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mRNA-Seq is a precise and highly reproducible technique for measurement of transcripts
levels and yields sequence information of a transcriptome at a single nucleotide base-level
thus enabling us to determine splice junctions and alternative splicing events with high
confidence. Often analysis of mRNA-Seq data does not attempt to quantify the expres-
sions at isoform level. In this paper our objective would be use the mRNA-Seq data to infer
expression at isoform level, where splicing patterns of a gene is assumed to be known.
A Bayesian latent variable based modeling framework is proposed here, where the para-
meterization enables us to infer at various levels. For example, expression variability of
an isoform across different conditions; the model parameterization also allows us to carry
out two-sample comparisons, e.g., using a Bayesian t -test, in addition simple presence or
absence of an isoform can also be estimated by the use of the latent variables present in
the model. In this paper we would carry out inference on isoform expression under different
normalization techniques, since it has been recently shown that one of the most prominent
sources of variation in differential call using mRNA-Seq data is the normalization method
used. The statistical framework is developed for multiple isoforms and easily extends to
reads mapping to multiple genes.This could be achieved by slight conceptual modifications
in definitions of what we consider as a gene and what as an exon. Additionally proposed
framework can be extended by appropriate modeling of the design matrix to infer about
yet unknown novel transcripts. However such attempts should be made judiciously since
the input date used in the proposed model does not use reads from splice junctions.

Keywords: mRNA-Seq, isoform expression, Bayesian latent variable modeling, multi-sample comparison,
Bayesian t -test, spike-n-slab method

INTRODUCTION
BACKGROUND
Sequencing technology has advanced at a rapid rate in the past
decade. The advent of massive parallel sequencing technologies,
such as Illumina Genome Analyzer/Solexa, has revolutionized the
genome-wide transcriptome studies leading to multiple applica-
tions. One such application is known as mRNA-Seq technology
that provides a far more precise measurement of levels of tran-
scripts and their isoforms than microarrays (Nagalakshmi et al.,
2008). It is analogous to shotgun sequencing (Staden, 1979) used
for whole genome, while it is being applied to transcripts and
this method yields copy number of transcripts in a sample. In
mRNA-Sequencing, RNA is isolated from sample; which is then
reverse-transcribed to form cDNA, followed by fragmentation.
New generation high-throughput sequencers enable to read from
these fragments and these reads are then mapped to the genome
of interest. Expression measure of any gene is thus available in
digitized form through counts of reads mapped to that gene (See
Figure 1 for an overview of mRNA-Seq experimental procedure).

With respect to reproducibility, this technique has been shown
to be highly reproducible across technical replicates (Mortazavi
et al., 2008). On the other hand if microarrays are used to measure

expression of genes, it has been shown that the correlation between
two replicates is in the range (0.5, 0.95; Draghici et al., 2006).

One of the main advantages of this data is in its quality. The
eukaryotic genomes can be roughly thought to be constituted
of RNA polymerase II transcribed and non-transcribed regions.
In mRNA-Seq data the reads that map to the transcribed region
(“exons” of a gene) represent the signal and background, whereas
those coming from non-transcribed regions (“introns” or other
inter-genic regions) can be assumed to be only background. Often
the density of reads falling in the non-transcribed region would
be of the order 10−4 whereas that for the coding region could be
10−1, which results in a signal to noise ratio of 103.

Apart from being more reliable than the more popular microar-
rays, there are some very appealing advantages of this technique.
For example, it actually produces sequence information of a tran-
scriptome at a single nucleotide base-level. As a result we are able
to determine splice junctions and alternative splicing events with
high confidence. This technique has been used to investigate alter-
native splicing in several organisms, e.g., mammals (Mortazavi
et al., 2008; Pan et al., 2008; Sultan et al., 2008; Wang et al., 2008),
Yeast (Nagalakshmi et al., 2008), Plants (Lister et al., 2008; Filichkin
et al., 2009).
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FIGURE 1 | An overview of mRNA-Seq experimental procedure. For a
typical mRNA-Seq experiment, mRNA is isolated and reverse-transcribed into
cDNA libraries with homogeneous lengths (achieved by fragmentation).
Adaptors at one or both ends of the RNA are added prior to cDNA

amplification and library construction. New generation high-throughput
sequencers enable to read from these fragments and these reads are then
mapped to the genome of interest. Expression measure is then available as
counts of reads mapped to that region.

STUDIES ON ALTERNATIVE SPLICING EVENT
The recent interest in studying alternately spliced gene expres-
sion stems from the fact that more than 90% of human genes
have been reported to be alternately spliced (Pan et al., 2008;
Wang et al., 2008). Furthermore, variants of transcripts pro-
duced by same gene have been shown to be involved in wide
range of pathways and could perform distinctly different func-
tions (see Davuluri et al., 2008). These phenomena have been
under study for decades; however recent advances in biotechnol-
ogy have enabled us to study these at a genome level simultane-
ously. With recent techniques such as mRNA-Seq, high-density
DNA microarrays, and existing methods like Sanger sequencing
of ESTs and cDNAs, genome-wide studies on many species have
been reported (high-throughput techniques: Lister et al., 2008;
Mortazavi et al., 2008; Pan et al., 2008; Sultan et al., 2008; Wang
et al., 2008; Filichkin et al., 2009; and Sanger sequencing: Zhu
et al., 2003; Iida et al., 2004; Alexandrov et al., 2006; Campbell
et al., 2006; Wang and Brendel, 2006; Chen et al., 2007; Ner-Gaon
et al., 2007).

