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Abstract

One of the emerging subjects to combat the SARS-CoV-2 virus is to design accurate

and efficient drug such as inhibitors against the viral protease to stop the viral spread.

In addition to laboratory investigation of the viral protease, which is fundamental, the

in silico research of viral protease such as the protease cleavage site prediction is crit-

ically important and urgent. However, this problem has yet to be addressed. This arti-

cle has, for the first time, investigated this problem using the pattern recognition

approaches. The article has shown that the pattern recognition approaches incorpo-

rating a specially tailored kernel function for dealing with amino acids has the out-

standing performance in the accuracy of cleavage site prediction and the discovery

of the prototype cleavage peptides.
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1 | INTRODUCTION

SARS-CoV-2 is a single-stranded RNA genome and belongs to the

coronavirus family and is composed of 23 ORFs.1 Among them,

ORF1a and ORF1b are translated to two polyproteins,2 which can be

cleaved by the viral proteases to generate 16 nonstructural proteo-

lytic proteins.3 The cleavage in these ORFs is mainly carried out by

the chymotrypsin like 3CL cysteine protease (main protease). The

papain-like protease (PLpro) carries out three cleavages.2 A protease

works when it interacts with a specific site in the amino acid sequence

of a polyprotein. The site at which a polyprotein is cleaved by a prote-

ase is called a protease cleavage site. A collection of the consecutive

residues surrounding a protease cleavage site is called a cleaved pep-

tide expressed as Pm� � �P2P1 # P01P02� � �P0n. In this expression, # stands for

the cleavage, P1≤ i≤m stands for a N-terminal residue and P01≤ j≤ n
stands for a C-terminal residue. The coronavirus main protease cleav-

age always happens at the amino acid glutamine in a polyprotein, that

is, P1 ¼Q. However, the cleavage of a protease on subsites allows cer-

tain variation of the amino acid distribution, that is, the tolerances.4,5

Only when the fitness between a protease and a substrate is satisfied,

the protease will bind to a polyprotein at the substrate to cleave the

polyprotein. This is called the lock-and-key mechanism.6,7 The gluta-

mines whose substrates do not fit the structure requirement for a pro-

tease will not be targeted by the protease for the cleavage.

Laboratory identification of the protease cleavage sites within a poly-

protein is the best technology, but it is more expensive and time-con-

suming.8,9 It is better to use an efficient in silico approach to screen

out a subset of the glutamine residues which are the most probable

protease cleavage sites. The best in silico approach is to use a pattern

recognition approach model. The main data used for the in silico pro-

tease cleavage site prediction are peptides as aforementioned. In this

study, a peptide of a main protease cleaved glutamine residue is called

a cleaved main protease peptide, or a cleaved peptide for short in the

rest discussion. Such a glutamine residue, which interacts with the

main protease, is called a main protease cleavage site, or a cleavage

site for short in the rest discussion. Other glutamine residues are

called the uncleavable sites and the peptides at these sites are called

the uncleavable peptides.

Various pattern recognition approaches have been employed to

construct in silico predictive models for the protease cleavage pattern

discovery based on the available known cleaved peptides for different

viral proteases, but yet SARS-CoV-2 viral protease so far. For

Received: 19 August 2021 Revised: 19 October 2021 Accepted: 25 October 2021

DOI: 10.1002/prot.26274

Proteins. 2022;90:791–801. wileyonlinelibrary.com/journal/prot © 2021 Wiley Periodicals LLC. 791

mailto:ron.zheng.rong.yang@gmail.com
mailto:z.r.yang@exeter.ac.uk
mailto:z.r.yang@exeter.ac.uk
http://wileyonlinelibrary.com/journal/prot


instance, a logistic linear regression model and a linear discriminant

analysis model were used to predict the HIV-1 protease cleavage

sites,10,11 a decision tree model was constructed for the tryptic cleav-

age site prediction,12 a support vector machine model was con-

structed for the caspase cleavage site prediction,13 a multi-layer

perception (or artificial neural network) model was constructed for

predicting various protease cleavage sites14 and a random forest

model was constructed for predicting various protease cleavage sites

as well,15 to name a few.

The collection of the cleaved peptides is straightforward. All the

experimentally verified cleavage sites for a protease can be used to

generate the cleaved peptides. To collect uncleavable peptides, a spe-

cific rule must be followed, that is, they should contain sufficient

background information for them to be compared with the cleaved

peptides.16 For instance, the coronavirus main protease only cleaves

at a sequence where the P1 residue is Q.2,17,18 Therefore, a

uncleavable peptide for the coronavirus main protease cleavage site

prediction must target the uncleavable glutamine residues only.

Having known that the prediction of the SARS-CoV-2 main prote-

ase cleavage sites requires the glutamine peptides as inputs, the next

issue is how to present glutamine peptides to a pattern recognition

model. Most pattern recognition approaches only accept numerical

data as the inputs. Therefore, the amino acids of the peptides must be

transformed to some numerical data at first. This is called an amino

acid encoding process. There have been many different methods for

transforming the amino acids to numerical values. The mostly well-

employed methods in the literature include the binary encoding

approach,19 the descriptor encoding approach20–22 and the profile

encoding approach,6,23 to name a few.

