bug-density estimate for old-growth forest (e.g., disregarding rounding error,

3.25 = 40.24/12.37).

https://doi.org/10.1371/journal.pone.0252071.t006
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grow denser than those in OGF. Bug infections might also be more frequent in CP than in

OGF if, in addition, disturbance-tolerant vertebrates were competent T. cruzi reservoirs–with,

e.g., opossums and some rodents having both characteristics [50]. We suggest that this process

may underpin the observed patterns of higher infestation odds, higher bug densities, and likely

more frequent bug infection with T. cruzi, in our CP palms (Fig 5). This hypothesis has some

support from cross-sectional observations (e.g., [7, 47, 53, 54]), but needs to be more thor-

oughly evaluated. A suitable design would select study sites that represent OGF and CP and

then combine (i) experimental manipulation of access to palm-crowns by non-flying verte-

brates (e.g., by fitting metal bands around the stems of solitary palms [55]) with (ii) a survey of

the vertebrate fauna available to the bugs (by direct sampling or through bug-bloodmeal analy-

ses [47, 56, 57]); we suggest that (iii) modeling detection failures (of bugs, parasites, and hosts)

would provide more reliable estimates of population parameters and associated uncertainties

[30]. We also note that ecological release from predators and pathogens in simplified (or other-

wise modified) food webs could also play a role in favoring bug populations in palms of heavily

disturbed landscapes (Fig 5). For example, some bug predators might become rarer in CP

Fig 5. Effects of anthropogenic landscape disturbance on Attalea and Rhodnius spp.: A summary of results and hypotheses. The original old-growth forest (green

box) is our “baseline” or “reference class”, and has therefore 1.0 values for all putative risk proxies (palms per hectare, palm infestation, and bug density per palm and per

hectare; we could not quantify disturbance effects on vector-infection frequency). The right-hand-side grey box (“Stage I”) summarizes changes associated with

transformation of old-growth forest into cattle pasture; note that some palms are usually spared during clearcut (hence the asterisk). The orange box summarizes changes,

relative to old-growth forest, of our putative risk proxies. Cattle pasture is maintained through slash-and-burn; when abandoned, it recovers (“Stage II” box) into

secondary forest. The yellow box again summarizes changes, relative to old-growth forest, of our putative risk proxies. If left undisturbed, secondary forests mature (“Stage

III” box) into old-growth forests and the cycle is eventually completed. Note that the grey boxes show hypothetical processes (involving availability of arboreal habitats,

vertebrate-host responses, and food-web features) that we suggest should be the focus of future research; the green, orange, and yellow boxes summarize the main results

(presented as ratios–relative to old-growth forest) of the present study. See S1 Text for details.

https://doi.org/10.1371/journal.pone.0252071.g005
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palms, and a drier palm-crown microclimate might protect bugs from fungal pathogens [7,

47]. Again, however, these hypotheses have yet to be tested in the field–in part, perhaps,

because adequately sampling the complex food webs of large palm-crowns can be very difficult

[58]. Multi-species hierarchical models [59, 60] and DNA metabarcoding [56, 57, 61–63]

could help us understand how palm-crown communities respond to landscape disturbance–

and how this affects vector and parasite populations.

Stage II: Recovery. Attalea palms are among the pioneers of secondary-forest regrowth

when Amazonian land converted to CP is abandoned [27]. Our data reflect this as an increase

of palm density estimates in YSF relative to CP; the much higher YSF palm density in L2 (~62

adult Attalea per ha) than in L1 (~16 per ha) is likely due to a longer period of forest regrowth

in our L2 transect–as also suggested by the faster rate of decline of palm detections (Fig 3) and

by the taller stems of YSF palms in L2 (mean 4.7 m, SD 1.5) than in L1 (3.9 m, SD 0.9) (see S2

Dataset). Landsat images indeed suggested that, at the time of sampling, YSF had been growing

for about 7–10 years in our L2 transect but only for about 4–5 years in our L1 transect (see

Tables 1–3). As adult palms are recruited in growing YSF, palm infestation by Rhodnius spp.

and bug density both seem to start declining (Figs 4 and 5). This suggests that at least some of

the factors possibly favoring bug infestation and density after clearcut may progressively shift

back towards their original states (Fig 5). Thus, (i) increased availability of arboreal microhabi-

tats including palms might reduce the intensity of palm-crown use by vertebrates; (ii) some

disturbance-sensitive vertebrates (including less competent T. cruzi reservoirs) might return to

recovering secondary forest; and (iii) palm-crown communities and microclimates might

gradually become more similar to the ones in OGF (Fig 5). Hypothetically, the combined

effects of these mechanisms would put bug populations back on a progressively tighter “eco-

logical control”, with declines of both palm infestation and bug density (Fig 5). The somewhat

lower infestation and bug density we found in the older, higher palm-density YSF transect of

L2 (Table 3, Fig 4) might reflect these dynamics. Sampling across secondary forests of different

ages but otherwise similar, ideally within the general design outlined in the previous section,

would provide the data needed to test this hypothesis.