SOURCES OF VARIATION
The statistical challenges in analyzing mRNA-Seq arise from many
perspectives. While some sources of error are due to inherent prob-
lems with the technology, some are contributed at laboratory or
experimental level while remaining are limitations of inference
methods used.

As an example of technical limitations, mRNA-Seq data does
suffer from non-uniformities, for example it is known to have
biases toward certain base compositions (Dohm et al., 2008).
Another such known limitation of this technique is that longer
genes are more likely to be sequenced and also more likely to be
declared differentially expressed (Oshlack and Wakefield, 2009).
It has been demonstrated by the same authors that weighting the
differential expression statistics by gene length can mitigate this
effect.

There are known experimental errors as well during the cre-
ation of a sequencing library, seeding and preparation of the flow
cell, and synthesis of the sequence reads (sequencing phase of the
experiment). Depending on the data these errors may not pose any
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significant problem (see Bullard et al., 2010). They also observed
that the well-known control lane used at the base-calling calibra-
tion procedure may not have any significant effect on differential
expression call.

According to Bullard et al. (2010), the most prominent source
of variation in differential call is the normalization or calibration
method used on the mRNA-Seq data. In this paper we would carry
out inference on isoform expression under different normalization
techniques.

Calibration of data becomes essential to remove the effects
of such courses of variations. In the following section we have
provided detailed descriptions and discussions on the existing
methods.

EXPRESSION ANALYSIS
Often analysis stops at finding alternately spliced variants only and
further research into quantifying their expression is not carried
out. In this paper our primary objective would be use the mRNA-
Seq data to infer expression at transcript, i.e., isoform level, while
utilizing all existing information on splice variants.

In mRNA-Seq data, each transcript is covered by numerous
sequence reads. Since these reads are generally short in nature
(approximately 35 bases in the data set considered here) these typ-
ically do not reflect expression of a single transcript but is often
shared by several transcripts. Majority of these would be splice
variants; however there are other possibilities as well, which we
will address later.

Reads not only from exon regions but also from splice junc-
tions (span two exons) could be available, but they too suffer from
similar limitation of being shared by multiple isoforms. In case
a junction is unique to a transcript then the reads from splice
junction may be used as indicative of the expression. Otherwise
in a complex structure of multiple exon sharing between different
transcripts, the reads mapping to splice junctions would have to be
modeled additionally if they are to be used for inferring expression
of the isoforms.

As has been pointed out by Zheng and Chen (2009) compari-
son of expression at the individual transcript isoform level requires
jointly consideration of all sequence reads belonging to the same
gene. Thus often it may not be possible to detect isoform level
expression in any obvious method and requires statistical tech-
niques that would help us obtain individual isoform expression
from this mixture along with estimates of uncertainty.

In the following sections we present review of relevant litera-
ture on expression estimation, followed by the description of the
proposed Bayesian latent variable model and its application to a
real data set.

MATERIALS AND METHODS
mRNA-Seq technique provides read count for genomic segments,
known as exons. These can then be utilized in various manner
depending on the question of interest, more often than not, these
are summarized at gene level. However we prefer to quantify them
at the level of disjoint exons or parts thereof. The motivation is as
followed by Jiang and Wong (2009), wherein isoforms for any gene
share exons as a whole. Since in reality this is often not true we
achieve this by slightly modifying the known exon constitution of

that gene. This is achieved by considering disjoint parts of exons,
which are shared and otherwise, individually as pseudo-exons.

DATA CALIBRATION
Since number of reads for any genomic region would naturally
depend on the length of that region it is a common practice to
normalize it using the length information. Quite often it is rep-
resented as reads per kilobase per million (RPKM) mapped reads
(Mortazavi et al., 2008). Thus the two most influential factors
behind any expression summary from the mRNA-Seq data is

1. nj: total number of mappable reads in the sample for the j-th
region

2. lj: length of that region,

Then

RPK Mi =
ni∑

j
`j nj
× 109

Although the RPKM thus obtained can then be analyzed similar
to methods used for microarrays, in-depth look into the sources
of variations is required before inference.

Often in mRNA-Seq data, different lanes of a flowcell would
represent different samples (could be biological replicates or could
be distinct treatment samples). Each sample would produce dif-
ferent total read counts depending on sequencing depths. Thus,
as described above, the common approach is to adjust individual
expression counts for each sample by the total count for that sam-
ple: e.g., RPKM as described above or a hypergeometric model
(Marioni et al., 2008). Bullard et al. (2010) have pointed out that,
for the data considered by them, global normalization is heavily
affected by a relatively small proportion of highly expressed genes.
Since these are often not the same genes across samples this poten-
tially could lead to biased estimates of differential expression over
the different samples considered.

A common phenomenon for microarray data analysis lack of
robustness of inference (on say differential expression call, or clas-
sification) due to change in analysis techniques in previous step
of data analysis. Quite often a moderate change in algorithm
for normalization can dramatically alter biological conclusions
(Bhattacharjee et al., 2004). It has been shown by Bullard et al.
(2010) that mRNA-Seq data is no exception from this problem
and hence we feel needs extended study before robust conclusions
of expressions can be made based on this data.