In addition to these approaches used to transform amino acids to

numerical data, a question is whether there is an alternative to handle

the non-numeric amino acids in a pattern recognition model, which

can be more biologically sound. It has been found that the structure

of a protease will not be varying very fast during an evolution24 (Yen

et al.,25). Most importantly, a protease will have some degree of the

tolerance to target a cleavage site in a polyprotein for the interaction

even if genetic evolution may have occurred.26,27 Therefore, the cor-

relation between the cleaved peptides should be statistically signifi-

cant compared with the correlation between uncleavable peptides or

the correlation between uncleavable and cleaved peptides. Based on

this understanding, the kernel function28,29 can be used to map the

original non-numerical peptide space to a numerical kernel space

based on the correlations between the available peptides and the

cleaved peptides. This has led to the development of the bio-kernel

function as an alternative approach to deal with non-numerical amino

acids. The Supporting Information Document S2 provides the details

of the bio-kernel function.

As aforementioned, in silico protease cleavage site prediction is a

pattern recognition problem. Though the SARS-CoV-2 main protease

has been researched in the laboratory,30,31 the in silico prediction of

the cleavage sites of this protease has yet to be addressed. This study,

for the first time, examines the in silico prediction of the SARS-CoV-2

main protease cleavage sites using the pattern recognition

approaches, especially incorporating the kernel function. This article

will show two important findings. First, the SARS-CoV-2 main prote-

ase cleavage sites are predictable with high accuracy by an in silico

model because the cleaved glutamine peptides have reserved an

excellent cleavage pattern for separating the cleaved peptides from

the uncleavable peptides. Second, the pattern recognition approaches

incorporating with the kernel function works the best.

2 | MATERIALS AND METHODS

In total, all available 64 SARS-CoV-2 protein sequences which contain

the main protease cleavage sites were downloaded from NCBI using

the keywords, {([coronavirus] AND main protease) AND cleavage}, on

the April 4, 2021. Table S1 lists these 64 sequences. There were

273 main protease cleavage sites within part of these 64 sequences.

A cleaved peptide was generated for each cleavage site, which is

expressed by P5P4P3P2P
0
1P

0
2P

0
3P

0
4P

0
5. In this notation, the residue P1

was removed because the coronavirus main protease always targets

the amino acid glutamine (Q).2,17,18 After removing the duplicated

peptides, 116 non-redundant cleaved peptides were maintained for

the study.

Correspondingly, non-redundant uncleavable peptides were also

randomly selected from these 64 sequences. The following rule was

used to select uncleavable peptides. Suppose one sequence had

K cleavage sites and M > K non-cleavage glutamine residues for the

main protease. K of M non-cleavage glutamines were randomly

selected to generate K uncleavable peptides. This generated

273 uncleavable peptides. The duplicated 9-mer uncleavable peptides

were also removed resulting in 259 non-redundant uncleavable pep-

tides. Therefore the data set was composed of 375 9-mer peptides

for the in silico prediction of the SARS-CoV-2 main protease cleavage

sites in this study.

In addition to 273 uncleavable glutamines (Q), the rest 5071 glu-

tamines (hence, 5071 9-mer uncleavable peptides) were not aban-

doned. After redundancy clearance, these 5071 uncleavable peptides

were reduced to 2360 nonredundant uncleavable peptides. These

2360 non-redundant uncleavable peptides were saved for the blind

test of the constructed models. In theory, all of these 2360 blind

uncleavable peptides were expected to be classified as the

uncleavable ones using a pattern recognition model if it was well

constructed.

Table 1 shows these 116 cleaved peptides and the proteins as

well as the cleavage sites.

Figure 1 shows the sequence logo for the 116 9-mer cleaved pep-

tides. Figure S1 shows the sequence logo for the 259 9-mer

uncleavable peptides. Comparing these two sequence logos, it can be

seen that the uncleavable peptides had no trend of the amino acid

composition. However, the cleaved peptides displayed a distinct trend

of the amino acid composition. For instance, the residue P2 (labeled

by 4 in Figure 1) was mainly occupied by the amino acid leucine (L) in

addition to valine (V), methionine (M), and isoleucine (I). The reside P01
(labeled by 5 in Figure 1) was mainly occupied by the amino acid
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TABLE 1 The cleaved peptides and the proteins and the cleavage sites

