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Abstract

The rugged energy landscape of biomolecules and associated large-scale conformational changes have
triggered the development of many innovative enhanced sampling methods, either based or not based
on molecular dynamics (MD) simulations. Surveyed here are methods in the latter class - including
Monte Carlo methods, harmonic approximations, and coarse graining - many of which yield valuable
conformational insights into biomolecular structure and flexibility, despite altered kinetics. MD-based
methods are surveyed in an upcoming issue of F1000 Biology Reports.

Introduction and context
Computer modeling and simulation offer a modern
‘microscope’ by which to simulate a variety of conforma-
tional events in many molecular systems and subse-
quently extract related mechanistic, thermodynamic, and
kinetic information. The governing force fields have been
extensively developed on the basis of experimental data
and fundamental physical laws. The force fields define
complex ‘energy landscapes’ that relate motion and
function, as described by Frauenfelder and Wolynes
[1,2], and later Onuchic, Thirumalai, and others. These
foundations for protein dynamics, folding, and function
led to a hierarchical notion of energy landscapes with
conformational substates separated by barriers that can
be as high as of the order of 100 kJ/mol. Experimental
studies, such as from fluorescence spectroscopy, nuclear
magnetic resonance (NMR), single-molecule experiments,
or four-dimensional electronmicroscopyprovide detailed
views on biomolecular motion and confirm a wide range
of the timescales involved [3]. Sampling these rugged
conformational landscapes to link dynamics to function
and bridge the gap between experimental timescales and
atomic-level behavior remains a grand challenge.

Methods not based on molecular dynamics (MD)
include three broad classes: Monte Carlo (MC)

approaches, harmonic approximations, and coarse
graining. Although in their own right MC methods are
not always satisfactory for large systems, they form
essential components of more sophisticated methods
(for example, transition path sampling or Markov chain
MC sampling, surveyed in the MD-based sampling
methods review in an upcoming issue of F1000 Biology
Reports [4]). Harmonic approximation-based methods
can provide valuable insights into structure/flexibility/
function relationships of complex systems, and coarse-
graining approaches allow studies of key features of
complex systems not amenable to regular atomistic
treatments. These methods will be surveyed, with
promising directions highlighted.

Major recent advances
Monte Carlo approaches
MC approaches have long been used due to their
simplicity and generality. For example, they can be
applied to many types of potentials, even discontinuous
ones, like the square-well potential for fluid or colloidal
suspensions [5], or lattice and off-lattice protein models
(for example, [6]). They also allow exploration of
variable conditions not amenable to fixed potentials,
for instance, the conformational dependencies on
ionization states of proteins, which affect side-chain
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protonation states, as in the electrostatically driven MC
(EDMC) method of Scheraga and colleagues [7]. EDMC
in combination with different dihedral angle constraints
was shown to successfully fold a villin headpiece in close
agreement to the NMR structure [7]. For recent reviews
on MC applications to biomolecules, see [8,9]; see [10]
for a recent review of MC theory.

The general premise in canonical MC sampling is to
generate a set of conformations under Boltzmann statis-
tics. Based on the Metropolis acceptance criterion, states
that decrease the energy are always accepted and those
that increase the energy are accepted with a probability
P = exp(−bΔU), where b = 1/kBT and ΔU is the energy
difference between the internal energy of the new and old
configurations. In practice, this probability is achieved by
generating a uniform random variate ran on (0,1) and
accepting the new state ifP > ran in order to ensure detailed
balance and the target thermal distribution. The result of
this procedure is the acceptance probability:

P ¼ minf1; exp½−bðUnew−UoldÞ�g

(Note that, if P ≤ ran, the old state is re-counted and
a new trial state is generated.) This approach allows
the molecular system to overcome barriers in the vast
conformational space and escape from local minima.

Because convergence of this protocol can be slow,
simulated annealing (SA), a form of global optimization,
has been developed so that the effective temperature is
gradually lowered according toa specified coolingprotocol
to overcome barriers in the rugged landscape. SA can be
used successfully as an extended form of MC, as well as
molecular, Langevin, or Brownian dynamics simulations.

Still, selecting the appropriate trial move set and move-
ment magnitudes for a biomolecule without high
rejection rates can be challenging. Biased MC variants
have been devised with trial moves and hence the
conformational deformations designed to move the
system to more probable states. Therefore, the Rosen-
bluth, instead of the Metropolis, criterion is used to
factor in the probability (Boltzmann weights) of all trial
positions that were skipped in favor of the biased moves:

P ¼ minð1;Wnew=WoldÞ

Here, the Rosenbluth factor W is equal to the product of
the sum of the Boltzmann weights of trial positions for
each segment i insertion:

W ¼ ∏
N

i¼1
∑
n

k¼1
expð−bUi

kÞ

where N is the number of chain segments and Ui
k is the

potential energy of the kth trial of adding the ith
segment. (One of these trial moves is selected for each
segment i with a probability proportional to its
Boltzmann weight, and this process is repeated for all
segments until the entire chain is re-grown.) Thus,
additional overhead is required in biased MC simula-
tions to calculate that probability ratio.