In literature, so far, the main methods proposed for calibration
are

1. Global normalization,
2. Use of house-keeping genes, which is a familiar concept for

micro array data,
3. Quantile normalization, which is also a well established method

used for other high-throughput data (Irizarry et al., 2003).

It has been reported that the standard total count normalization
results in low variation across samples and other technical sources
of variation. However does not produce significant gain in terms
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of differential expression call, when compared with microarray
data (Bullard et al., 2010).

The use of house-keeping genes has a sound biological rea-
soning. However in practice obtaining a reliable set which would
provide consistent expression across samples and replicates might
prove difficult. Regarding quantile-based normalization, Bullard
et al. (2010) observe that for their data that this technique yields
the most robust data without introducing additional noise. Thus
for our purpose we would explore global and quantile-based
normalization of our data.

MODELING OF EXPRESSION IN CLASSICAL FRAMEWORK
The initial efforts of expression modeling have been to use the
counts of reads mapped as the variable itself. This has lead to use
of discrete distributions on most of the existing literature. How-
ever one should note that with complex normalization techniques
being applied to mRNA-Seq data modeling the calibrated data
with discrete distributions like Poisson or Negative Binomial may
not be feasible. Nevertheless we provide a review of these models
and corresponding inference procedures in the following.

Poisson modeling for expression analysis
Let ng be the count of reads mapped to gene g. Assuming that the
reads are sampled independently and with replacement ng follows
a Poisson distribution (Sultan et al., 2008), i.e.,

ng ∼ Poisson(λg ),

where λg is the mapping rate and therefore large λg means high
expression. This can be alternately arrived at by assuming a multi-
nomial model for counts (n) of collection of all genes (or parts
thereof). If pg is the probability of each read being mapped to
a gene g then since n is large and pg is small, approximately
ng ∼Poisson(λg) with λg= npg. It has been shown that more than
95% counts can be modeled well by this Poisson model (Marioni
et al., 2008). However, simple Poisson model cannot explain all
the variance. One suggestion is to assign a Gamma prior to λ. This
would lead to the Negative binomial model and there it might be
harder to interpret the two parameters.

Poisson modeling for joint calibration and expression analysis
By introducing a normalizing factor Cg in the Poisson model we
can achieve calibration at global level. Then

ng ∼ Poisson(Cg λ
∗
g ),

where λ∗g : normalized expression level, Cg: similar to the RPKM
described earlier. For differential expression analysis we can treat
Cg as known, and interpret λ∗g .

Generalized linear model for joint calibration and expression
analysis
This model was recently proposed by Bullard et al. (2010). Therein
a generalized linear model (GLM) framework for the expression
modeling was carried out jointly in presence of parameters quan-
tifying other systematic sources of variations, like total read count

difference across samples. The Poisson-log GLM proposed by them
is as follows:

log(E[nig | di]) = log di + λa(i)g + θig ;

where the natural logarithm of the expected value of the read
count nig for the g -th gene in the i-th sample is modeled as a lin-
ear function of the gene’s expression level λa(i)g for the biological
condition a(i) as reflected in sample i plus an offset (log di) and
possibly other technical effects (θig). If no technical replicates are
carried out, as is often the case, a(i) will be simply i.

Testing for differential expression
Under the Poisson model, often data is further transformed, e.g.,
Log,Arcsine (Mortazavi et al., 2008). This is followed by the testing
methods developed for microarray methods, e.g., t -test, moder-
ated t -test, to identify significant expression changes. Note that the
arcsine-root transformation is suggested for variance stabilization
of the per-gene read proportions within each sample (Marioni
et al., 2008).

To test H 0: λg1=λg2 following are some examples of existing
testing procedures that can be directly applied to this type of data.
Following and extending notation introduced earlier,

1. Binomial Test (Ji et al., 2008)

P
(
ng 1| ng 1 + ng 2

)
∼ Binomial

(
ng 1 + ng 2 ,

Cg 1

Cg 1 + Cg 2

)
2. Negative Binomial Test (Audic and Claverie, 1997)

P
(
ng 2| ng 1

)
∼ Negative Binomial

(
ng 1 + 1 ,

Cg 1

Cg 1 + Cg 2

)
3. Chi-square goodness-of-fit test for Poisson counts (Mortazavi

et al., 2008). Asymptotically,

∑
i=1,2

(
ngi −mgi

)2

mgi
∼ X2

1,

where mgi =
Cgi(ng 1+ng 2)

Cg 1+Cg 2
are the expected observation under

null.

For the GLM, three types of methods for differential expression
inference have been proposed, viz. Fisher’s exact test statistic, like-
lihood ratio statistics based on a GLM, and t -statistics based on
estimated parameters of the same GLM. All the methods have their
merits and demerits, for example, distributions for the GLM-based
statistics are derived under asymptotic theory; therefore, might
be affected by small numbers of input samples or low counts
(depending on which parameter is being tested). On the other
hand although Fisher’s exact test does not make any assumptions
on the sample size; it only adjusts for global experimental effects,
unlike the likelihood ratio statistics adjust for general experimental
effects as well as sample covariates. t -statistics on the other hand
is severely affected by zero count in even one sample and is unable
to detect differential expression in some of the obvious cases.
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Adjusting for gene length bias in differential expression
It has been noted by several groups that longer genes contribute
more to mapped sequence reads than shorter genes with similar
expression. More importantly this may not be removed by scaling
with length like RPKM (Mortazavi et al., 2008).