Peptides Protein and sites

SAVLQSGFRK R1AB_SARS2#3263,R1A_SARS2#3263,R1AB_SARS#3240,R1A_SARS#3240

GVTFQSAVKR R1AB_SARS2#3569,R1A_SARS2#3569

VATVQSKMSD R1AB_SARS2#3859,R1A_SARS2#3859,R1AB_SARS#3836,R1A_SARS#3836,R1AB_BC279#3842, 1AB_BCRP3#3834,

R1A_BC279#3842

RATLQAIASE R1AB_SARS2#3942,R1A_SARS2#3942,R1AB_SARS#3919,R1A_SARS#3919,R1AB_BC279#3925, R1AB_BCRP3#3917,

R1A_BC279#3925

AVKLQNNELS R1AB_SARS2#4140,R1A_SARS2#4140,R1AB_SARS#4117,R1A_SARS#4117,R1AB_BC279#4123, R1AB_BCRP3#4115,

R1A_BC279#4123

TVRLQAGNAT R1AB_SARS2#4253,R1A_SARS2#4253,R1AB_SARS#4230,R1A_SARS#4230,R1AB_BC279#4236, R1AB_BCRP3#4228,

R1A_BC279#4236

EPMLQSADAQ R1AB_SARS2#4392,R1A_SARS2#4392

HTVLQAVGAC R1AB_SARS2#5324,R1AB_SARS#5301,R1AB_BC279#5307,R1AB_BCRP3#5299

VATLQAENVT R1AB_SARS2#5925,R1AB_SARS#5902,R1AB_BC279#5908,R1AB_BCRP3#5900

FTRLQSLENV R1AB_SARS2#6452,R1AB_SARS#6429,R1AB_CVMA5#6503,R1AB_CVMJH#6507, R1AB_CVM2#6451,R1AB_BC279#6435,

R1AB_BCRP3#6427

YPKLQSSQAW R1AB_SARS2#6798

GVTFQGKFKK R1AB_SARS#3546,R1A_SARS#3546,R1AB_BC279#3552,R1A_BC279#3552

EPLMQSADAS R1AB_SARS#4369,R1A_SARS#4369

YPKLQASQAW R1AB_SARS#6775,R1AB_BC279#6781,R1AB_BCRP3#6773

TSFLQSGIVK R1AB_CVMA5#3333,R1AB_CVBQ#3246,R1AB_CVBLU#3246,R1AB_CVMJH#3336, R1AB_CVM2#3279,R1A_CVMA5#3333,

R1A_CVMJH#3336,R1A_CVHOC#3246, R1A_CVHN5#3284,R1A_CVHN2#3304,R1A_CVHN1#3334,R1A_CVBM#3246

GVKLQSKRTR R1AB_CVMA5#3635,R1AB_CVMJH#3639,R1AB_CVM2#3582,R1A_CVMA5#3635, R1A_CVMJH#3639

VSQIQSRLTD R1AB_CVMA5#3921,R1AB_CVMJH#3927,R1AB_CVM2#3869,R1A_CVMA5#3921, R1A_CVMJH#3927

LQALQSEFVN R1AB_CVMA5#4013,R1AB_CVMJH#4019,R1AB_CVM2#3961,R1A_CVMA5#4013, R1A_CVMJH#4019,R1A_CVHN5#3966,

R1A_CVHN2#3986,R1A_CVHN1#4016

TVVLQNNELM R1AB_CVMA5#4207,R1AB_CVMJH#4213,R1A_CVMA5#4207,R1A_CVMJH#4213

TVRLQAGTAT R1AB_CVMA5#4317,R1AB_CVBQ#4232,R1AB_CVBLU#4232,R1AB_CVMJH#4323, R1AB_CVM2#4265,R1A_CVMA5#4317,

R1A_CVMJH#4323,R1A_CVHOC#4232, R1A_CVBM#4232

GSQFQSKDTN R1AB_CVMA5#4454,R1AB_CVMJH#4460,R1AB_CVM2#4402,R1A_CVMA5#4454, R1A_CVMJH#4460

SAVLQSVGAC R1AB_CVMA5#5382

NPRLQCTTNL R1AB_CVMA5#5982,R1AB_CVMJH#5988,R1AB_CVM2#5930

YPRLQAAADW R1AB_CVMA5#6877,R1AB_CVMJH#6881,R1AB_CVM2#6825

NSTLQSGLRK R1AB_CVPPU#2878,R1A_CVPPU#2878

GVNLQAGKVK R1AB_CVPPU#3180,R1A_CVPPU#3180

ISTVQSKLTE R1AB_CVPPU#3474,R1A_CVPPU#3474

TTILQSVASA R1AB_CVPPU#3557,R1A_CVPPU#3557

TTKLQNNEIM R1AB_CVPPU#3752,R1A_CVPPU#3752

TVRLQAGKPT R1AB_CVPPU#3863,R1A_CVPPU#3863

RTSMQSFTVD R1AB_CVPPU#3998,R1A_CVPPU#3998

STVLQAAGMC R1AB_CVPPU#4927

KIGLQAKPET R1AB_CVPPU#5526

SKALQSLENV R1AB_CVPPU#6045

YPQLQSAEWN R1AB_CVPPU#6384

GSTLQAGLRK R1AB_CVH22#2965,R1A_CVH22#2965

GVNLQSGKTT R1AB_CVH22#3267,R1A_CVH22#3267

VSTVQSKLTD R1AB_CVH22#3546,R1A_CVH22#3546

DSILQSVASS R1AB_CVH22#3629,R1A_CVH22#3629

VVKLQNNEIM R1AB_CVH22#3824,R1A_CVH22#3824,R1A_CVHNL#3799

(Continues)
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TABLE 1 (Continued)

