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Abstract
To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric can-

cer and noncancerous tissues from patients were enrolled for gene expression microarray

analyses. Limma methods were applied to analyze the data, and genes were considered to

be significantly differentially expressed if the False Discovery Rate (FDR) value was < 0.01,

P-value was <0.01 and the fold change (FC) was >2. Subsequently, Gene Ontology (GO)

categories were used to analyze the main functions of the differentially expressed genes.

According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we found

pathways significantly associated with the differential genes. Gene-Act network and co-

expression network were built respectively based on the relationships among the genes,

proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as

significantly differentially expressed genes were selected for the further analysis. The GO

categories, pathway analyses and the Gene-Act network showed a consistent result that

up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and mi-

croenvironment formation, while down-regulated genes were involved in metabolism.

These results of this study provide some novel findings on coding RNAs, lncRNAs, path-

ways and the co-expression network in gastric cancer which will be useful to guide further

investigation and target therapy for this disease.

Introduction
Gastric cancer (GC) is one of the most common cancers worldwide, and its incidence is partic-
ularly high in Eastern Asia, especially in China. Approximately 952,000 new cases of stomach
cancer were diagnosed worldwide in 2012, and half of them occurred in Eastern Asia (mainly
in China) [1]. In China, the majority of patients with GC are diagnosed at a late stage with
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poor prognosis. Therefore, elucidating the molecular mechanisms underlying GC progression
is essential to identifying key biomarkers and developing effective targeted therapies.

Over the last decade, gene expression microarrays have become a common tool for examining
gene transcript levels in cancer research. Microarray data is used for a wide variety of analyses,
such as unsupervised clustering, classification, differential expression analysis, and expression
mapping of quantitative trait loci [2]. It not only helps to identify key dysfunctional genes in can-
cer but provides genome-wide information on gene expression at one time as well[3,4]. In this
study, we performed a genome-wide survey of the expression of lncRNAs and mRNAs from
paired samples of primary gastric cancer tissues and noncancerous tissues, to profile the differen-
tially expressed lncRNAs and coding RNAs. Study of these data will provide valuable informa-
tion on the mechanism of carcinogenesis and allow discovery of key genes that may act as future
targets of anti-cancer therapy.

Methods and Materials

Ethical statement
Written informed consent was obtained from all participants. The study was approved by the
Human Research Ethics Committee of Ruijin Hospital, Shanghai Jiao Tong University, School
of Medicine.

Tissue samples
Tissues were taken from primary gastric carcinomas from untreated patients who underwent
D2 radical gastrectomy in Shanghai Ruijin Hospital. For each cancer tissue, a paired noncan-
cerous tissue sample was collected from the adjacent region at the same time. The size of each
sample was around 0.1cm3. All the samples were placed in RNALater within 15 minutes after
excision and stored in liquid nitrogen until RNA extraction. In this study, 32 paired tissues
were collected for the microarray and 26 paired samples were enrolled for the next-step analy-
sis of GO, pathway and network after quality control using 3D Principal component analysis
(3D-PCA) and Cluster analysis.

Microarray experiments
Agilent SurePrint G3 Human GE 8x60K Microarray (Design ID: 028004) was employed in this
study. Total RNA was isolated and amplified using a Low Input Quick Amp Labeling Kit, One-
Color (Cat#5190–2305, Agilent technologies, US). Then, the labeled cRNAs were purified by a
RNeasy mini kit (Cat#74106, QIAGEN, Germany).

Based on the manufacturer’s instructions, each slide was hybridized with 600ng Cy3-labeled
cRNA using a Gene Expression Hybridization Kit (Cat#5188–5242, Agilent technologies, US)
and washed by the Gene ExpressionWash Buffer Kit (Cat#5188–5327, Agilent technologies, US).

An Agilent Microarray Scanner (Cat#G2565CA, Agilent technologies, US) and Feature Ex-
traction software 10.7 (Agilent technologies, US) were applied to scan each slide with the same
settings shown as follow, Dye channel: Green, Scan resolution = 3μm, 20bit. The raw data were
normalized by the Quantile algorithm, Gene Spring Software 11.0 (Agilent technologies, US)
(detailed in S5 Table).

