Supplementary Materials for "MetaBinner: a high-performance and stand-alone ensemble binning method to recover individual genomes from complex microbial communities"

Ziye Wang^{1,2}, Pingqin Huang³, Ronghui You¹, Fengzhu Sun⁴, and Shanfeng Zhu^{1,5,6,7,8⊠}

- ¹ The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
 ² School of Mathematical Sciences, Fudan University, Shanghai, China
- ³ Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
 - ⁵ Shanghai Qi Zhi Institute, Shanghai, China
- ⁶ Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
 - MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China ⁸ Zhangjiang Fudan International Innovation Center, Shanghai, China zhusf@fudan.edu.cn

A Descriptions about the ground truth annotations provided by CAMI II challenges

The ground truth annotations of contigs from the simulated datasets for AMBER are provided by the organizer of CAMI I and II challenges (https://data.cami-challenge.org). The simulated datasets were generated with CAMISIM (https://github.com/CAMI-challenge/CAMISIM). As introduced in [3,18], CAMISIM generates a BAM file for each sample of a dataset, which gives the alignment of simulated reads to reference genomes. Furthermore, it extracts the perfect co-assembly of all samples by including all regions covered by at least one read according to the BAM files. The perfect co-assembly is used for binning, named as "gold-standard cross-sample assembly" in our paper, as done in [4]. Strain-level is used for measuring the performances of tools using AMBER.

B Brief description of k-means++

K-means++ [42] is a variant of k-means, which utilizes a smart way to initialize clustering centers to improve clustering accuracy and computational speed. K-means++ uniformly chooses a data point as the first initial center c_1 at random from the set of data points, \mathcal{X} . A new center c_i is chosen from \mathcal{X} with probability P(x), which is defined in equation (1). The process is repeated until K centers have been chosen.

$$P(x) = \frac{D(x)^2}{\sum_{x \in \mathcal{X}} D(x)^2},\tag{1}$$

where D(x) is the shortest distance between point x and the closest previously chosen initial center.

C Parameters used in Step 4 of MetaBinner

Step 4 is developed for generating more low-contamination bins for further integration by splitting bin with high contamination. According to the definitions for estimated completeness and contamination given in CheckM, it is possible for a bin with high contamination (>50%) and low completeness (<50%). Therefore, we also set a high completeness condition to split bins to avoid unnecessary waste of time on the bins with low completeness. We further tried different values of parameters for MetaBinner in CAMI Airways, as shown in Additional file 1: Table S4.

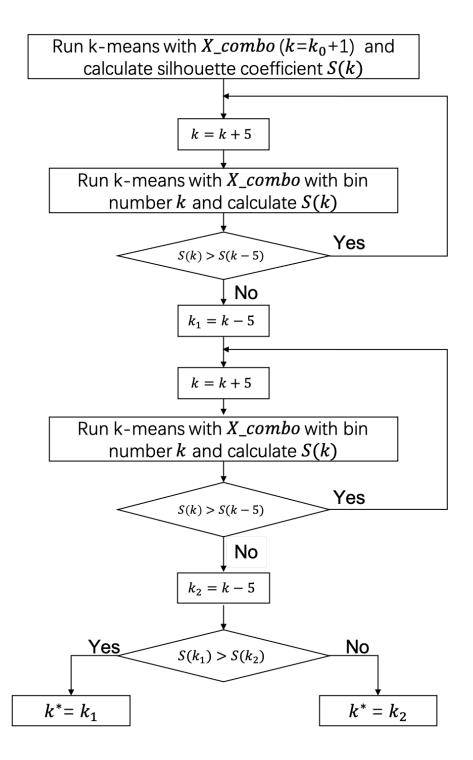


Fig. S1: The workflow of estimating the number of bins from k_0 .

- D Supplementary figure
- E Supplementary tables

Table S1: The total number of predicted bins per binner.

Methods	CAMI	CAMI Gas-	- CAMI	STEC	STEC
	Airways	trointestinal	Mouse gut	(MEGAHIT	(metaSPAdes
		tract		assembly)	assembly)
CONCOCT	202	155	353	331	312
MaxBin	437	205	874	303	283
MetaBAT	210	158	597	218	218
VAMB	344	217	641	256	269
BMC3C	1560	342	565	921	800
DAS Tool	137	156	556	140	105
MetaWRAP	144	139	523	155	143
MetaBinner	285	202	641	194	167

Table S2: Performance comparison of the binners on the real dataset evaluated by CheckM.

Dataset	Methods	Metrics						
		#bins	#bins	#bins	#bins	#bins	#bins	
		(>50%	(>70%	(>90%	(>50%	(>70%	(>90%	
		comp	comp	comp	comp	comp	comp	
		< 10%	< 10%	< 10%	< 5%	< 5%	< 5%	
		cont)	cont)	cont)	cont)	cont)	cont)	
	CONCOCT	101	72	22	92	65	21	
	MaxBin	102	72	28	86	61	26	
STEC	MetaBAT	91	53	18	87	50	18	
(metaSPAdes	VAMB	129	81	25	127	79	25	
assembly)	BMC3C	108	65	21	107	65	21	
	DAS Tool	78	57	24	73	52	24	
	MetaWRAP	143	96	31	135	92	31	
	MetaBinner	147	101	33	141	96	32	

The best results among all the methods are in bold, while the best results among the individual binners are italicized. The input binning results of MetaWRAP are generated by CONCOCT, MaxBin and MetaBAT. "#bins (>50% comp <10% cont)" denotes that the number of recovered bins that have >50% completeness and <10% contamination.