Stage III: Maturation. As secondary forest mature, the populations of adult Attalea palms

and woody trees recover, providing increasingly abundant habitat for arboreal vertebrates.

Each individual palm-crown may thus become even less likely, on average, to be stably occu-

pied by vertebrates, for which many alternative habitats would now be available. At the same

time, palm-crown food webs might gradually regain complexity, including more diverse bug

hosts, predators, pathogens, and competitors (Fig 5). Combined, reduced host availability and

a tighter “ecological control” might result in bug colonies being smaller on average, and hence

more prone (also on average) to palm-level local extinction (Fig 5). The pattern emerging from

these dynamics would then be one of low palm infestation frequencies and low mean bug den-

sity–just as we observed in our OGF transects (Table 3, Figs 4 and 5). These results, combined,

suggest that OGF mean bug-density figures are largely driven by fairly crowded colonies dwell-

ing in a few palms. This is consistent with the common observation of clustering (or statistical

overdispersion) in wild Rhodnius populations: especially in forested sites, most available palms

are vacant, a few harbor small colonies, and a very small minority of (presumably higher-qual-

ity) palms support larger colonies [7, 17, 18, 33]. Finally, mature OGF likely supports an

increasingly diverse vertebrate community; this might eventually result in the bugs feeding

more frequently on incompetent or poorly-competent T. cruzi reservoirs, which would lead to

lower bug-infection prevalence and, therefore, less intense circulation of the parasite (Fig 5).

This “dilution-effect hypothesis” [41–44, 48] is particularly appealing for wild T. cruzi cycles

such as those maintained by Rhodnius spp. in Amazonian palm crowns–but, again, is yet to be

thoroughly tested.
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Caveats and strengths

There are a few caveats that readers should keep in mind when interpreting our findings. First,

our bug data are very sparse. In particular, we found bugs in just 18 palms and counted just 33

bugs. This low bug yield was, based on our field experience, somewhat unexpected. Apart

from the possibility of true lower palm infestation and bug density in our study area than else-

where in Amazonia, low bug yield may also reflect our unbiased selection of palms via system-

atic sampling–in contrast with convenience sampling, in which palms suspected of harboring

bug colonies (e.g., taller, larger-crowned palms) may be preferentially selected, whether con-

sciously or unconsciously [18]. To check this possibility, we compared our 280 systematically-

sampled palms with 252 “haphazardly selected” palms of the same two species (A. speciosa and

A. maripa) studied by us in central-northern Amazonia (see [17] and S3 Dataset). A series of

GLMs (S3 Table) shows that, on average, the palms in our current sample (i) were shorter, (ii)

had lower organic-score values, (iii) yielded less bug detections, and (iv) yielded lower bug

catches than the palms in [17]. The systematic sample selected for the present study, therefore,

appears to be less biased towards tall, high-organic score palms; because both palm traits have

a positive effect on infestation (Table 4; [17, 18]) and bug density (Table 5), our unbiased sam-

ple likely provides particularly realistic estimates of overall infestation and bug density in adult

A. speciosa and A. maripa. In any case, we underscore that the sparseness of our data (i) did

not lead to model convergence issues and (ii) is reflected in the large uncertainty associated

with some of the effect estimates we report. In particular, the wide CIs of the landscape-class

effect estimates reported in Tables 4 and 5 are a consequence of the very few bug detections in

OGF. We therefore suggest that the key take-home message is that palm infestation was more

frequent, and bug density higher, in heavily disturbed than in well-preserved landscapes, with

a more precise quantification of these effects requiring further research. Another negative con-

sequence of data sparseness was that we were unable to confidently model bug-detection prob-

abilities as a function of covariates; instead, we had to assume that detection probabilities did

not vary, e.g., across landscape classes or with palm traits. A better understanding of the bug-

detection process may sharpen our views about vector population ecology and can help us

strengthen vector control-surveillance [17, 64, 65]; we believe that this is an important topic

for future research. Finally, with our limited sample we were also unable to quantitatively

assess whether bug-infection frequency varied across landscape classes–all we can say is that

we detected T. cruzi infection in five of 40 bugs caught in disturbed landscapes, but in none of

the four bugs caught in OGF. However limited, these results show that the parasite was circu-

lating in at least 31.3% of the 16 disturbed-landscape palms in which we detected infestation

(Table 1 and S1 Text).

