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Abstract

Age-related macular degeneration (AMD) is an ocular disease with retinal degeneration.

Retinal pigment epithelium (RPE) degeneration is mainly caused by long-term oxidative

stress. Kinase activity could be either protective or detrimental to cells during oxidative

stress; however, few reports have described the role of kinases in oxidative stress. In this

study, high-throughput screening of kinome siRNA library revealed that erb-b2 receptor tyro-

sine-protein kinase 2 (ERBB2) knockdown reduced reactive oxygen species (ROS) produc-

tion in ARPE-19 cells during oxidative stress. Silencing ERBB2 caused an elevation in

microtubule associated protein light chain C3-II (MAP1LC3B-II/I) conversion and sequester-

one (SQSTM)1 protein level. ERBB2 deprivation largely caused an increase in autophagy-

regulating protease (ATG4B) expression, a protease that negatively recycles MAP1LC3-II

at the fusion step between the autophagosome and lysosome, suggesting ERBB2 might

modulate ATG4B for autophagy induction in oxidative stress-stimulated ARPE-19 cells.

ERBB2 knockdown also caused an accumulation of nuclear factor erythroid 2-related factor

2 (NRF2) and enhanced its transcriptional activity. In addition, ERBB2 ablation or treatment

with autophagy inhibitors reduced oxidative-induced cytotoxic effects in ARPE-19 cells. Fur-

thermore, ERBB2 silencing had little or no additive effects in ATG5/7-deficient cells. Taken

together, our results suggest that ERBB2 may play an important role in modulating autopha-

gic RPE cell death during oxidative stress, and ERBB2 may be a potential target in AMD

prevention.

Introduction

Age-related macular degeneration (AMD) is one of the most common diseases that cause

uncorrectable severe vision loss in elder people worldwide [1]. AMD is also a retinal
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degenerative disease and the main cause of visual acuity and color vision. AMD can be catego-

rized into several groups, depending on histopathological features. Drusen is caused by protein

and lipid accumulation in retinal pigment epithelium (RPE) and Bruch’s membrane of

patients with early and intermediate AMD then become advanced AMD. Advanced AMD is

further categorized as geographic atrophy (GA) or neovascular AMD (NVAMD or wet/exuda-

tive AMD). GA and early and intermediate AMD are normally considered as dry AMD [2],

whereas AMD with choroidal neovascularization is referred to as wet/exudative AMD.

Patients with early and intermediate AMD present few effects with respect to visual acuity

impairment, and advanced AMD may cause blindness [3, 4].

While photoreceptor death in the central retina is involved in vision loss in AMD patients,

early pathogenesis may result from degeneration of the RPE, a pigmented ciliated epithelial

cell. RPE cells reportedly undergo apoptosis, a type I programed cell death, in AMD eyes [5,

6]. Due to its juxtaposition to the choriocapillaris, which is in a high blood stream with high

oxygen, RPE cells are exposed to high oxygen microenvironment [6]. While AMD pathophysi-

ology is not fully understood, these studies have implicated oxidative damage in AMD patho-

genesis [7]. Epidemiological studies also show that smoking is positively associated with AMD,

whereas an antioxidant diet was reported to reduce risk of progression to advanced AMD [8].

Kinases act as upstream regulators in signaling pathways in order to maintain cellular

homeostasis in normal conditions and lead to cell death in response to various stresses, includ-

ing oxidative stress. The vascular endothelial growth factor (VEGF) gene locus is highly associ-

ated with both wet and dry AMD [9]. Elevated VEGF levels trigger IL-1β activation of

inflammation via cryopyrin (NRLP3)-mediated inflammasome formation [10]. Oxidative

stress induces the mammalian target of rapamycin (mTOR) activation involved in RPE cell dif-

ferentiation and hypertrophy, which in turn initiates photoreceptor degeneration [11]. Several

kinase inhibitors against VEGF and mTOR have been proposed as therapeutic treatment for

AMD (ClinicalTrials.gov identifier: NCT00304954). However, the effects of other kinases on

the response of RPE cells to oxidative damage remain unknown. In this study, we conducted

kinome-wide siRNA screening for potential kinase targets that may be required for oxidative

stress-induced cytotoxicity of RPE cells. The results show that silencing the erb-b2 receptor

tyrosine-protein kinase 2 (ERBB2) offered protection from oxidative damage-associated oxida-

tive stress, which might involve activation of autophagy-regulating protease (ATG4B) and

nuclear factor erythroid 2-related factor 2 (NRF2) and a diminution in autophagy. Our find-

ings suggest that ERBB2 might be a potential marker or therapeutic target for AMD patients.