Limma
Linear models and empirical Bayes methods were applied to analyze the data in this study. The
resulting P-values were adjusted using the BH FDR algorithm. There were three standards for
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us to consider that a gene was significantly differentially expressed, the FDR value was<0.01,
P-value was<0.01 and the fold change was>2. (detailed in S5 Table)

GO category
We performed Gene Ontology (GO) analyses to analyze the functions of the differentially ex-
pressed genes in our microarray according to the key functional classification of The National
Center for Biotechnology Information (NCBI). Generally, Fisher’s exact test and the χ2 test
were applied to classify the GO category, and the false discovery rate (FDR, FDR ¼ 1� Nk

T
) was

calculated to correct the P-value (Nk refers to the number of Fisher’s test P-values less than the
χ2 test P-values). The enrichment Re was given by: Re = (nf/n)/(Nf/N) in the significant catego-
ries (Nf is the number of differential genes within the particular category, n is the total number
of genes within the same category, nf is the number of differential genes in the entire microar-
ray, and N is the total number of genes in the microarray.)(detailed in S5 Table).

Pathway analyses
Pathway annotations of the differential exressed genes were obtained from KEGG (http://www.
genome.jp/kegg/). Pathway categories with a FDR<0.01 were marked. The enrichment of sig-

nificant pathways was given by: enrichment = ng
na

� �
/ Ng

Na

� �
, which helped us to locate more signifi-

cant pathways in our study (ng is the number of differential genes within the particular
pathway, na is the total number of genes within the same pathway, Ng is the number of differ-
ential genes which have at least one pathway annotation, and Na is the number of genes which
have at least one pathway annotation in the entire microarray.) (detailed in S5 Table).

Gene-Act network
According to the KEGG database, one gene may be involved in several pathways or interact
with several other genes. All the gene—gene interactions were pooled together to build the
Gene-Act network based on the differential pathways, which helped us to reveal the signaling
pathways and key regulatory genes in GC.

Co-expression network
Gene co-expression Network was built according to the normalized signal intensity of specific
expression genes. Degree centrality is defined as the number of links one node has to another,
which determines the relative importance of genes. What’s more, k-cores were applied as a
method of simplifying the graph topology analyses. Core regulatory factors (genes) which have
the highest degrees connect most adjacent genes and build the structure of the network (de-
tailed in S5 Table).

Real-time quantitative PCR
Total RNA was extracted from tissues using the Trizol reagent (Invitrogen) according to the
manufacturer’s instructions. The quantitative real-time polymerase chain reaction (PCR) was
performed by using SYBR-green PCR Master Mix in a Fast Real-time PCR 7500 System (Ap-
plied Biosystems). The primers of the 10 genes were showed in S4 Table. PCR reactions were
performed at 50°C for 2 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. ΔCt
was calculated by subtracting the Ct of β-actin RNA (control) from the Ct of the RNA of sam-
ple, respectively. ΔΔCt was then calculated by subtracting the ΔCt of the control from the ΔCt
of the sample. Fold change was calculated by the equation 2-ΔΔCt.
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Statistical analysis
SPSS software 19 and Microsoft Excel 2010 was used to analyze the data. Expression levels be-
tween cancer tissues and adjacent noncancerous tissues were analyzed by paired-sample t-tests.
P-values below 0.05 were regarded as statistically significant.

Results

Microarray analyses
In total, 42,405 human genes were profiled in our study by using an Agilent G3 Human GE
8x60K microarray. We have submitted our dataset in the repository of “Gene Expression Om-
nibus” and the accession number was “GSE65801” (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE65801). We used linear models and empirical Bayes methods to analyze the
data (see Methods). There were 2371 mRNAs and 350 lncRNAs considered as the differentially
expressed genes by limma for the next-step analysis (Fig 1A).