We investigated this feature for our data as following. We dis-
tributed the exons, irrespective of their gene, according to lengths
into ten approximately equal size bins and calculated average
RPKM for each of these bins. The pattern as reported by oth-
ers seemed to be present for our data as well although not strongly
(results not shown). There was a sharp drop at the last bin, which
could be due to the fact that this bin contains exceptionally large
exons, however there is always a physical limitation of number of
reads coming from these exons, thus bringing down the RPKMs.

The effect of length bias has been noted on differential expres-
sion call also (Oshlack and Wakefield, 2009; Bullard et al., 2010).
One possible explanation is the following. For a particular gene
in two conditions let us increase the expressions from λ1, λ2 by L
folds. Then the resulting t -statistics would be the following:

T =
(λ1L − λ2L )
√

(λ1L + λ2L )
=

(λ1 − λ2 )
√

(λ1 + λ2 )
×
√

L

Thus if we measure more expression merely because of longer
length we would also inflate the t -statistic artificially leading to
possibly false differential expression call.

Some of the suggestions to overcome this are as follows. An
ad hoc measure would be to consider read counts from a fixed
length for each gene (Bullard et al., 2010). However this would
results in loss of possibly huge part of the data and also difficult
to ascertain what would be an appropriate length application to
all genes and all scenario. Instead, as indicated above, re-weighting
the t -statistic with length may be more effective. However, the
problem of choosing a cut-off would need to be investigated.

BAYESIAN MODELING OF mRNA-SEQ DATA
In mRNA-Seq literature there has been some developments toward
building Bayesian models particularly toward inferring isoform
level expression. Zheng and Chen (2009) reported a fully Bayesian
model whereas Jiang and Wong (2009) developed an empirical
Bayes set up for isoform expression modeling.

Our proposed model will be closer to the model by Zheng and
Chen (2009) in spirit. However there are significant differences in
the two models and we will point these out as we describe our
model. We analyze the mRNA-Seq data on Arabidopsis thaliana
(Filichkin et al., 2009) using the proposed model.

The hierarchical Bayesian model developed by us can be used to
infer about individual splice-variant (i.e., isoform) level expression
of a gene and these can then be used to assess overall expression
of a particular gene. The data used here for the purpose of illus-
tration has been limited to uniquely mapped reads, however as
has been mentioned earlier, by introducing an extended concept
of (pseudo-)gene and (pseudo-)exon we can accommodate reads
mapping to multiple locations as well. Thus this model can borrow
information across different genomic locations belonging to same
or different genes. For other methods to adjust for reads mapping
to multiple genes see Li et al. (2010), Faulkner et al. (2008) and
other relevant references therein.

The model presented here requires known structure of the
splicing patterns of a gene. Although with some advanced model-
ing we are able to infer when the exiting knowledge of transcrip-
tion variation is in question (thus leading to randomized-design
matrix). Also by extending the design matrix would enable us to
infer about yet unknown novel transcripts.

Additional advantage of the proposed method is that it is devel-
oped for multiple samples comparison unlike Zheng and Chen
(2009) and also allows two-sample comparisons. Therefore we do
not use latent variables for differential call instead we use latent
variable as expression indicator. Thus for a particular gene and a
specific isoform thereof we introduce at each sample level a latent
variable that indicates whether the isoform is expressed in that
particular sample or not.

This technique has twofold advantages over existing methods,
at the level of model identifiability and also at the level of pairwise
testing. Firstly, when genome level expressions of genes (and exons
in this case) are explored the majority of them are not expected to
express at every situation. Thus to represent the underlying biology
realistically requires the distribution of the expression parameters
to be able to take values very close to zero as well as large values.
This often poses computational problems and one way to over-
come this is to use the “spike-n-slab” type of model (Bhattacharjee
and Sillanpää, 2005). By using a latent variable indicating whether
an isoform is expressed or not produces the desired biological
constraint on the model without introducing computational com-
plexity. The advantage of these indicators for pairwise testing will
be discussed later.

PROPOSED MODEL
For each exon i of a gene g, we model it’s expression (as measured
by normalized reads there in) as a linear combination of expres-
sions of the isoforms of that gene which share this particular exon.
Thus,

ygil =
∑

k

Igklβgkl Xgik + εgil ;

where ygil: normalized reads for the i-th exon in the g -th gene for
the l-th sample, Igkl: latent indicator variable, which is one if the
k-th isoform of the g -th gene is expressed in the l-th sample and
it is zero otherwise, βgkl: latent variable measuring expression of
the k-th isoform of the g -th gene is expressed in the l-th sample,
Xgik: the zero-one matrix indicating whether exon i is known to
form part of the k-th isoform of the g -th gene, εgil: residual error
term for the i-th exon of the g -th gene in the l-th sample, g : ranges
from 1 to G, the number of genes covered in the data (7737 genes
from chromosome-1 of the Arabidopsis data), i: ranges over the
number of exons for the g -th gene in the data, these exons could be
biologically whole exons or disjoint parts thereof, (for the current
data it ranges from 1 to 73), k: takes values 1 to the known number
of isoforms for gene g (for our data values are between 1 and 10),
l : represents different samples (for the data used for illustration
there are five distinct treatment conditions with one sample each
and a control sample to contrast with are available).