A second caveat is that we do not consider possible seasonal effects associated, e.g., with

rainfall variation between drier (October, June) and rainier (April) sampling months. To our

knowledge, however, earlier studies examining this possibility in Attalea palm-crown habitats

have all reported negligible season effects on Rhodnius spp. occurrence or abundance [53, 66–

68]. This is probably due, at least in part, to the stable, buffered microclimate typical of the

large and structurally complex crowns of Attalea species such as A. speciosa or A. butyracea
[53, 67]; in the smaller-crowned Acrocomia, both infestation and bug density may vary season-

ally [69, 70].

Third, we do not have precise ground data on either the time elapsed since forest clearance

or the intensity of disturbance in our study transects; instead, and in line with our previous

work on the same topic (e.g., [17, 18]), we defined three landscape classes that, as mentioned

in the Methods section, clearly differed in their degree of anthropogenic disturbance (see also

[27, 51, 71]). While this (admittedly rough) approximation allowed us to test our main
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hypotheses about deforestation effects on palms and bugs, we believe that future studies should

characterize disturbance age and intensity in more detail. As illustrated above for our two YSF

transects, readily available satellite imagery can help estimate the age of secondary forests.

Finally, a general caveat of our report is that we have no measurement of human infection

with T. cruzi in the study areas. Instead, and also in line with many prior studies [7–13, 16–19,

21, 22, 33, 47, 52, 53, 58, 66–73], we regard palm density, palm infestation, vector density, and

(even if with more limited data) vector-infection frequency as putative proxies for Chagas dis-

ease risk.

In addition to a field-sampling plan designed to minimize palm-selection biases, the two

main strengths of our study are (i) the explicit and formal treatment of detection failures (of

palms, bugs, and parasites) and (ii) the fact that we probed the effects of landscape disturbance

on three important components of Chagas disease risk–the vectors’ primary ecotopes, the vec-

tors themselves, and (admittedly with limited results) the parasites those vectors carry. Previ-

ous similar studies taking imperfect detection into account addressed landscape-disturbance

effects on palm occupancy by the bugs, but not on the palms themselves or on bug density or

infection [17, 18]. Conversely, previous studies of landscape-disturbance effects on palm infes-

tation, bug density, and bug infection (e.g., [7–9, 16, 33, 53, 58, 66–70, 72, 73]) did not account

for detection failures, thereby assuming that bugs and parasites are both detected with proba-

bility 1.0 –a strong, overall unrealistic assumption [17, 18, 40]. As far as we are aware, imper-

fect detection of palms (or any other known triatomine-bug ecotope) has not been formally

considered previously, including in studies of Attalea-palm responses to land-use change (e.g.,

[27, 71]).

Conclusions and outlook

Our findings suggest that in rural eastern Amazonia anthropogenic landscape disturbance is

associated with higher odds of palm-crown infestation by Chagas disease vectors and with

higher vector-population densities–both per palm and per unit area. Vector infection with T.

cruzi might also be more common in disturbed than in preserved landscapes. Taken together,

these findings lend support to the view that wild T. cruzi vectors and humans widely coexist

across the expanding disturbed landscapes of Amazonia [21]. As they disperse from palms,

adult bugs often invade houses or other premises and may infect people directly or via food

contamination [14, 15, 21–24, 52, 58, 72, 73]. This is currently the main mechanism underly-

ing T. cruzi transmission to humans in Amazonia [21–24, 58], and an emerging one in other

regions of the Americas where wild, native triatomines are important vectors of the parasite [5,

6].

Our results also suggest some directions for future work. First, understanding how palm-

crown communities respond to deforestation would provide insight into the mechanisms by

which landscape disturbance can affect Chagas disease risk [44]. Second, our study further

highlights the need to quantify the human-health costs of deforestation, which may be instru-

mental for environmental-conservation advocacy [74, 75]. Finally, our findings suggest that

incorporating measures of anthropogenic landscape disturbance into the spatial stratification

of transmission risk could help enhance Chagas disease surveillance in Amazonia. The identifi-

cation of higher-risk areas would allow for targeted action–including early case detection, inte-

gral patient care, or the promotion of safer food-management practices [76]. High-risk areas

would also provide the ideal setting for well-powered trials of interventions aimed at reducing

human-vector contact; this might include physically protecting homes and food-processing

equipment with insect screens or managing peridomestic palms to lower organic-score val-

ues–thus reducing palm infestation odds and bug densities [17, 77].
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The results we have presented, in sum, shed light on some important components of the

long-hypothesized, yet still little-understood, link between deforestation and Chagas disease

[78]. Further work is needed, however, to (i) better quantify landscape-disturbance effects on

palm infestation, vector density, and vector infection; (ii) see if the response patterns we report

also arise in other regions; and (iii) elucidate the mechanisms that underlie those patterns. Our

methodological approach and main findings, at any rate, open new perspectives for research

and preventive action; we believe that they are likely to be relevant for Amazonia as a whole

and for other Neotropical ecoregions where palm-dwelling bugs of the genus Rhodnius [79]

are major vectors of T. cruzi.
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