Among all 2371 differential mRNAs, there are 1142 mRNAs down-regulated and 1229
mRNAs up-regulated in our observation on alterations of gene expression between gastric can-
cer and control tissues (Fig 1C). Most of the differential mRNAs have been proven to be corre-
lated with carcinogenesis and metastasis in most types of cancer (Table 1). The genes such as
GKN2, PGC, MUC6, CHIA, PSCA and FBP2 were among the top 20 down-regulated genes,
while KLK8, SFRP4, INHBA, CLDN1, CST1, FAP, SPP1, OLFM4, and KRT17 were among the
top 20 up-regulated genes (Table 1). However, some genes such as HOXC9, FNDC1, STRA6,
KCNE2, PGA3 and KCNJ16 haven’t been reported in gastric cancer and their roles remain un-
known (Table 1).

In addition, we found 193 down-regulated lncRNAs and 156 up-regulated lncRNAs among
a total of 350 differential lncRNAs based on the profiling (Fig 1B). Most of the lncRNAs have
not been given an official names and their functions remain unknown. However, some have
been reported playing critical roles in cancer, such as H19, GUCY1B2, MEG3 and AKR7L
(Table 2).

In our previous report [36], the fold change (FC) of H19 in 74 gastric cancer versus paired
noncancerous tissues was 6.015, with a P-value of 0.017. This result was consistent with the
data of H19 (Absolute FC = 6.06) in this microarray analyses. Furthermore, over-expression of
H19 contributes to the proliferation, migration, invasion and metastasis of gastric cancer.

Gene Ontology categories
All the differentially expressed genes were classified into different functional categories accord-
ing to the Gene Ontology (GO) project for biological processes. Based on our microarray data,
GO analyses indicated that 208 GO terms were enriched (P<0.01, FDR<0.01) (S1 Table). The
primary GO categories for 170 up-regulated GO terms were focused on cell adhesion, angio-
genesis, multicellular organism development, axon guidance, skeletal system development, col-
lagen fibril organization, positive regulation of angiogenesis, wounding and negative regulation
of cell proliferation (Fig 2A). The main GO categories for down-regulated genes were digestion,
xenobiotic metabolic process, transmembrane transport, ion transport, small molecule meta-
bolic process, negative regulation of growth, glutathione metabolic process, cellular response to
cadmium ion and metabolic process (Fig 2B).

According to the differential genes and functions, we built a GO Tree to explore the interac-
tions among all the differential GO categories. The diversity in these categories when compar-
ing cancerous and control tissues suggested that gastric cancer may be associated with
significantly up-regulated cell migration, cell proliferation, angiogenesis, cell—cell adhesion
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Fig 1. Differentially expressed genes in a gene expressionmicroarray of 26 pairs of gastric cancer and noncancerous tissues. A) Volcano plot
showing the differential genes (red dots) in the expression microarray (P-value <0.01, FDR <0.01). B) Clustering heatmap showing the differential lncRNAs.
Each column represents one sample and each row represents one differential lncRNA.C) Clustering heatmap showing the differential mRNAs. Each column
represents one sample and each row represents one differential mRNA.

doi:10.1371/journal.pone.0125013.g001
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and cell surface receptor signaling pathways, while cell metabolism processes and ion trans-
membrane transport are down-regulated (Fig 3).

Pathway analyses
Pathway analyses were used to identify the significant pathways associated with the differentially
expressed genes according to KEGG. There were 32 up-regulated pathways and 31 down-
regulated pathways based on our data (Fig 4). Furthermore, the pathway profiling was consis-
tent with the results for the GO categories in cancer-related biological functions. Our data
showed some differential genes highly up-regulated which suggested their involved pathways
were activiated. For example, SFRP4, WNT11, FZD2, MYC were highly expressed in cancer tis-
sues which represent theWnt pathway was activiated and BCL2A1, ICM1, TNFSF14 in NF-κB
pathway were highly expressed as well. Most of the cancer-related signaling pathways such as
JAK/STAT, Wnt, NF-κB, PI3K, mTOR, Hedgehog and Notch pathways were activated in gas-
tric cancer compared with noncancerous tissues based on our data (S2 Table). The up-regulated
pathways which were focused on cell adhesion, transcriptional dysregulation, carcinogenesis
and differentiation were correlated with tumorogenesis and metastasis (Fig 4A). However, the
down-regulated pathways were generally responsible for metabolism (Fig 4B).