After careful exploration we chose multivariate Normal distrib-
ution for the errors; however for individual error a Gamma model
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might have been more effective in overcoming some biases in the
data. Our choice of distribution was for the ease of computation.

In regard to the choice of error variance, our model assumes a
sample× gene parameterization. Consider a gene with single iso-
form with m exons. Since the gene is known to have only one
transcript thus if this transcript it expressed in a sample then all of
its constituent exons will be expressed and should be expressed in
similar amount. Thus any variation in the measurements ygil for
i= 1, . . ., m would be purely noise in the measurement of expres-
sion of the gene at specific sample level. Thus our error modeling is
clearly intuitive for single isoform genes which is majority of genes
for this particular data (since 6510 genes of the 7737 genes have
single isoform in this particular data). Now let’s consider the situ-
ation of a gene with multiple known isoforms. There, if a residual
error is high that could not only indicate noise in measurement
but also incomplete knowledge in all possible isoform formation
of that gene, that is we could very well be missing a few isoforms
and thus are unable to explain the observed expression measure-
ment for some exons. Thus an assumption of gene x sample level
variation would be realistic for such genes also.

This helps us in defining the likelihood of the data and to com-
plete the hierarchical structure of the Bayesian model we restrict
to known conjugate distributions as priors. In standard notation
we define our model for the vector of expression of all exons per-
taining to g -th gene for the l-th sample as: Ygl | Igl , βgl , Σgl ∼
Nmg

(
Xg β∗gl , Σgl

)
, each element truncated below at zero; where,

mg is the number of known exons for gene g ; Xg: is the known exon-
isoform indicator matrix, dimension mg× sg; sg is the number of
known isoforms for gene g ;

β∗gl =
(
βgkl × Igkl

)
sg×1;

Σgl ≡ diag

(
1

τgl
, · · · ,

1

τgl

)
mg×mg

;

τgl ∼Gamma(α1, α2) with mean α1/α2 and variance α1/(α2)2;

βgkl ∼ Normal

(
µ0

gk , 1
τ0

gk

)
, truncated below at zero and rep-

resents the expression of the k-th isoform of the g -th gene in the
l-th sample;

τ0
gk ∼ Gamma(α0

1 , α0
2 ) with mean

α0
1

α0
2

and variance
α0

1

(α0
2)

2 ;

Igkl ∼Bernoulli(p), is the latent indicators variable indicating
whether the k-th isoform of the g -th gene is expressed in the l-th
sample or not.

Using Markov-Chain-Monte Carlo samples for the parame-
ters βgkl, Igk, τgl to infer about these parameters and their
functions of interest. Multiple choices of hyper-parameters(
α1, α2, α0

1
, α0

2, µ0
gk , p

)
were carried out during the analysis of the

data as a part of sensitivity analysis. In most cases reasonable
choice of hyper-parameter values did not have major effect on
the inference.

Computational aspects
We implemented our model in the WinBUGS software (Spiegel-
halter et al., 1999) and used version 1.3. In our experience of this

software, this particular version appears to perform better for large
datasets with relatively lesser model complexity (when compared
to other version). Typically two parallel MCMC chains were run
starting from random initial values. Burn-in period for different
models varied depending on which MCMC samplers were being
used. Speed of convergence was not an issue for any of the models
and attained target of 5% MCMC error with relatively small poste-
rior sample (ranging in few hundred to few thousands depending
on the parameter of interest). Apart from monitoring the MCMC
error to assess convergence, the diagnostic tools provided within
the WinBUGS software for checking convergence were used. Addi-
tionally, visual inspection of critical individual parameters is often
found extremely useful to indicate convergence as well as to iden-
tify possible sources of un-identifiability in the model (or in the
design matrix).

Inference
One of the main advantages of our model is that it has been
developed for multiple conditions, however the parameterization
enables us to infer at various level. With availability of data over
a range of conditions differential expression call may be one of
the many possible questions of interest regarding an isoform’s
behavior. Thus instead of including a differential expression call
indicator we model expression variability of an isoform across
different conditions through the hyper-parameters (τ0

gk ) in the

hierarchical model. This setup allows us to identifying isoforms
that are variable across different conditions. The profiles and
clusters of isoforms can be studied using the βgkl parameters.

Moreover two-sample comparisons can be carried out with the
help of Bayesian t -test. For Bayesian t -test, the posterior distrib-
ution of a t -statistic like random variable defined as following is
derived for each pairwise comparison of interest. Differential call
is made according to whether or not the 95% symmetric posterior
probability interval (PPI) contains zero.