Peptides Protein and sites

TVRLQAGKQT R1AB_CVH22#3933,R1A_CVH22#3933,R1A_BC512#3976,R1A_PEDV7#3965

RTAIQSFDNS R1AB_CVH22#4068,R1A_CVH22#4068

STVLQAAGLC R1AB_CVH22#4995

MTDLQSESSC R1AB_CVH22#5592

EVNLQGLENI R1AB_CVH22#6110

YPQLQSAEWK R1AB_CVH22#6458

GIKLQSKRTR R1AB_CVBQ#3549,R1AB_CVBLU#3549,R1A_CVHOC#3549,R1A_CVBM#3549

VSQFQSKLTD R1AB_CVBQ#3836,R1AB_CVBLU#3836,R1A_CVHOC#3836,R1A_CVBM#3836

NTVLQALQSE R1AB_CVBQ#3925,R1AB_CVBLU#3925,R1A_CVHOC#3925,R1A_CVBM#3925

ATVLQNNELM R1AB_CVBQ#4122,R1AB_CVBLU#4122,R1A_CVHOC#4122

DTTVQSKDTN R1AB_CVBQ#4369,R1AB_CVBLU#4369,R1A_CVHOC#4369,R1A_CVBM#4369

SAVMQSVGAC R1AB_CVBQ#5297,R1AB_CVBLU#5297,R1AB_CVMJH#5388,R1AB_CVM2#5330

ETRVQCSTNL R1AB_CVBQ#5900,R1AB_CVBLU#5900

FTKLQSLENV R1AB_CVBQ#6421,R1AB_CVBLU#6421

YPRLQAASDW R1AB_CVBQ#6795,R1AB_CVBLU#6795

SVVLQNNELM R1AB_CVM2#4155

EPMMQSADAS R1AB_BC279#4375,R1AB_BCRP3#4367,R1A_BC279#4375

GVTFQGKFKR R1AB_BCRP3#3544

VSRLQAGFKK R1AB_IBVM#2781

GVRLQSSFVR R1AB_IBVM#3088,R1AB_IBVBC#3086

IATVQSKLSD R1AB_IBVM#3381

STVLQSVTQE R1AB_IBVM#3464,R1AB_IBVBC#3462

DVALQNNELM R1AB_IBVM#3674

VVVLQSKGHE R1AB_IBVM#3785,R1AB_IBVBC#3783

KPSVQSVAVA R1AB_IBVM#3930

PTTLQSCGVC R1AB_IBVM#4870,R1AB_IBVBC#4868

VASLQGTGLF R1AB_IBVM#5470

FSALQSIDNI R1AB_IBVM#5991,R1AB_IBVBC#5989

YPQLQSAWTC R1AB_IBVM#6329,R1AB_IBVBC#6327

VSRLQSGFKK R1AB_IBVBC#2779

IATVQAKLSD R1AB_IBVBC#3379

DVVLQNNELM R1AB_IBVBC#3672

KSSVQSVAGA R1AB_IBVBC#3928

ETSLQGTGLF R1AB_IBVBC#5468

GVKLQSKTKR R1A_CVHN5#3587,R1A_CVHN2#3607,R1A_CVHN1#3637

VSQIQSKLTD R1A_CVHN5#3874,R1A_CVHN2#3894,R1A_CVHN1#3924

NAVMQNNELM R1A_CVHN5#4160,R1A_CVHN2#4180,R1A_CVHN1#4210

TIRLQAGVAT R1A_CVHN5#4270,R1A_CVHN2#4290,R1A_CVHN1#4320

SVAVQSKDLN R1A_CVHN5#4407,R1A_CVHN1#4457

GVAVQSKDLN R1A_CVHN2#4427

SAALQAGLTR R1A_BCHK9#3103

GVKLQGKFQS R1A_BCHK9#3409

VSTIQSNMTD R1A_BCHK9#3699

NSVLQAVASE R1A_BCHK9#3782

PVKLQNNELM R1A_BCHK9#3982

TVRLHAGSAT R1A_BCHK9#4094
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serine (S) in addition to alanine (A), asparagine (N), and glycine (G).

Therefore, it is expected that two types of peptides (cleaved

vs. uncleavable) should not be very difficult to separate in this

data set.

Based on the comparison between Figure 1 and Figure S1, it

can be seen that residues P5, P
0
3, P

0
4, and P05 (labeled by 1, 7, 8, and

9 in Figure 1) may not have a significant contribution to the discrimi-

nation between the cleaved and uncleavable peptides. Therefore,

TABLE 1 (Continued)

Peptides Protein and sites

EINLQARDEC R1A_BCHK9#4233

NSTLQSGLKK R1A_CVHNL#2939

GVNLQSGKVI R1A_CVHNL#3242

ISTVQSKLTD R1A_CVHNL#3521

SSTLQSVASS R1A_CVHNL#3604

TIRLQAGKQT R1A_CVHNL#3908

RTTIQSVDIS R1A_CVHNL#4043

SSVLQSGLVK R1A_BCHK4#3291,R1A_BC133#3298,R1A_BCHK5#3338

GVVMQSGVKR R1A_BCHK4#3597,R1A_BC133#3604,R1A_BCHK5#3644

VATVQSKLTD R1A_BCHK4#3889,R1A_BC133#3896

SSVLQATLTE R1A_BCHK4#3972,R1A_BC133#3979

AVKLQNNEIH R1A_BCHK4#4171,R1A_BC133#4178

TVRLQAGANT R1A_BCHK4#4281,R1A_BC133#4288

NTVPQSKDTN R1A_BCHK4#4420,R1A_BC133#4427

ATALQNNELM R1A_CVBM#4122

IASVQSKLTD R1A_BCHK5#3936

PSVLQATLSE R1A_BCHK5#4019

AVTLQNNEIR R1A_BCHK5#4218

TVRLQAGSNT R1A_BCHK5#4328

TTIPQSKDSN R1A_BCHK5#4467

NSTLQAGLRK R1A_BC512#3012,R1A_PEDV7#2997

GVTLQSGKVS R1A_BC512#3314

ISSVQSKLTD R1A_BC512#3590,R1A_PEDV7#3579

SSVLQSVAAT R1A_BC512#3673

IIKLQNNEII R1A_BC512#3868

RAVIQSVDSG R1A_BC512#4111

GVNLQGGYVS R1A_PEDV7#3299

NSMLQSVAST R1A_PEDV7#3662

IVKLQNNEII R1A_PEDV7#3857

RSIMQSTDMA R1A_PEDV7#4100

Note: The # key is used to separate between a protein and a cleavage site. Multiple protein sequences may contain an identical peptide. For instance, the

peptide SAVLQSGFRK was found in four protein sequences (R1AB_SARS2, R1A_SARS2, R1AB_SARS, R1A_SARS).

F IGURE 1 The sequence logo of
116 cleaved peptides, where the integers
from 1 to 9 represent the residues,
P5P4P3P2P

0
1P

0
2P

0
3P

0
4P

0
5 in order. Note that

the glutamine (Q) has been omitted
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another data set used for the SARS-CoV-2 main protease cleavage

site prediction in this study was based on the peptide structure of five

residues, that is, P4P3P2P
0
1P

0
2. After reducing the peptide size from

9 to 5, the redundancy among peptides was checked again. This led to

87 non-redundant cleaved 5-mer peptides, 256 non-redundant

uncleavable 5-mer peptides and 2061 non-redundant blind

uncleavable 5-mer peptides. Table 2 summarizes the number of

peptides.