Gene-Act network
Based on GO categories and pathway analysis, one gene may be involved in several pathways
or interact with several other genes. We pooled the differential genes and built a network of the
interactions of differentially expressed genes. A high degree protein regulates or is regulated by
many other proteins, which implies an important role in the Gene-Act network (S3 Table).

Table 1. top 40 differential expressedmRNAs in gastric cancer

Gene ID Gene Symbol Log2FC P-value FDR Gene ID Gene Symbol Log2FC P-value FDR

8513 LIPF -11.8913 2.90E-15 1.25E-11 3225 HOXC9 5.28242 4.82E-13 3.03E-10

495 ATP4A -10.9406 1.20E-14 3.02E-11 11202 KLK8[20] 4.879913 1.28E-09 6.56E-08

200504 GKN2[5,6] -10.7873 1.58E-15 7.96E-12 84624 FNDC1 4.769853 6.11E-10 3.82E-08

496 ATP4B -10.3587 1.37E-12 5.14E-10 6424 SFRP4[21] 4.727838 3.33E-13 2.18E-10

56287 GKN1[7,8] -10.3119 1.22E-15 7.35E-12 3624 INHBA[22,23] 4.543485 4.35E-14 6.15E-11

643834 PGA3 -10.0035 1.34E-14 3.11E-11 57214 KIAA1199 4.23391 1.12E-12 4.49E-10

9992 KCNE2 -8.71399 2.95E-17 2.97E-13 7058 THBS2[24] 4.221663 1.76E-12 6.04E-10

5225 PGC[9,10] -8.58129 5.84E-12 1.42E-09 5653 KLK6[25,26] 4.083789 2.59E-08 6.53E-07

202915 TMEM184A -8.57672 4.17E-12 1.12E-09 7060 THBS4 4.039727 1.92E-07 3.23E-06

5225 PGC -8.45711 2.67E-12 8.22E-10 9076 CLDN1[27,28] 3.97693 1.84E-11 3.31E-09

4588 MUC6[11,12] -7.51207 3.62E-09 1.42E-07 1469 CST1[29] 3.922162 6.07E-08 1.29E-06

27159 CHIA[13,14] -7.35748 8.68E-11 1.03E-08 2191 FAP[30] 3.894022 2.39E-13 1.80E-10

887 CCKBR[15,16] -7.21386 1.42E-17 2.14E-13 6696 SPP1[31] 3.877552 3.00E-10 2.33E-08

768239 PSAPL1 -6.96121 3.78E-10 2.72E-08 10562 OLFM4[32] 3.872285 5.92E-04 0.002384

1113 CHGA -6.79298 1.52E-10 1.50E-08 3872 KRT17[33] 3.843196 5.78E-10 3.68E-08

8000 PSCA[17,18] -6.75729 3.69E-09 1.45E-07 1365 CLDN3[34] 3.840947 1.01E-05 8.14E-05

3773 KCNJ16 -6.61293 3.07E-11 4.80E-09 3219 HOXB9[35] 3.77977 3.91E-07 5.68E-06

284340 CXCL17 -6.53907 1.54E-07 2.69E-06 7058 THBS2 3.750796 3.57E-12 1.01E-09

8789 FBP2[19] -6.36805 1.48E-12 5.45E-10 140453 MUC17 3.565985 0.00104394 0.003824

6750 SST -6.3097 9.27E-11 1.07E-08 64220 STRA6 3.554919 1.63E-09 7.93E-08

Log2FC<0: down-regulated (left panel), Log2FC>0: up-regulated (right panel)

doi:10.1371/journal.pone.0125013.t001
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The glutathione S-transferase (GST) family, cytochrome P450 (CYP) family, UDP glucurono-
syltransferase 2 (UGT2) family, Epidermal Growth Factor Receptor (EGFR) family and cAMP-
dependent protein kinase catalytic beta (PRKACB) were at the core of the gene—gene interac-
tion network. They may play key roles in the network because they possessed the strongest de-
gree (degree>25) centralities (gene-gene interactions) (Fig 5). It has been reported that GST,
EGFR and PRKACB are responsible for signal transduction pathways involved in tumor
growth and differentiation in different type of cancers [42,43].