Material and methods

Reagents and cell culture

Hydrogen peroxide (H2O2) 35% was purchased from Sigma-Aldrich (349887, Merck KGaA,

USA). Dulbecco’s modified Eagle’s medium (DMEM) and Ham’s F12 medium were obtained

from GIBCO (Life Technologies; Carlsbad, USA). CellTiter-Glo assay (G7572), Nano-Glo

luciferase and ROS-Glo Hydrogen Peroxide assay kits were purchase from Promega Corpora-

tion (Madison, WI, USA). Chloroquine (CQ; Sigma-Aldrich, C6628) and Concanavalin A

(ConA, MERCK, MO, 344085) were dissolved in dimethyl sulfoxide (DMSO) to prepare stock

solutions. Human RPE cell cultures (ARPE-19) were purchased from the American Type Cul-

ture Collection (CRL-2302; ATCC) and cultured as previously described [12].

Cell viability assay

ARPE19 cells were seeded at 5000 cells/well in 96-well plates and either silenced with siRNA

against ERBB2 (Ambion, s611 or Dharmacon, 2064), ATG5 (Dharmacon, 9474), ATG7
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(Ambion, s20652), unc 51 like autophagy kinase 1(ULK1) (Dharmacon, 8408), or beclin 1

(BECN1) (Ambion, s16538) or treated with 20 μM CQ and ConA. Cell viability was measured

by CellTiter-Glo Luminescent Assay kit (G7572) according to the manufacturer’s instructions.

The method allows detection of cellular ATP level via generation of a luminescent signal.

Luminescent ROS and NRF2 reporter assay

ARPE19 cells were seeded in 384-well plates containing RNAimax (Invitrogen, 13778–150)

and pooled siRNA library against human kinase or kinase related genes (709 genes, A30079,

Thermo Fisher Scientific) for 48 h. The transfected cells were exposed to hydrogen peroxide

for 24 h. The medium was replaced with fresh culture medium, and intracellular ROS levels

were assessed using the ROS-Glo Hydrogen Peroxide Assay kit (G8820) according to the man-

ufacturer’s instructions. The assay utilizes a derivatized luciferin substrate that reacts with

hydrogen peroxide to produce a luciferin product, generating a luminescent signal that allows

quantification of hydrogen peroxide in the cell. All experiments were repeated at least three

times. For the NRF2 reporter assay, cells were transfected with vector (PGL 4.37) harboring

the NRF2-binding promoter (AGCTTGGAAATGACATTGCTAATGGTGACAAAGCAACTTT
TAGCTTGGAAATGACATT GCTAATGGTGACAAAGCAACTTT) for luciferase expression.

One-Glo was added to the treated cells, and NRF2 activity was measured with a luminescent

reader.

Real-time PCR

ARPE-19 cells transfected with siRNA were used for the extraction of total RNA with TRIzol

Reagent (Invitrogen, 15596–018). 1 μg RNA was converted to cDNA with Reverse Transcrip-

tase (Invitrogen, 18064–014), and ToolsQuant II Fast RT kit (Tools, Taiwan, KRT-BA06) was

used for cDNA synthesis. The amount of target gene mRNA, hemoxygenase (HO)-1 relative

to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was analyzed using a real-time poly-

merase chain reaction (qPCR) performed in the StepOnePlus system (Applied Biosystems)

using SYBR Green Master Mix (Applied Biosystems, 4385612). The primers for the qPCR will

be provided upon request.