Table S3: Performance comparison of the binners on the real dataset evaluated by AMBER (based on the contigs labeled on the species-level).

Dataset	Methods	Metrics						
		#bins (>50%	#bins (>70%	#bins (>90%	#bins (>50%	#bins (>70%	#bins (>90%	
		comp <10%	comp <10%	comp <10%	$\begin{array}{c} \text{comp} \\ < 5\% \end{array}$	$\begin{array}{c} \text{comp} \\ < 5\% \end{array}$	$\begin{array}{c} \mathrm{comp} \\ < 5\% \end{array}$	
		cont)	cont)	cont)	cont)	cont)	cont)	
	CONCOCT	51	45	18	46	41	17	
	MaxBin	47	40	24	37	31	19	
STEC (MEGAHIT assembly)	MetaBAT	47	24	6	44	22	5	
	VAMB	57	47	20	50	42	19	
	BMC3C	61	43	21	54	39	18	
	DAS Tool	37	32	14	31	28	12	
	MetaWRAP	53	39	11	49	36	10	
1	MetaBinner	50	44	25	46	41	24	

The best results among all the methods are in bold. The input binning results of MetaWRAP and DAS Tool are generated by CONCOCT, MaxBin and MetaBAT. "#bins (>50% comp <10% cont)" denotes that the number of recovered bins that have >50% completeness and <10% contamination.

Table S4: Performance comparison of the binners on the CAMI Airways dataset evaluated by AMBER.

Dataset	Methods			Metrics					
				#bins	#bins	#bins	#bins	#bins	#bins
				(>50%	(>70%	(>90%	(>50%	(>70%	(>90%
				comp	comp	comp	comp	comp	comp
				<10%	< 10%	<10%	< 5%	< 5%	$< \! 5\%$
				cont)	cont)	cont)	cont)	cont)	cont)
	MetaBinner	(post_process:	min-	217	196	140	186	172	125
	comp_50_min	$cont_10$							
	MetaBinner	(post_process:	min-	215	191	142	186	169	127
	comp_50_min	$cont_30$							
CAMI Airways	s MetaBinner	$(post_process:$	min-	215	191	144	186	169	129
	comp_50_min	$cont_50$							
	MetaBinner	(post_process:	min-	217	196	140	186	172	125
	comp_70_min								
	MetaBinner	(post_process:	min-	215	191	142	186	169	127
	comp_70_min	cont_30)							
	MetaBinner	(post_process:	min-	215	191	144	186	169	129
	comp_70_min	cont_50)							

[&]quot;# $\overline{\text{bins}}$ (>50% comp <10% cont)" denotes the number of recovered bins that have >50% completeness and <10% contamination. "mincomp_a_mincont_b" denotes that we split bins with the contamination (>= b%) and completeness (>= a%) in Step 4.

F Protocols of the compared methods

F.1 Commands for Binning:

CONCOCT, MaxBin and MetaBAT:

metawrap binning -o path_to_outdir/INITIAL_BINNING -t 40 -a contig_file --interleaved --universal --metabat2 --maxbin2 --concoct path_to_reads/*fastq

METAWRAP:

metawrap bin_refinement -o path_to_outdir/metawrap -t 40 -A path_to_outdir/INITIAL_BINNING/metabat2_bins/ -B path_to_outdir/INITIAL_BINNING/maxbin2_bins/ -C path_to_outdir/INITIAL_BINNING/concoct_bins/ -c 50 -x 10

DAS tool:

DAS_Tool -i path_to_outdir/metawrap/concoct_bins.contigs, path_to_outdir/metawrap/maxbin2_bins.contigs, path_to_outdir/metawrap/metabat2_bins.contigs -l concoct,maxbin,metabat -c contig_file -o path_to_outdir/das_tool --threads 40 (--search_engine diamond)

*It is necessary to add the parameter "--search_engine diamond" for running DAS tool on the CAMI mouse gut dataset.

VAMB:

vamb --outdir path_to_outdir/vamb --fasta contig_file --jgi path_to_outdir/INITIAL_BINNING/work_files/metabat_depth.txt --minfasta 200000

MetaBinner:

Generate k-mer profiles:

python path_to_metabinner/scripts/gen_kmer.py contig_file 1000 4

Generate coverage profiles:

cat path_to_outdir/INITIAL_BINNING/work_files/mb2_master_depth.txt | cut -f - 1,4- > coverage_profile.tsv

bash run_metabinner.sh -a contig_file -o output_dir -d coverage_profile.tsv -k kmer_profile -p metabinner_path

BMC3C:

We ran BMC3C according to the commands given in the link provided by its authors: http://mlda.swu.edu.cn/upload/code/BMC3C_README.txt

F.2 Commands for the assembly of the STEC dataset:

cat path_to_fq_files/ERR*_1.fastq > path_to_fq_files/ALL_READS_1.fastq cat path_to_fq_files/ERR*_2.fastq > path_to_fq_files/ALL_READS_2.fastq

MetaSPAdes:

metawrap assembly --metaspades -1 path_to_fq_files/ALL_READS_1.fastq -2 path_to_fq_files/ALL_READS_2.fastq -m 900 -t 45 -o path_to_outdir/ASSEMBLY_metaspades

MEGAHIT:

metawrap assembly -1 path_to_fq_files/ALL_READS_1.fastq -2 path_to_fq_files/ALL_READS_2.fastq -m 900 -t 45 -o path_to_outdir/ASSEMBLY_megahit