As has been reported by Bullard et al. (2010) classical t -
test might suffer from inflated standard error estimate of a
gene/isoform is not expressed in one of the two conditions. In
our modeling framework we easily overcome this issue by uti-
lizing the latent expression indicator variable. If the two latent
variables indicate with high degree of confidence that an isoform
is expressed in one condition and not in the other, then irrespec-
tive of expression amount it can be safely declared differentially
expressed. This is a known knowledge in biology, that in order
to play a significant role in a biological process a transcript may
not have to be expressed in high degree but differently with high
confidence.

Note that these latent indicator variables also serve the purpose
of variable selection and regularization against over-fitting.

RESULTS
For illustration purposes we used the RNA-Seq data on Arabidopsis
thaliana by Filichkin et al. (2009). High-throughput sequencing
using the Illumina 1G platform (reviewed in Quail et al., 2008;
Shendure and Ji, 2008) were carried out to capture transcrip-
tomic expression information from a range of Arabidopsis samples.
Arabidopsis tissues at different developmental stages and time
points of the diurnal cycle were pooled to provide a broad view
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of expression within a specific condition. For five abiotic stress
treatment conditions and additionally a control wild-type (WT)
sample, RNA-Seq libraries were prepared and sequenced individu-
ally. The five conditions are Cold Stress (CS), Drought Stress (DS),
heat stress (HS), High-light Stress (LS), and Salt Stress (SS).

The dataset was downloaded from NCBI GEO website (acces-
sion ID= SRP000935). Pooled data contains approximately 271
million. The gene information and other necessary resources
of Arabidopsis genome were downloaded from TAIR9 database
release available at http://www.arabidopsis.org. In house programs
were made to extract isoform level information. Bowtie program
was used to align the reads to genome and isoforms. We used 30-
bases with up to 2-bases mismatch and unique match options to
align the reads. The results presented in the subsequent sections
will be based on data from Arabidopsis chromosome-1 only for
limitation of space.

For technologies like RNA-Seq, sequencing bias toward 3′ end
is well-known. However for our data this effect is visible only

moderately (see Figure 2 below). This could be due to the reason
that we have utilized pooled data from two different primer tech-
niques used in the original experiment. As reported by Filichkin
et al. (2009) the 3′ bias is visible in the data where full-length
(FL) enriched cDNA libraries were used, however coverage by the
randomly primed library was more evenly distributed. Thus com-
bining these two types of data probably have resulted in reduction
of this effect on overall data.

As can be seen from the following Figure 3A the data nor-
malized using global calibration produces comparable quantiles
for most conditions except for condition HS. We investigated the
average expression within each percentile and observed that aver-
age expressions across all conditions (except HS) are comparable
for all the percentiles using the global calibration. It appears under
the HS condition there is a larger proportion of zero tag counts and
also very high expression of a small proportion of exons. However
in global calibration the total expression has been equated across
all samples and thus it has forced all remaining percentiles for
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this condition (viz. HS) to be scaled down compared to others. We
employ a percentile adjustment using the 10-th to 90-th percentiles
of the globally normalized data and the resulting normalized data
yielded comparable percentiles for all six conditions (Figure 3B).

However our quantile normalization would differ from that
proposed by Bullard et al. (2010) in a number of ways. Firstly, we
use ten percentiles and not quantiles. Secondly motivated by what
we observe for the stress condition HS we believe that the total
need not be scaled after doing the percentile normalization as has
been suggested by them. It appears that for the HS condition up
to the 90-th percentile data is comparable to other condition. So
the exception in the top percentile is probably not an artifact but
reflects the plant’s behavior under this stress condition. Thus we
believe that it might be inappropriate to scale it down artificially.

Normalizing with house-keeping gene(s) could also be a possi-
bility; however it requires relevant biological information which is
not available in our case. Thus we proceed with comparing results
based on two different types of normalization, global correction
and percentile normalization.

The normalizations continue to have effects on isoform level
expressions. In Figure 4 we present percentiles of isoform expres-
sions, estimated by posterior means, under different conditions
using the two normalization techniques. The last percentiles,
which are large due to few handful isoforms with large expressions,

are omitted from plots for better clarity. We also present the aver-
age expression within each of these percentiles for the different
conditions and different normalization techniques.

Note that in our method of defining expression (at gene or
isoform level) we utilize expression at exon-level. For this partic-
ular data, 74.2% of the genes (and 78.7% of isoforms) consisted
of multiple exons, ranging from 2 to 73 exons for a single tran-
script. Amongst all isoforms only 12.9% consisted of 50% or more
long exons, 28.5% have 50% or more short exons, and remaining
had varied lengths of exons. We used 5-th and 95-th percentiles
from the exon-length distribution to define short and long exons
respectively. Thus in differential calling it is unlikely to have a sys-
tematic bias toward any length for these transcripts. However due
to RPKM bias toward length the standard error will be affected
by the underlying variation in length, weakening our power of
detection. Another point to note is that for Arabidopsis, based on
present knowledge, nearly 84% of the genes (on chromosome-1)
are single isoform genes. However 69.4% of these genes have more
than one exon.

Highly expressed isoforms and low/no-expression isoforms
for each stress condition and for control sample were identi-
fied. A pairwise check for commonality of these when com-
pared to other conditions were carried out (Table 1). We
define low/no-expression if the estimated 95-th percentile of the
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Table 1 | Pairwise comparison of condition-specific lists of isoforms

with high and low expression, with high and low expression as

defined in the text (normalization method used: global).