Immunoblotting

Cells were harvested and lysed followed by immunoblotting for detection of protein levels as

previously described [13]. Briefly, the cells were lysed with radioimmunoprecipitation assay

(RIPA) buffer containing protease inhibitor cocktail (Roche, 11873580001). Cellular proteins

were separated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

and transferred onto nitrocellulose membranes. The proteins on the membrane were probed

with primary antibodies against MAP1LC3B (Sigma-Aldrich, L7543) and ACTB (β-actin,

Sigma-Aldrich, A5441); sequesterone (SQSTM1) (BD Pharmingen, 610832), ERBB2 (Cell Sig-

naling Technology, 29D8), ULK1 (Cell Signaling Technology, D8H5), ATG5 (Cell Signaling

Technology, 8540), and ATG7 (Cell Signaling Technology, 8558), NRF2 (Santa Cruz, sc-13032

or Abcam, ab137550) and BECN1 (SC-11427) (Santa Cruz), and then detected with an HRP-

labeled secondary antibody (Santa Cruz, sc-2005). For cell fractionation, collected cells were

incubated with 200 μl lysis buffer containing 0.5% NP40 and protease cocktail (Sigma, Cat. no.

P-2714) on ice for 15 min in order to break cell membranes followed by centrifugation at 1300

xg for 10 min to collect nuclear fractions. The supernatant was further centrifuged at 14,000 xg

for 30 min in order to harvest cytoplasmic fractions. Equal amounts of 2X Laemmli SDS-sam-

ple buffer was used to lyse both the nuclear pellet and cytoplasm for further immunoblotting.

For the in vitro cleavage assay as reported formerly [14], proteins were incubated with 250 nM

ERBB2-mediated oxidative stress-induced autophagic cell death
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protein substrates (LC3B-Stag, GATE-Stag) in 50 μl reaction buffer containing 50 mM Tris

(pH 8.0), 1 mM dithiothreitol, and 150 mM NaCl at 37˚C for 2 h. Fifty microliters of 2X

Laemmli SDS-sample buffer was used to stop the reaction for immunoblot analysis using anti-

S-tag antibody (Novogen, 71549) or anti-myc antibody (Roche, 11667203001).

Transfection and infection

For siRNA transfection as described previously [15], cells were reversely transfected with RNA

iMAX (Life Technologies; 13778–150) and 5 nM scramble siRNA (Life Technologies, 12935–

112), kinome siRNA library (2127 siRNA for 709 gene, A30079, Thermo Fisher Scientific),

ATG5 (GE Healthcare Dharmacon, 9474), ATG7 (Life Technologies, s20652), BECN1 (Life

Technologies, 4392420), ULK1 (Dharmacon, 8408), or ERBB2 (Life Technologies, 4390824;)

for 72 h. For shRNA infection, 8XARE reporter plasmid, a packaging and VSV-G expressing

envelope plasmid, were transfected into HEK293T cells using the transfection reagent, Lipo-

fectamine 2000 (Life Technologies, 11668–027) for two days to achieve an infection. Cells were

then harvested for further experiments or to confirm knockdown efficiency via

immunoblotting.

Statistical analysis

All data were expressed as the mean ± standard error of the mean (SEM) of at least three inde-

pendent experiments within one month to avoid the huge difference caused by different cell

passages. The Mann-Whitney U-test was used to perform statistical analysis with Prism 5.0

(Graph-Pad) to compare the effects between each group. Significant results were marked as
�P<0.05, ��P<0.01 or ��� P<0.001.

Results

In order to screen potential kinase involvement in oxidative stress-induced ROS production

and cell death, we first optimized ROS production in ARPE-19 cells during oxidative stress.

ARPE-19 cells were transfected with scramble siRNA and then exposed to various concentra-

tions of hydrogen peroxide (62.5, 125, 250, 500, 1000 μM). The ROS level significantly

increased in ARPE-19 cells in a dosage-dependent manner (Fig 1A). We also observed that at

the highest concentration of hydrogen peroxide, ARPE-19 cell viability was markedly reduced

(Fig 1B). The signal-to-noise ratio was>3 using hydrogen peroxide at 500 μM; therefore, this

concentration was selected for conducting high throughput screening. Using a kinome siRNA

library consisting of 710 kinase-related genes, kinome-wide siRNA screening was conducted

to identify potential kinases that may promote intrinsic ROS production in cells under oxida-

tive stress (Fig 1C), and the top 10 hits were selected for further validation (Fig 1D). Knock-

down of three candidate genes, mitogen-activated protein kinase (MAPK)SP1, serine/

threonine protein kinase (WNK1), and receptor protein tyrosine kinase (ERBB2) caused a

reduction in ROS production in ARPE-19 during oxidative stress (Fig 1D).