Gene co-expression network
We produced a gene co-expression network based on the differentially expressed genes, pro-
teins and protein complex in cancer tissues and noncancerous (control) tissues, respectively.
Compared with the control, the connections between genes in cancer tissues were less, which
suggested that most of the physiological gene—gene interactions and linkages in normal tissues
had been broken or lost in the cancer tissues (Fig 6A and 6B). The genes with high degree and
k-core which means they possessed most of the interactions with other geneswere known as
key genes in the interaction network (Fig 6B) including TRO, GPR124, TIMP2, EMCN, SLIT3,
HTRA1, SPARC, LAMA4 and MEOX2 (Table 3). They were responsible for cell signaling, ad-
hesion, angiogenesis, migration, growth and metastasis.

Confirmation of microarray results by qPCR
We performed Quantitative Real-time PCR (qPCR) on 6 up-regulated genes (COL1A, BGN,
SPP1, MELK, IGFBP4, SPARC) and 4 down-regulated genes (PGC, SST, MT1X, S100P) to ver-
ify our data in gastric cancer tissues (Tumor) and noncancerous tissues (Normal). The expres-
sion ratios of these 10 genes (Tumor/Normal) from qPCR are consistent with those from

Fig 2. GO categories based on differential genes in the expressionmicroarray. A) The significant GO categories for up-regulated genes.B) The
significant GO categories for down-regulated genes. P-value <0.01 and FDR <0.01 were used as a threshold to enroll significant GO categories.

doi:10.1371/journal.pone.0125013.g002
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microarray (S4 Table). It suggested the data of differential genes expression from microarray
was reliable. What’s more, our team has been worked on some of the differential genes such as
PHF10[55], CEACAM6[56], SFRP1[57], SOX11[58], CLDN1[59] to investigate their expres-
sion and functions in gastric cancer and the results perfect proved our microarray data.

Discussion
Microarray gene-expression analyses on gastric cancer have previously been used to predict di-
agnostic markers [60] and to identify gene expression patterns associated with prognosis
[61,62], but it hasn’t been used to reveal molecular interactions among lncRNAs and mRNAs
in GC. In this study, we analyzed 26 gastric cancer tissues with paired noncancerous tissues
and profiled the genes differentially expressed according to their GO categories, pathways,
Gene-Act network and Co-Expression network.

Fig 3. Interaction of GO categories (GO Tree) based on analyses of differential GO categories. Red dots represent up-regulated GO categories and
green dots represent down-regulated GO categories.

doi:10.1371/journal.pone.0125013.g003
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Fig 4. Pathway analysis of differentially expressed genes according to the KEGG database. A) Top-ranking up-regulated pathways identified by
KEGG. B) Top-ranking down-regulated pathways identified by KEGG. Differential pathways are listed according to P-value <0.01 and FDR <0.01.C)
Pathway-Act network showing the interaction of differential pathways. The red dots represent up-regulated pathways and the green dots represent down-
regulated pathways.

doi:10.1371/journal.pone.0125013.g004
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The gene expression results were obtained by using an Agilent G3 Human GE 8x60K micro-
array, which not only covers the transcriptome databases for mRNA targets but also includes
probes for lncRNAs (long non-coding RNAs). With the combination of mRNA and lncRNAs,
it can perform two experiments on a single microarray and predict lncRNA function and

Fig 5. Gene-Act network of differential genes according to pathways in the database.Red dots represent up-regulated genes and green dots represent
down-regulated genes. The arrows indicate the connection and regulatory relationship between two genes. Genes that have more connections with other
genes have a higher degree score.