A pattern recognition model, which is a classifier in this case,

can thus be constructed to examine the discriminative power

for either data set, that is, the 9-mer peptide set and the 5-mer set

for the purpose of the in silico prediction of the SARS-CoV-2 main

protease cleavage sites. To construct a classifier, three issues were

considered. The first issue was how to present (encode) the amino

acids into a model. This is because most pattern recognition algo-

rithms only accept numerical data. Different methods of dealing

non-numerical amino acids have different efficiency and reliability.

The binary-encoding, descriptors, profiling and the bio-kernel

function approaches were considered in this study. Although there

are many others, these have been the most popularly used in the

literature. The second issue was the selection of the pattern recog-

nition approaches. There is normally no rule-of-thumb for deter-

mining which is superior in advance and there is a need for careful

examination of each. Seven most popularly used and representa-

tive as well as matured pattern recognition approaches have been

employed in this study. The third issue was how to evaluate such

a model when it has been constructed. The cross-validation

method as well as the ROC analysis approach was employed in this

study. Refer to the extended methods for details of these three

methods.

The kernel function has been well exercised in the machine-

learning field.28,29 A naïve description of the kernel function is briefly

described here. One of the most promising advantages of the kernel

function is that it can transform a nonlinearly separable space to a lin-

early separable space. For instance, two classes of data points in the

original space (A, B, α, and β) in the left panel of Figure 2 are

nonlinearly separable. When using two data points (α and β) as the

kernels, the distances between four data points and these two kernels

can be calculated. Based on the distances, a new space is formulated

shown in the right panel of Figure 2. It can be seen that these four

data points in this new kernel space coordinated by α and β become

linearly separable.

3 | RESULTS AND DISCUSSION

The first question for any pattern recognition model is whether the

variables themselves possess a good discriminative power. Therefore,

Figure 3 shows the bio-SOM map constructed for the 9-mer peptides

data without employing the classification labels of cleaved or

uncleavable. Among 225 neurons (cells), 178 were mapped by at least

one peptide. The occupancy rate of 225 cells was about 79%. Among

these 178 cells, 170 cells were mapped by only one class of peptides,

either cleaved peptides or uncleavable peptides. In other words, these

170 cells were pure for one class of peptides. In total, 353 were

mapped to these 170 cells. The total accuracy of separating the

cleaved peptides from the uncleavable peptides was 94.13%

(353/375). This thus demonstrated that the discriminative power

between the cleaved peptides and the uncleavable peptides in this

data set should be greater than 94.13% in a well-constructed super-

vised pattern recognition model. In addition to the discriminative

power demonstrated by the bio-SOM map, the distribution of two

classes of peptides was also consistent regarding the biological knowl-

edge of the peptides. The cleaved peptides occupied a smaller number

of cells while the uncleavable peptides occupied a greater number of

cells. This is because each peptide was aligned with the cleaved pep-

tides. If the cleaved peptides held a good amino acid composition

trend, the correlation between the cleaved peptides should be very

high, but the correlation between the uncleavable peptides and the

cleaved peptides should be very low. In other words, the cleaved pep-

tides maintained a more conserved amino acid composition trend to

occupy a smaller area in the bio-SOM map while the uncleavable pep-

tides had a random distribution of amino acids that occupied a greater

area in the bio-SOM map.

Figure S3 shows the SOM model constructed for the binary-

encoded data. It has the same model structure as the bio-SOM map

shown in Figure 3. The number of cells occupied by at least one pep-

tide was 154, that is, the occupancy rate was 68.89%. The purity rate

of the cells was 91.47%, which was lower than 94.13%. Figure S4A

shows the SOM model constructed based on the descriptor-encoded

data. The number of cells occupied by at least one peptide was

148, that is, the occupancy rate was 65.78%. The purity rate of the

cells was 75.47%, which was much lower than 94.13%. Figure S4B

shows the SOM model constructed based on the profile-encoded

data. The number of cells occupied by at least one peptide was

141, that is, the occupancy rate was 62.67%. The purity rate of the

cells was 78.67%, which was also much lower than 94.13%.

It can be seen that the bio-SOM model maximally explored the

discriminative power from this SARS-CoV-2 protease peptide data,

being 94.13%. Therefore, 94.13% should be considered as the bench-

mark when evaluating the supervised pattern recognition models con-

structed for the in silico prediction of the SARS-COV-2 main protease

cleavage sites.

Table 2 shows the performance of two sets of 23 supervised pat-

tern recognition models. For the 9-mer peptides data, eight models

had the total prediction accuracy over 94.13%. Therefore, the discrim-

inative power was well explored in these supervised models. All the

TABLE 2 The peptide data used for this study

9-mer 5-mer

Raw Reduced Reduced

Cleaved 273 116 87

Non-cleaved 273 259 256

Blind 5071 2360 2061

Note: “Raw” stands for the number of all the peptides and “Reduced”
stands for the number of non-redundant peptides.
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profile-encoded models were not able to achieve the total prediction

accuracy greater than 94.13%.

Five models had no Type I error on the blind data. All were the bio-

kernel models. Four best models had the total prediction accuracy greater

than 94.71% and had no Type I error. They were bio-FOREST, bio-MLP,

bio-SVM, and bio-RVM. Among them, the bio-SVM model was the best.

Its AUC was 1, its MCC was 0.9938, and its total prediction accuracy was

99.73%. The total prediction accuracy of bio-SVM was about 5% greater

than that of bio-SOM, which was a significant increase.