Configurational bias MC (CB-MC) is a biasedMC variant
that helps ‘grow’ a molecule toward particular states.
Traditional CB-MC ‘re-grows’ a deleted position of a
polymer at the same end in variable orientations (instead
of trying out all neighboring sites randomly). This results
in an exponential scaling time with polymer length to
re-grow a self-avoiding lattice chain due to the high
probability of segment overlaps. In certain applications,
much more effective variants can be developed, as in the
‘end-transfer CB-MC’ for chromatin, where one end of
the polymer is grown at the other end. Dramatic
efficiency can be achieved – quadratic versus exponential
scaling – in such applications [11].

Many hybrid MC methods [10] have also been devel-
oped to marry the advantages of MC (global sampling
potential) with those of MD (continuous local sam-
pling). The success of such methods has been highly
application-dependent but can be very effective, espe-
cially for small systems [12].

Finally, J-walking or temperature jumps can be intro-
duced to accelerate sampling (similar to SA) but here
multiple simulations of non-interacting systems are
involved. This parallel tempering approach [13,14]
periodically exchanges replicas at different temperatures
with a transition probability that maintains each
temperature’s equilibrium ensemble distribution:

P ¼ minf1; exp½ðbnew−boldÞðUnew−UoldÞ�g

where bi = 1/(kB T i) andUi is the internal energy of state i
(new and old). In this way, barriers over rough energy
landscapes can be overcome. These parallel tempering
methods have been particularly effective in their MD
incarnation, termed replica exchange MD; see accom-
panying survey [4].

An MC method with advantages similar to parallel
tempering in escaping from local barriers was introduced
by Wang and Landau [15]. Their method performs
multiple random walks in energy space, each to sample a
different range of energy; the resulting information is
combined to produce canonical averages for calculating
thermodynamic quantities at any temperature. When
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performance of this energy-restricted multiple random
walk protocol was compared with parallel tempering for
protein conformational sampling, the two methods
performed similarly and were faster by two orders of
magnitude when compared with a canonical MC
simulation at a low temperature; the Wang/Landau MC
method was found to be easier to implement on single-
processor systems, whereas parallel tempering is advan-
tageous for multi-processor implementations [16].

Given recent successes [8,9,12], some advocate that
recent improvements in MC methodology and increased
computer memory and speed lend support for the
increased application of MC algorithms for folding
small biomolecules. Indeed, canonical, multi-canonical,
and biased MC protocols that incorporate experimental
information (knowledge-based dihedral angle distribu-
tions, hybrids involving global optimization techniques
and MD, and so on) can significantly enhance the
sampling of low energy configurations and reveal folding
ensembles of small proteins. General and flexible MC
modules have been built into standard programs like
CHARMM (Chemistry at HARvard Macromolecular
Mechanics) [12], with automatic optimization of step
sizes and efficient combinations with minimization or
MD modules. These optimized MC methods were found
to outperform standard Langevin dynamics simulations
in reaching folded states of small proteins.

In general, MC methods can become inefficient for large
systems but can be effective for coarse-grained methods
(for example, chromatin folding [17]) and as vital
components of other methods (for example, transition
path sampling; see accompanying survey [4]). These MC
extensions and hybrids argue for further development
of MC methods for biomolecular applications as a
whole.

Harmonic approximations
Normal mode analysis (NMA) and principal component
analysis (PCA) are based on harmonic theory. Thus, in
their purest forms, spectral decompositions (diagonali-
zation) of a mass-weighted Hessian at thermal equili-
brium are performed [18]. This harmonic approximation
is far from accurate at ambient temperatures when
significant biomolecular fluctuations between mini-
mum-energy regions, as well as occasional rearrange-
ments, occur. Still, these techniques have provided
valuable information on collective motions of biomole-
cules. Elastic networks [19-21] are modern extensions
that forgo the computationally demanding diagonaliza-
tion because the simplified bead/spring-type models are
assumed by construction to reflect minimum states of
the molecular system.