Pairwise count

of common isoforms

Not expressed

WT CS DS HS LS SS Total

Highly expressed WT 178 148 205 95 160 250

CS 290 148 196 98 153 234

DS 308 296 158 88 127 184

HS 197 188 217 100 167 314

LS 232 232 242 158 88 109

SS 294 292 347 210 228 199

Total 374 379 439 247 301 407

The entries above diagonal shaded in gray color are low-expressed genes and

those below diagonal (not shaded) are highly expressed genes, in both conditions.

Posterior Probability Interval (PPI) for an isoform expression is
less than 10-th percentile of mean isoform expressions. Similarly
an isoform is said to have high expression if 5-th percentile of its
PPI is more than 90-th percentile of mean isoform expression.
Thus with 95% posterior probability expression of an identified
isoform will be within top or bottom 10% of isoform expressions.
As has been noted earlier under HS the plants seemed to behave
differently when compared with other stress conditions.

We present differential expression behavior under different
stress conditions when compared with expressions in the control
sample (i.e., WT samples). A Bayesian t -like statistic was com-
puted for each isoform in each such comparison. We consider a
decision rule based on the mean of this statistic and compare it
with an appropriate t -critical value based on the number of exons
for that isoform. Note that this rule can only be used for isoforms
with two or more exons.

Alternately we use the PPI of the t -statistics and define those as
up or down regulated if the 95% PPI of the t -statistic is in the upper
or lower 10 percentile of all (mean) t -statistics thus calculated

(Table 2). This method then uses the uncertainty in estimating
the t -values and would be applicable to all isoforms irrespective
of number of constituent exons. The two method yields different
but non-contradictory results (results not shown).

It is apparent from the results presented so far that the isoform
expressions vary under different stress conditions as expected.
However many of the genes are not single isoform genes thus
we need to explore further whether the observed variability is only
at the gene level across conditions or whether alternately spliced
transcripts behave differently under different conditions.

Using overall variability parameters we estimate that approx-
imately 4.06% of isoforms with globally normalized data and
2.74% isoforms with quantile normalized data exhibit varied
expression under different stress conditions. To infer these we
observe that the variability parameters estimated follow approxi-
mately Gamma distributions (Figure 5).

Of the total 7737 genes analyzed, 1227 genes have multiple iso-
forms. Of which 75 genes have at least one isoform not variable
(i.e., overall variability parameter estimate is less than the 35-th
percentile) and another moderately variable (i.e., variability is over
the 65-th percentile). More interestingly 195 genes have at least one
highly variable isoform (with variability above than the 90-th per-
centile) and another in the lower half. Thus for same gene not all
isoforms behave in similar manner across all sample conditions.
The above findings are based on globally normalized data and
similar summary under quantile normalization are respectively
57 and 175 genes.

We compared our findings with two existing methods, namely
modeling the exon-expression data with GLMs and secondly by
using splice junction data only to infer isoform expression using
Bayesian models.

For GLM we used a model similar to one proposed by Bullard
et al. (2010). However due to the change in nature of data from
discrete to continuous, induced due to normalization the error
distribution for modeling in GLM was chosen to be Gaussian.
The standard asymptotic theory based inference was carried out
for this model. The mean estimates of the transcript level expres-
sion (for single transcript genes) were compared and were found
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Table 2 | Up and down regulated isoforms for each stress conditions when compared with WT, using alternate definitions of differential

expression.

Stress

condition ↓

Based on 95%

PPI of t -statistics

Based on posterior mean of

t -statistic and appropriate t -critical value

Regulation→ Down Up Down Up

Normalization→ Global Quantile Global Quantile Global Quantile Global Quantile

CS 100 120 91 71 39 54 54 42

DS 90 105 152 129 38 56 102 80

HS 467 319 55 94 571 364 27 61

LS 119 134 116 96 84 98 63 51

SS 78 84 156 149 73 73 51 51

13 0.014 0.01 0.01 0.33

14 1.307 1.27 0.56 0.36

15 0.039 0.01 0.00 0.05

16 0.125 0.104 0.04 0.34

17 0.313 0.106 0.02 0.25

18 0.045 0.00 0.55

19 0 0 0.00 0.30

20 0.572 0.16 0.55

21 0 0.03 0.54

22 0.004 0.01 0.56
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FIGURE 6 | Comparison of estimates from proposed Bayesian model (Y -axis) and GLM (X -axis). (A) Presents scatter plot of estimated expression levels
for single transcript genes under the two methods while (B) presents the estimated standard error in these expression measurements from the same data
under the same models.

comparable between the proposed Bayesian method and GLM
(Figure 6A). To judge the quality of inference it is not just the
point estimates that should be checked but also the confidence
on these estimates. The estimated standard error around point
estimates provides a well-known means of assessing the quality
the estimated value. For this we firstly note that for single exon
genes this can’t be estimated under existing procedures. However
Bayesian paradigm does allow posterior inference with singleton
data as well and hence an estimate for standard error for such genes
too can be obtained. For other transcripts with multiple exons the
Bayesian model consistently produces smaller standard error and
thus outperforms the standard techniques like GLM (Figure 6B).