NRF2 and autophagy are critical for inhibiting intracellular ROS production. Autophagy

induction triggers degradation of kelch-like ECH-associated protein 1 (KEAP1), which is a

substrate adaptor protein for the Cullin3 (Cul3)-containing E3-ligase complex. KEAP1 degra-

dation further liberates NRF2 to activate SQSTM1 expression [16]. Accordingly, we evaluated

NRF2 and autophagy involvement in ARPE-19 cells during oxidative stress. Hydrogen perox-

ide induced conversion of MAP1LC3B-I to MAP1LC3B-II and caused an increase in SQSTM1

protein level (Fig 2A and 2B). Silencing of ERBB2 or treatment with autophagy inhibitor CQ

also caused an increase in SQSTM1 protein level, which was further augmented with hydrogen

peroxide co-treatment (Fig 2A and 2B). Hydrogen peroxide also causes an elevation in

ERBB2-mediated oxidative stress-induced autophagic cell death
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SQSTM1 mRNA levels, whereas silencing ERBB2 and treatment with CQ diminished the

hydrogen peroxide-induced elevation of SQSTM1 mRNA level (Fig 2C). These results suggest

that hydrogen peroxide may transcriptionally activate SQSTM1 gene expression, whereas

ERBB2 knockdown may inhibit autophagy and allow intracellular accumulation of SQSTM1

during oxidative stress.

ATG4B is a key protease required for pro-MAP1LC3B activation and MAP1LC3B-II

deconjugation. ROS has been shown to spatiotemporally inactivate ATG4 to promote autop-

hagy in starved cells [17]. Indeed, silencing ATG4B elevates autophagic flux in colorectal cancer

cells, which implies that excessive ATG4B has negative effects on autophagy [18]. In order to

examine the involvement of ATG4B expression and activation in ERBB2-modulated autophagy

in ARPE-19 cells, silenced cell lysates were incubated with S-tagged recombinant substrates,

including MAP1LC3B and GATE16, and we found that knockdown of ERBB2 elevated ATG4B

protein level. Removal of S-tag from the C-terminus of MAP1LC3B or GATE16 was also

enhanced in ERBB2-silenced cells, whereas knockdown of ATG4B let of accumulation of S-

tagged MAP3LC3B and Golgi-associated ATPase enhancer (GATE16) (Fig 3A–3D), suggesting

that ERBB2 may inactivate ATG4B to facilitate autophagy in cells under oxidative stress. Similar

to treatment with hydrogen peroxide, ERBB2 knockdown caused an elevation in nuclear locali-

zation of NRF2 (Fig 3E) and its transcriptional activity (Fig 3F), which provides clues to the way

in which silencing ERBB2 reduces ROS levels in ARPE-19 cells during oxidative stress.

Autophagy could play a protective or detrimental role in cells during periods of stress. In

order to further inspect the role of autophagy and ERBB2 in oxidative stress-induced cell

Fig 1. Kinome siRNA screening for cytotoxic effects of ARPE-19 cells during oxidative stress. (A) Human RPE

ARPE-19 cells were treated with non-targeting siRNA for 48 h, followed by treatment with hydrogen peroxide at 62.5,

125, 250, 500, and 1000 μM for 24 h in order to determine cell viability. Cellular ROS production and (B) cell viability

were measured with ROS-Glo and Cell-titer Glo, respectively. (C) Cells were treated with kinome siRNA (710 gene) for

48 h followed by treatment with hydrogen peroxide (500 μM) for 24 h in order to measure ROS production in cells.