For the 5-mer peptides data, eight models had the total prediction

accuracy greater than 94.13% and five models had no Type I error on

the blind data. The best 5-mer model was the bio-SVM model. Its AUC

F IGURE 2 A naïve description of the kernel function approach. The left panel shows the original data space coordinated by x and y, in which

four data points are labeled by A, B, α, and β. A and B belong to one class while α and β belong to the other class. They are nonlinearly separable
because it is impossible to separate these two classes using one straight line. Suppose α and β are selected as the kernels. The distances between
four data points and two kernels are calculated. The right panel shows the distribution of four data points based on four sets of distances using
the kernel function. In this new space, two coordinates are no longer x and y, but α and β. It can be seen that this new space of four data points
becomes linearly separable

F IGURE 3 The bio-SOM map
of 225 neurons constructed for
the 9-mer peptides data. “N”
stands for the uncleavable
peptides and “C” stands for the
cleaved peptides. One circle
stands for one neuron or one cell.
The printed letter in a cell, which
is either N or C, stands for a
peptide, which has been mapped
to the cell. For instance, two
cleaved peptides were mapped to
the first cell at the bottom row
while one uncleavable peptide
was mapped to the third cell at
the bottom row. These two cells
were pure for one class.
However, the second cell at the
top row contained two cleaved
peptides and one uncleavable
peptide. Thus, this cell was not
pure for one class
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was 0.9999, its MCC was 0.9770, and its total prediction accuracy was

99.42%, which was 5% greater than the benchmark accuracy 94.13%.

Comparing all the models, it can be seen that the bio-kernel

models (bio-FOREST, bio-MLP, bio-SVM, and bio-RVM) performed

the best for the SARS-CoV-2 main protease cleavage site prediction.

Other models either failed to have the total prediction accuracy

greater than 94.13% or failed to have 0% Type I error rate in the blind

data set testing.

Figure S5 shows the ROC curves of the bio-SVM models. They

were consistent with the figures included in Table 3. Figure S6 shows

the densities estimated for the predictions on the blind data using the

bio-SVM models. It can be seen that the prediction values were all

smaller than the threshold 0.5, which was the default threshold when

prediction values were between 0 and 1 for the discrimination

between two classes of peptides. This means all of uncleavable gluta-

mine residues in the blind test data set were accurately predicted as

uncleavable ones.

Figure 4 shows the prediction spectra of four bio-kernel models

for the protein R1AB_SARS2. All demonstrated the excellent discrimi-

native power between the cleaved glutamines and uncleavable

glutamines. The bio-RVM model was outstanding because the predic-

tion values of all the uncleavable glutamines were almost zero.

As indicated in the earlier studies30,31 that the main protease

cleavage pattern, if recognized, can help the design of the SARS-

CoV-2 drug (inhibitors). Below, I show how the pattern recognition

approaches can be used for this task. The inductive pattern recogni-

tion models such as a decision tree model or a random forest model

provide excellent interpretation capabilities. Such a model can help

discover the residues or the peptides which play an important role in

the in silico cleavage site prediction. For instance, a decision tree

model was constructed to extract the cleavage knowledge for the

hepatitis C virus32 and to discover the tryptic cleavage pattern.12

However, in these applications, the data used in a decision tree model

were the peptide residues, that is, one residue was one variable. For

instance, a resulting decision tree model based on the 5-mer SARS-

CoV-2 main protease cleavage peptides data in this study can thus

explain which of the 5 residues (either P4 or P3 or P2 or P01 or P02) play

an important discriminatory role that separates the cleaved glutamine

residues from the uncleavable glutamine residues for the coronavirus

main protease.