doi:10.1371/journal.pone.0125013.g005
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Fig 6. Co-expression network of genes differentially expressed between normal and cancer tissues. A)Co-expressed genes and their network in
noncancerous tissue.B)Co-expressed genes and their network in gastric cancer. The greater the value of K-score, the stronger the differentially expressed
genes are co-expressed. The scale of the K-score is from 1 to 21 in normal tissue but from 1 to 5 in cancer tissue.

doi:10.1371/journal.pone.0125013.g006
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interaction with mRNAs. The analyses revealed a set of genes that were differentially expressed
between gastric cancer and normal tissue. Some of them have been reported previously in gas-
tric or other cancers. For example, expression of gastrokine-2 (GKN2) was significantly down-
regulated or absent in gastric cancer cell lines, gastric intestinal metaplasia, and tumor tissues.
Over-expression of GKN2 contributed to cell proliferation, migration, and invasion of gastric
cancer and arrested the cell cycle at the G1–S transition phase [6]. In contrast, levels of expres-
sion of inhibin beta A (INHBA) were significantly higher in cancer tissue than in adjacent nor-
mal mucosa, and it is regarded as an independent prognostic factor in gastric cancer [22]. In
addition, we discovered some novel genes, such as TMEM184A, PSAPL1, KIAA1199, CLRN3
and FNDC1, which have not been reported in gastric cancer previously, and their roles in can-
cer remain unknown.

One of the advantages of our gene expression microarray analysis is that it represented the
expression of lncRNAs and mRNAs so that both could be investigated together. Our previously
report on the role of lncRNA H19 and its network in GC[36] was based on this microarray
data. However, most of the lncRNAs such as DRD5, FMO6P, SNAR-A3 and TPRXL showed
in our microarray haven’t been identified and need further investigation to clarify their roles in
gastric cancer.

Based on our gene expression profiling data, the genes and their functions activated in gas-
tric cancer were responsible for proliferation, adhesion, migration and metastasis, which was
consistent with the results from pathway analyses. Interestingly, we discovered that most of the
cancer-related signaling pathways reported previously such as Notch, mTOR and Hedgehog
were activated in GC based on our data. These results support the viewpoint that heterogeneity

Table 3. top 20 differential genes with highest Degree and K-Core in co-expression network

Gene Name Description Degree K-core

HEG1 HEG homolog 1 (zebrafish) 15 5

COL14A1 collagen, type XIV, alpha 1 14 5

TRO[44] trophinin 14 5

GPR124[45] G protein-coupled receptor 124 12 5

IGFBP4 insulin-like growth factor binding protein 4 11 5

ECSCR endothelial cell-specific chemotaxis regulator 10 3

EMCN[47] endomucin 10 3

SERPINF1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment
epithelium derived factor), member 1

10 5

SLIT3[48] slit homolog 3 (Drosophila) 10 5

COL6A1 collagen, type VI, alpha 1 9 5

HTRA1[49] HtrA serine peptidase 1 9 5

TIMP2[46] TIMP metallopeptidase inhibitor 2 9 5

COL6A2 collagen, type VI, alpha 2 8 5

SPARC
[50,51]

secreted protein, acidic, cysteine-rich (osteonectin) 8 4

LAMA4
[52,53]

laminin, alpha 4 7 3

MAP3K12 mitogen-activated protein kinase kinase kinase 12 7 5

MEG3[39,40] maternally expressed 3 (non-protein coding) 6 5

MEOX2[54] mesenchyme homeobox 2 6 5

CENPF centromere protein F, 350/400kDa (mitosin) 5 4

doi:10.1371/journal.pone.0125013.t003
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is the characteristic of GC. Comparison of the co-expression network between normal tissues
and cancer suggested that the expression, functions and interactions of the majority of physio-
logical gene were lost or damaged in gastric cancer, whereas proliferation, migration and me-
tastasis were abnormally enhanced. These interesting findings match the characteristics of
cancer, such as anaplasia and dedifferentiation. These differentially expressed genes involved
in signaling pathways acted as key genes in co-expression network might be the potential tar-
gets of anti-cancer therapy or diagnostic markers in the future.
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