(D) The top 10-ranked hits from kinome siRNA screening were further validated for cellular ROS production in three

independent experiments (Three parallel samples were included in each experiment), and the results are shown as

mean ± SEM.

https://doi.org/10.1371/journal.pone.0213932.g001

ERBB2-mediated oxidative stress-induced autophagic cell death
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death, ARPE-19 cells were treated with hydrogen peroxide in the absence or presence of autop-

hagy inhibitors, including CQ and ConA (Fig 4A), and we found that inhibition of autophagy

significantly reduced oxidative stress-induced cell death. Likewise, knockdown of ERBB2

caused an increase in the number of viable cells during oxidative stress (Fig 4B). Furthermore,

ATG5 and ATG7 are essential genes required for autophagy, while ULK1 and BECN1 are

genes involved in ATG5/7-independent autophagy. Deprivation of ERBB2 or addition of

siRNA against ATG5/7 or ULK1/BECN1 resulted in accumulation of SQSTM1 (Fig 5A and

5B). Interestingly, silencing AERBB2 in ATG5/7-deficient cells significantly recovered cell via-

bility during oxidative stress (Fig 5C). However, ERBB2-silenced cells acquired no protective

effects from ULK1/BECN1 knockdown compared to cells harboring siRNA against ERBB2

alone. These results suggesting knockdown of ULK1/BECN1 may have additional cytotoxic

effects in ARPE19 cells. Taken together, hydrogen peroxide may induce autophagic cell death

in ARPE19 cells via ERBB2 modulation. Ablation of ERBB2 or the autophagic process protects

cells from oxidative stress as illustrated in the schematic diagram in Fig 5D.

Discussion

Oxidative stress has been shown to be highly associated with AMD development of AMD. It

has been suggested that antioxidants and kinases may aid in preventing AMD; however, the

Fig 2. Effects of ERBB2 on autophagy in ARPE-19 cells during oxidative stress. (A) Human RPE ARPE-19 cells

were transfected with 5 nM scramble siRNA or siRNA against ERBB2 for 64 h and then treated with hydrogen

peroxide (500 μM) for 8 hr. The cells were lysed for western blotting using antibodies against NRF2, SQSTM1,

MAP1LC3B, ATG4B, and ACTB. (B) The quantitative results for ratio of MAP1LC3B-II/I and SQSTM1 protein level

are shown. (C) The mRNA levels of SQSTM1 in cells as mentioned above were determined by real-time polymerase

chain reaction (PCR). The results were analyzed using Prism 5.0 and expressed as mean ± SEM from three

independent experiments (Three parallel samples were included in each experiment).

https://doi.org/10.1371/journal.pone.0213932.g002

ERBB2-mediated oxidative stress-induced autophagic cell death

PLOS ONE | https://doi.org/10.1371/journal.pone.0213932 March 14, 2019 6 / 13

https://doi.org/10.1371/journal.pone.0213932.g002
https://doi.org/10.1371/journal.pone.0213932


Fig 3. Effects of ERBB2 on ATG4B in ARPE-19 cell during oxidative stress. Cells were transfected with 5 nM scramble

siRNA or siRNA against ERBB2 or ATG4B for 48 h, followed by treatment with hydrogen peroxide (500 μM) for 24 h.

The cells were then lysed, and equal amount of proteins were incubated with S-tagged (A) MAP1LC3B and (C) GATE-16

for 2 h. S-tag removal and ATG4B expression were examined by immunoblotting (B and D). The S-tag and ATG4B

protein levels were quantitated with image J and expressed as mean ± SEM. (E) The knock-downed cells in the absence

or presence of hydrogen peroxide were harvested, and nuclear and cytoplasmic fractions were split. The fractionated

proteins were determined by immunoblotting using antibodies against NRF2 and ATG4B. (F) NRF2 transcriptional

activity was monitored in cells harboring vector containing NRF2 promoter and luciferase.

https://doi.org/10.1371/journal.pone.0213932.g003

Fig 4. Effects of autophagy inhibitors in oxidative stress-induced cell death. (A) Human RPE ARPE-19 cells were

treated with hydrogen peroxide (500 μM) in the absence or presence of autophagy inhibitor CQ (20 μM) or ConA (10

nM) for 24 h. Cell viability was quantified with Cell-titer Glo assay system. (B) The cells were transfected with 5 nM

scramble siRNA or siRNA against ERBB2 for 48 h and treated with hydrogen peroxide (500 μM) in the absence or

presence of autophagy inhibitors CQ (20 μM) or ConA (10 nM) for 24 h. The results were analyzed with Prism 5 and

expressed as mean ± SEM from three independent experiments (Three parallel samples were included in each

experiment).