TABLE 3 The model performance. “Type I” stands for the Type I error rate

Models

9-mer 5-mer

AUC MCC Type I Total AUC MCC Type I Total

NO + C5.0 0.9636 0.8311 6% 92.27% 0.9458 0.6525 5% 93.00%

NO + FOREST 0.9940 0.9385 5% 95.73% 0.9890 0.9070 6% 95.75%

BIN + MLP 0.9696 0.8775 4% 94.93% 0.9804 0.8654 4% 94.46%

BIN + SVM 0.9691 0.8370 8% 89.87% 0.9651 0.7743 12% 88.92%

BIN + RVM 0.9963 0.9501 1% 96.27% 0.9809 0.8829 3% 95.92%

DES + Linear 0.9798 0.8436 9% 93.33% 0.9626 0.7623 6% 90.38%

DES + C5.0 0.9527 0.8462 5% 93.07% 0.9605 0.7960 4% 93.00%

DES + FOREST 0.9897 0.9137 3% 96.27% 0.9863 0.8942 3% 96.21%

DES + MLP 0.9658 0.8202 5% 90.93% 0.9639 0.7965 6% 90.96%

DES + SVM 0.9827 0.8561 6% 93.60% 0.9700 0.8055 4% 92.13%

DES + RVM 0.9663 0.8215 6% 92.27% 0.9559 0.7861 6% 91.84%

PSE + Linear 0.9428 0.7382 5% 88.53% 0.9487 0.7349 5% 88.05%

PSE + C5.0 0.8672 0.6333 5% 83.20% 0.9070 0.7821 7% 90.96%

PSE + FOREST 0.9773 0.8319 3% 92.27% 0.9735 0.8286 4% 92.13%

PSE + MLP 0.9467 0.7608 6% 89.60% 0.9520 0.7302 5% 89.50%

PSE + SVM 0.9727 0.8339 3% 91.20% 0.9519 0.7760 3% 87.46%

PSE + RVM 0.9472 0.7608 6% 88.27% 0.9475 0.7395 6% 88.63%

bio-Bayesian 0.9745 0.8419 3% 93.33% 0.9624 0.7474 3% 90.67%

bio-C5.0 0.9357 0.7805 0% 90.93% 0.9394 0.7708 0% 84.62%

bio-FOREST 0.9889 0.9380 0% 95.73% 0.9835 0.8970 0% 95.63%

bio-MLP 0.9843 0.9041 0% 96.80% 0.9648 0.8605 0% 94.46%

bio-SVM 1.0000 0.9938 0% 99.73% 0.9999 0.9770 0% 99.42%

bio-RVM 0.9834 0.8932 0% 94.40% 0.9792 0.8790 0% 95.34%

Note: “NO” means no encoding process was used. “BIN” stands for the binary-encoded data. “DES” stands for the descriptor-encoded data. “PSE” stands
for the profile-encoded data. The percentages in bold were greater than 94.13% of the bio-SOM model.

798 YANG



Rather than using the raw residues as the variables, a bio-kernel

inductive pattern recognition model employs the cleaved peptides as

the variables. Thus, a bio-kernel inductive pattern recognition model

(bio-C5.0 and bio-FOREST) was able to discover which cleaved pep-

tides were the most significant ones for the discrimination between

the cleaved peptides and the uncleavable peptides. These most dis-

criminating cleaved peptides were then the most probable prototypes

as the targets for the drug (inhibitors) design.6,33

The bio-C5.0 model and the bio-FOREST model constructed for

the 9-mer peptides are shown in Figures S7 and S8, respectively. The

bio-C5.0 model employed nine cleaved peptides and the most impor-

tant cleaved peptide was GVNLGSGKTT. The bio-FOREST tree

employed 11 cleaved peptides and the most important cleaved pep-

tide was DTTVGSKDTN. Among them, eight were significant because

their p values were less than .01. The decision tree algorithm parti-

tions a space using the orthogonal partitioning rules while the random

forest algorithm partitions a space using the non-orthogonal par-

titioning rules. Therefore, the resulting bio-C5.0 and bio-FOREST

models were different. Figures S9 and S10 show the sequence logos

of the cleaved peptides employed by these two trees. It can be been

that most cleaved peptides selected in the trees had leucine (L) in the

residue P2 and S (serine) in the residue P01. Compared with Figure 1,

these sequence logos show clear amino acid composition trends. The

cleaved peptides selected by these tree models represent their impor-

tance (measured by the p values) to discriminate between the cleaved

peptides and the uncleavable peptides. In terms of the use of the bio-

kernel technique, such a selected cleaved peptide has the following

property. The majority of the cleaved peptides have high alignment

scores with this selected cleaved peptide while the majority of the

uncleavable peptides have low alignment scores with this selected

cleaved peptide. Therefore, such a selected cleaved peptide is very

different from uncleavable peptides and these two selected cleaved

peptides are most different from uncleavable peptides compared with

other cleaved peptides.

The consensus peptide of the bio-C5.0 model (Figure S7) was

�V�LS���� and the consensus peptide of the bio-FOREST model

(Figure S8) was ���LS����. The latter was identical with the

consensus sequence derived from all cleaved peptides. This means

that the main protease cleavage rule can be simplified to either �V�
LSG #Q���� or ���LSG #Q����, where # stands for the

cleavage site. If only checking whether the consensus peptide was

present in the peptides, these two consensus peptides can be used to

scan all the peptides to examine whether they matched. Table S2

shows the confusion matrices. It can be seen that although the con-

sensus peptide ���LS���� was far less than perfect, it out-

performed the consensus peptide �V�LS����. This is not a

surprise because the residue P4 was not mainly occupied by the amino

acid valine (V). Figure S11 shows how the 20 amino acids were dis-

tributed at the residue P4 among the SARS-CoV-2 main protease

cleaved peptides. The amino acid valine (V) had the largest frequency

(29%) at this residue, the frequency of the serine (S) was 23%, and the

frequency of the threonine (T) was 18%. The difference between

three frequency values was actually not insignificant.

To further validate the discriminative power of the consensus

peptides, the mutation matrix BLOSUM62 was used to calculate the

homology alignment scores between the consensus peptides and all

the peptides. The calculation method is included in the Supporting

Information Document S7. Figure S12 shows the estimated densities

of the homology alignment scores. It can be seen that the density of

the uncleavable and the density of the cleaved peptides had a higher

degree of overlap using the consensus peptide �V�LS����. The

overlap degree was smaller when using the consensus peptide

���LS����. Therefore, the bio-FOREST model may be able to

deliver more robust decision-making rules for this data set.

In addition to identifying the consensus peptides, another ques-

tion was whether the cleaved peptides can be ranked in terms of their

discriminative power. A random forest model can rank the variables.

In the bio-kernel space, the variables were the cleaved peptides.

Therefore, the bio-FOREST model can rank the cleaved peptides in

terms of their discriminative power between the cleaved and

uncleavable peptides. The increase in node purity measurement of the

bio-FOREST model was used to rank the cleaved peptides.

Figures S13 and S14 show the amino acid distribution trend of the

top 10 cleaved peptides selected by the bio-FOREST model. Again,

the residue P2 was always occupied by the amino acid leucine (L) and

the residue P01 was almost occupied by the amino acid serine (S). This

was again consistent with what has been discussed above.