The Bayesian modeling framework proposed for exon data can
be readily used for splice junction data too. Note that splice junc-
tions would be typically short in length and as discussed earlier
mRNA-Seq technology produces number of reads biased toward
longer genomic regions. This is expected to cause the reads to have
inflated amount zero read counts and underrepresentation the true
expression from these regions. Our preliminary exploration of the
splice junction data confirmed this hypothesis. We further com-
pared the distributional behavior of the tag counts from the splice

junctions to that based on reads from exons and found them to be
comparable to those from exons of similar lengths.

For further analysis of the splice junction data, it was first
normalized using a similar percentile normalization technique
described earlier and then modeled using the proposed Bayesian
modeling framework. Figure 7 presents comparison of estimates
obtained using this model based on data from exons with those
from based on data from splice junctions. The two key outcome
of the proposed model is assessing the probability of a transcript
being expressed and the corresponding expression (posterior esti-
mates in Figures 7A,B respectively). In addition to plotting the
pairs of estimates, regression lines were fitted and corresponding
equations (along with R2) were presented in the figures to pro-
vide an assessment of linear association between the two sets of
estimates.

As was noted from the raw data itself, the splice junction
data underestimates transcript presence and thus the estimated
probabilities based on junction data are much lower than those
obtained using exon data. This relation is curvilinear in nature
and possibly is “S-shaped” as has been observed elsewhere, e.g., for
microarrays. The R2 measure reflects this low degree of linearity
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11 0.13 0.30 0.04 0.00
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13 0.10 0.04 0.01 0.07

14 0.00 0.02 0.01 0.01

15 0.00 0.00 0.00 0.00
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FIGURE 7 | Comparison of estimates using proposed Bayesian model
from splice junction data (Y -axis) and exon data (X -axis). The left panel
(A) presents scatter plot of estimated probabilities of isoform expression

based on the two data types while the right panel (B) presents the estimated
expressions at isoform level from the two data types. Both graphs also
include fitted regression lines, corresponding equations and R2 values.

between the two estimates. The expression estimates are affected
also but the degree of linearity is much improved (with a rea-
sonably high R2), although still continues to under-estimate. We
also explored the inherent variability in splice junction data and
found it to be higher compared to exon-based-data. This can
be assessed easily by comparing measurements on exons and
junctions from genes with single transcript only (results not
shown).

DISCUSSION
We have presented a Bayesian framework based on mRNA-Seq
data to infer expression at isoform level. One of the main advan-
tages of our model is that it has been developed for multiple
conditions, however the parameterization enables us to infer at
various levels. Although complex experimental scenarios are not
uncommon, as can be seen from the real data sued here for illus-
tration, a lot of the focus on methodological development for
mRNA-Seq data continues to focus on differential expression (e.g.,
Wang et al., 2010; Kadota et al., 2012, etc). The exclusion of differ-
entially expressed genes for better calibration is similar to exclusion
of the extreme tails in percentile based normalization method used
here. The main difference being in presence of more than two con-
dition differential expression may not be a useful criteria however
percentiles would still provide a measure of extreme to be excluded
from calibration.

The modeling setup allows inference at gene level (in terms of
expression or its variability), at transcript level, comparison across
samples, comparison between samples, etc.

We have utilized latent indicator variable for expression apart
from additional parameters to quantify such expression. This dif-
fers significantly from existing approaches, where latent variables
are used for differential call. Our method has twofold advantages
over existing methods. First advantage is at the level of model
identifiability, which is well-known for this type of spike-n-slab
models. These variables also serve the purpose of variable selection
and regularization against over-fitting.

Secondly, our method has an advantage at the level of pairwise
testing. If an isoform is not expressed in one of the samples then
this would typically un-stabilize a formal t -statistic, however can
be captured here using the latent expression indicators. This is a
known in biology, that in order to play a significant role in a bio-
logical process a transcript may not have to be expressed in high
degree but differently with high confidence. Thus if for an iso-
form the latent expression variables indicate with high confidence
expression in one condition and not expressed in another the cor-
responding isoform can be declared differential, without the help
of a t -statistics.

We would like to reiterate that focus of this paper has been in
developing modeling and inference procedure for expression mea-
surement. Thus several other relevant aspect of mRNA-Seq data
has not been addressed. Some of these are, how to use splice junc-
tion reads, what to do with multi-reads, how to make better use of
unmapped reads. From current literature we see that a consider-
able effort is being put on these issues [Top-Hat and Cufflink by
Trapnell et al. (2012), FX by Hong et al. (2012)], however compar-
atively less on what to do once we have satisfactorily mapped the
reads and have been able to derive the alternate splicing structure.

Our aim has been to make the readers aware that, firstly there
should be a modeling setup that allows complex experimental data
going beyond differential expression to be analyzed, secondly even
for simplest of inference, like expression of a single transcript gene;
there could be significant effect of normalization procedure. We
believe the proposed model and inference setup here addresses
these adequately.

For the particular data used for illustration here, we noted that
there could be significant effect of normalization, if not for all, at
least in part of the data. For this data an in-depth presentation
of the differential and variable expression could not be provided
here. However it was known that alternate splicing plays a very
important role in functioning of Arabidopsis and for many genes
multiple splice variants were found to be active under different
conditions.
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