https://doi.org/10.1371/journal.pone.0213932.g004

ERBB2-mediated oxidative stress-induced autophagic cell death
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molecular mechanisms that confer protection against oxidative stress is not clear. Our study

involving kinome siRNA library screening revealed a number of interesting findings. First,

silencing of ERBB2 inhibited ROS production in ARPE-19 cells during oxidative stress. Sec-

ond, deprivation of ERBB2 resulted in induction of autophagy and NRF2 activation, most

likely due to elevated ATG4B expression. Third, knockdown of ERBB2 might reduce autopha-

gic cells death in ARPE-19 cells during oxidative stress. Overall, our results suggest that in

ARPE-19 cells, ERBB2 may cause a ATG4B diminution that promotes autophagic cell death

with NRF2 inactivation in response to oxidative stress.

ERBB2 is a tyrosine kinase that belongs to the epidermal growth factor receptor (EGFR)

family, which include ERBB1 (EGFR/HER1), ERBB2 (HER2), ERBB3 (HER3), and ERBB4

(HER4) [19–21]. Among the four members, ERBB2 has the highest kinase activity, and upon

dimerization with ERBB3, forms a heterodimer with the strongest signaling function [22]. In

breast cancer, ERBB2 over-expression is highly associated with tumorigenesis. ERBB2 expres-

sion levels serve as a biomarker for targeted therapy. In regard to autophagy, ERBB members

could induce or inhibit autophagy in a context-dependent manner [23]. ERBB1 phosphory-

lates and activates AKT, which in turn activates mTOR, an autophagy inhibitor that also

Fig 5. Effects of ERBB2 in autophagy deficient ARPE-19 cells during oxidative stress. (A) Human RPE ARPE-19

cells were transfected with 5 nM scramble siRNA or siRNA against ERBB2 without or with ULK1, BECN1, ATG5, and

ATG7 for 48 h and treated with hydrogen peroxide (500 μM) for 24 h. The cells were lysed for immunoblotting to

determine protein level of ERBB2, ATG5, ATG7, BECN1, ULK1, SQSTM1, and MAP1LC3B using ACTB as the

internal control. (B) SQSTM1 protein levels and ratio of MAP1LC3B-II/I were quantitated with image J and expressed

as mean ± SEM. (C) The knock-downed cells were treated with hydrogen peroxide (500 μM) for 8 h, and cell viability

was quantified with Celltiter-Glo assay system. (D) Schematic diagram for the potential role of ERBB2 in autophagic

cell death in ARPE-19 cells during oxidative stress.

https://doi.org/10.1371/journal.pone.0213932.g005
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inhibits autophagy modulation via ULK1 activation [22, 24]. Moreover, ERBB1 attenuates

autophagy by both reducing BECN1 and vps34 association in to enhancing BCL-2 binding to

BECN1 [25]. On the other hand, recruitment of lysosomal-associated transmembrane protein

4B (LAPTM4B), Sec5, and RUN domain protein as Beclin 1-interacting and cysteine-rich con-

taining (Rubicon) by ERBB1 liberates BECN1 for autophagy induction [26], a process that is

independent of kinase activity. ERBB2 over-expression was shown to suppress stress-induced

autophagy [27]. Our present study showed that ERBB2 may cause a reduction in ATG4B

expression and MAP1LC3-II deconjugation to promote autophagy in ARPE-19 cells during

oxidative stress, suggesting varied involvement of different ERBB isoforms in autophagy mod-

ulation. Several kinase inhibitors that negatively regulate autophagy have been proposed for

use as therapeutic treatment for AMD, including anti-VEGF agents and mTOR inhibitors.

Nevertheless, ERBB2 may be the link between kinases and autophagy in RPE cells, at least in

the context of oxidative damage, and further studies are warranted in order to elucidate the

relationship.