The next issue was whether the top-ranked cleaved peptides can

reserve a good discriminative power after the cleaved peptides were

ranked. If so, later drug (inhibitor) design can have a parsimonious

F IGURE 4 The prediction spectra of four bio-kernel models (bio-
FOREST, bio-MLP, bio-SVM, and bio-RVM) for the protein
R1AB_SARS2. The protein had seven main protease cleavage sites.
The heights of the bars stand for the predicted values which have
been normalized between 0 and 1. The bars with the dots on the top
stand for the true cleavage sites
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structure to investigate. Based on the top 10 cleaved peptides

selected by the bio-FOREST model, the parsimonious models were

constructed. In a parsimonious model, only top 10 cleaved peptides

were used as the kernel peptides. These 10 cleaved peptides were

used for the following analysis. Four models which demonstrated the

best performance shown in Table 3 were re-constructed to examine

whether these parsimonious models had the performance significantly

decreased or not. These four models were bio-FOREST, bio-MLP, bio-

SVM, and bio-RVM. Table 4 shows the result. It can be seen that the

performance was indeed worse, but the difference between the full

models and the parsimonious models was insignificant. The decreased

accuracy was not a surprise because the rest of the unused cleaved

peptides may carry some extra discriminative power though minor.

For instance, from the full bio-FOREST model to the parsimonious

bio-FOREST model, the AUC value decreased from 0.9889 to 0.9744

and the MCC value decreased from 0.9380 to 0.8581 and the Type I

error rate for the blind data was still 0%. From the full bio-SVM model

to the parsimonious bio-SVM model, the AUC decreased from 1 to

0.99, the MCC decreased from 0.9938 to 0.8775, the total prediction

accuracy decreased from 99.73% to 94.67% and the Type I error rate

increased from 0% to 2%. The parsimonious bio-MLP and bio-RVM

models also had a decrease in accuracy. Therefore, a parsimonious

model sacrificed the accuracy slightly. However, using less than 10%

variables, the decrease in the prediction accuracy was insignificant.

This study has shown that the SARS-CoV-2 main protease cleav-

age pattern has been well-reserved in peptides. For the 9-mer peptide

data, only one model had the AUC value below 0.9 and only five

models had the total prediction accuracy below 90%. For the 5-mer

peptide data, no model had the AUC value below 0.9 and six models

had the total prediction accuracy below 90%. Importantly, the bio-

SOM model demonstrated 94.13% total prediction accuracy meaning

that the amino acid composition trend or pattern inherent in the

cleaved peptides was significant in terms of the discriminative power

between the cleaved peptides and the uncleavable peptides. The use

of a supervised model further explored the discriminative power when

the model was able to capture the complexity within the peptide data.

Based on the above analysis of the in silico analysis results, it can

be seen that the pattern recognition models incorporating the bio-

kernel function outperformed other models which employed various

amino acid encoding approaches. The reason may be due to the use

of the amino acid mutation matrix which can make the mutual rela-

tionship between peptides more biologically sound. Mapping a

difficult-to-model space to a kernel space for efficient data modeling

including regression analysis and classification analysis has been well

exercised in the pattern recognition area. Mapping a non-numerical

peptide space to a numerical bio-kernel space has two benefits. First,

the difficulty of handling non-numerical peptides is eased. Second,

which is more important, discovering the most probable prototypes

for SARS-CoV-2 drug (inhibitor) design can benefit. This feature may

not be possible using any approach other than the bio-kernel models.

4 | CONCLUSION

Predicting protease cleavage sites in silico aims to generate a predic-

tive model in a computer based on the known cleaved and

uncleavable glutamine residues (peptides). Therefore, it is a typical

pattern recognition problem. The basic assumption of modeling pep-

tides for a protease cleavage problem using an in silico approach is

that there should be sufficient known cleaved peptides verified in lab-

oratory and the most importantly the cleaved peptides should well

cover the amino acid composition trend for a specific protease to rec-

ognize. If there are insufficient known cleaved peptides or the avail-

able known cleaved peptides have not yet well covered the amino

acid composition trend for a specific protease, efficiently predicting

protease cleavage sites in silico would be impossible. The pattern rec-

ognition approaches have been well used for predicting protease

cleavage sites in silico where the peptide data can well-satisfy the

above two conditions. The benefits of using a pattern recognition

approach for this kind of problem are obvious. First, some complex or

nonlinear pattern can be well explored using a nonlinear pattern rec-

ognition model. For instance, in the 9-mer models shown in Table 3 of

this article, the MCC of the DES + Linear model was 0.8436, but it

was 0.9137 in the DES + FOREST model. The former was a linear

model while the latter was a nonlinear model. The MCC was 0.7382

in the PSE + Linear model, but was 0.8339 in the PSE + SVM model.

Again, the former was a linear model and the latter was a nonlinear

model. Second, a pattern recognition model can be used to deliver

useful information for the drug or inhibitor design if the cleavage

knowledge can be well discovered. It has been well recognized that

the bio-kernel models can generate a predictive model with a better

generalization capability in addition to biological sound content. The

bio-kernel models used in this study have shown their powerfulness

for predicting the SARS-CoV-2 main protease cleavage sites in silico.

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1002/prot.26274.

TABLE 4 The performance
comparison between the full models and
the parsimonious modelsAlgorithm

Parsimonious models Full models

AUC MCC Type I Total AUC MCC Type I Total

bio-FOREST 0.9744 0.8581 0% 93.60% 0.9889 0.9380 0% 95.73%

bio-MLP 0.9487 0.8046 2% 89.33% 0.9843 0.9041 0% 96.80%

bio-SVM 0.9900 0.8775 2% 94.67% 1.0000 0.9938 0% 99.73%

bio-RVM 0.9652 0.8204 2% 92.27% 0.9834 0.8932 0% 94.40%

Note: The values in bold stand for the best models.
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