Hydrogen peroxide oxidizes the cysteine residue of AMPK and ATG4, leading to autophagy

induction. Post-translationally, hydrogen peroxide modifies α and β subunits of adenosine

monophosphate-activate protein kinase (AMPK) to increase its kinase activity in human

embryonic kidney (HEK)293T cells [28], which facilitates autophagy via ULK1 activation and

mTOR inactivation [29, 30]. Furthermore, ATG4 modulates autophagy through involvement

in the conjugation and deconjugation of ATG8 homologues, including MAP1LC3 and

gamma-aminobutyric receptor-associated protein (GABARAP) family members [31]. ATG4

initially cleaves the C-terminus of MAP1LC3 to expose the C-terminal glycine residue for con-

jugation with phosphatidylethanolamine (PE) and thus leads to autophagosome formation

[17]. The PE-conjugated MAP1LC3 (MAP1LC3-II) can be cleaved by ATG4 and released

from the autophagosome [28], which is likely a critical step for efficient autophagy. Hydrogen

peroxide spatiotemporally inactivates ATG4 to ensure autophagosome formation and lyso-

some fusion in cells during starvation [17]. In addition, phosphorylation of ATG4B is elevated

to enhance ATG4B activity in cells during autophagy-inducing conditions [32]. We found that

ERBB2 modulated ATG4B levels and activity in ARPE-19 cells during oxidative stress. Never-

theless, the detailed mechanisms of ERBB2 involvement in ATGB4 phosphorylation and oxidi-

zation require further studies.

Autophagy is induced in cells in response to oxidative stress via several factors such as pro-

tein kinase R-like endoplasmic reticulum kinase (PERK), hypoxia-induced factor 1(HIF1),

p53, NRF2, and forkhead box (FOX)O3 [33]. Moreover, autophagy can reduce oxidative stress

through the pathway involving NRF2/KEAP1 and SQSTM1/p62 [34, 35]. SQSTM1/p62, an

autophagy substrate and cargo adapter, can interact with and target KEAP1 for selective degra-

dation by autophagosomes [36], thus releasing NRF2. NRF2 is a transcription factor of the leu-

cine zipper family and can activate genes for antioxidant-defense proteins such as glutathione

peroxidase, superoxide dismutase, and thioredoxin [37]. Under normal conditions, NRF2 is

sequestered by KEAP1 and inactivated by proteasomal degradation. Following oxidative stress,

either KEAP1’s ubiquitin activity is inhibited or SQSTM1/p62 interacts with KEAP1 leading

to NRF2 liberation and activation, which in turn limits ROS production and cell damage.

However, ROS also down-regulates ULK1 to inhibit autophagy via phosphorylation of p53 in

NB4 cells [38]. These findings suggest that the effects of ROS on autophagy may depend on

dosage and time of ROS exposure or on cell type. In this study, although NRF2 might be

involved in SQSTM1 expression for autophagy induction, the effect was relatively weak (Fig 2,

~1.6-fold increase) compared NRF2’s transcriptional activity (Fig 3, ~20-fold increase). We

think that ERBB2 may positively modulate autophagy, whereas it may have an autophagy-

independent root for negatively modulating NRF2 in cells during oxidative stress. Silencing
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ERBB2 might trigger both NRF2 activation and autophagy induction. Moreover, NRF2 is a

transcriptional factor for several antioxidant genes, which may reduce ROS production as

shown in Fig 1. However, since the protective effects of knockdown of ERBB2 are similar to

autophagy inhibitory cells during oxidative stress, ERBB2-modulated autophagy might be det-

rimental in cells during oxidative stress.

Autophagy has been implicated as a protective pathway for stress-induced injury preven-

tion, mainly through damaged protein and organelle removal in cells. Autophagy is elevated

and plays a cytoprotective role in several ocular diseases such as herpes simplex virus type 1

(HSV-1) infection, cataracts, glaucoma, diabetic retinopathy (DR) [39, 40]. However, increas-

ing evidence implicates autophagy in stress-induced cell death in certain settings. For example,

autophagy has been found to be elevated in ischemia-induced neuronal cell death in the hippo-

campus [41]. Deprivation of autophagy with either inhibitor 3-methyladenine or RNAi against

BECN1 or ATG7 protects neurons from ischemia-induced death. Cardiac injury caused by

ischemia reperfusion is also diminished in BECN1 heterozygous mice [42]. Moreover, hydro-

gen peroxide activates several autophagy-regulating proteins to promote autophagic cells

death [43]. In line with our study, ERBB2 is involved in autophagic cell death resulting from

oxidative stress, which is the main cause of AMD. These finding support ERBB2 as a potential

target in the prevention and treatment of AMD.
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