Besides elastic networks, a successful extension of these
techniques that focuses on low-frequency high-ampli-
tude vibrational modes is called ‘essential dynamics’
(ED), to which key contributions have been made by
Berendsen, de Groot, Amadei, and others [22]. ED can
be used to simulate the dynamics in the low-dimen-
sional space spanned by the low-frequency modes. This
is accomplished by constructing the variance/co-var-
iance matrix of positional fluctuations, projecting the
original configurations onto each of the principal
components, and then following the principal motions
in time. There is no explicit assumption of thermal
equilibrium here.

The literature is vast with applications of PCA, NMA, and
ED with both all-atom and coarse-grained models and in
combination with various algorithms, including mole-
cular, Langevin, and Brownian dynamics, to biomole-
cular conformational flexibility and dynamics. Clearly,
these approaches have provided valuable insights into
biomolecular flexibility and functional activity. How-
ever, the results depend strongly on the level of
convergence of the sampling, which influences the
results and hence the interpretations.

As one example, a PCA study of the closing conforma-
tional change of DNA polymerase b upon binding the
nucleotide substrate revealed that the top three principal
components involve correlations between the thumb
subdomain and other regions of the protein (palm,
8-kDa) [23]. Another study, also using PCA, of 13 single-
base variants of TATA-box DNA sequences bound to the
TATA-binding protein [24], helped explain why these
variants revealed a wide range of transcriptional effi-
ciency despite remarkably similar structures: high-
efficiency variants favored complexation motions while
low-efficiency variants tended toward dissociation defor-
mations. The dominant motions common to all com-
plexes are shown in Figure 1A and are dissected for the
protein and bound TATA-box DNA separately.

Network models have been particularly effective for
applications to molecular machines like GroEL and
the ribosome modeled by coarse-grained formulations.
For example, in an application to the ribosome [25],
collective ratchet-like motions were identified that are
key in the translocation of the mRNA-tRNA complex.

A tour de force computational comparison between
coarse-grained NMA and atomistic ED studies on many
proteins [26] showed that both techniques are valid for
describing the spectrum of the low-frequency modes and
tracing protein flexibility in water, despite the fact that
individual eigenvectors from NMA have small values.
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An extensive PCA study of a beta-protein WW domain
using the coarse-grained protein model UNRES (united
residue) [27] showed that dynamics of fast, slow, and
non-folding MD trajectories can be well characterized by
PCA and that the top few principal components describe
the dynamics processes well.

Note that, besides normal-mode-based methods,
another class of harmonic approximation methods
based on MD includes internal (for example, torsion-
angle) MD propagation and variable transformation of
classical statistical mechanical configuration partition
functions. The latter will be mentioned in the forth-
coming MD-based survey [4]. As for the former, internal

coordinate dynamics approaches have long been
attempted with the rationale that the fewer degrees of
freedom (compared to Cartesian coordinates) allow for
longer integration timesteps, and hence greater sam-
pling. Indeed, peptide folding and refinement with
dihedral angle MD demonstrated a computational
advantage of several orders of magnitude compared to
Cartesian analogues [28], as well as the capturing of
folding pathways of helical peptides and local side-chain
and domain dynamics [29]. Another recent study
combined dihedral space MD with PCA (dPCA) in a
clever way to systematically construct the low-dimen-
sional free energy landscape from a classical MD
simulation [30]. Although this analysis is interpretive,
it shows that major conformational states, barriers, and
reaction pathways for solvated peptides can be visualized
from the constructed energy landscape.

In general, such dihedral angle MD approaches for
propagating biomolecular motion have not yet caught
on at large, perhaps due to both the added cost of the
transformation involved in theNewtonian lawsofmotion
and the fact that biomolecular vibrational modes are
intricately coupled and hence dynamics can be critically
altered by neglecting the high-frequency bond-length
and bond-angle modes. However, the increase of coarse-
graining models argues for their resurgence.

Coarse graining
System-specific coarse-grained methods are attractive
because they drastically reduce the number of degrees
of freedom. However, their formulations are highly
system-dependent and require as much art as science in
constructing, testing/validating, and applying them to
appropriately formulated questions. Coarse graining can
involve bead models, implicit solvent approximations,
discrete lattice models, and general multiscale
formulations.

The simplest type of coarse graining involves bead
models, long used for proteins (for example, Warshel
and Levitt’s united residue model [31]) and supercoiled
DNA (wormlike chain model of Allison andMcCammon
[32]), andmore recently developed for RNA (for example,
[33]). Such methods can lead to meaningful insights into
larger-scale rearrangements, including folding, not typi-
cally amenable to all-atom simulations. However, the
neglect of many details (for example, solvent/solute
interactions, which at best can only be accounted for
indirectly, as in Langevin or Brownian dynamics) should
be considered in the biological interpretations.

In addition to bead models, coarse graining can involve
implicit solvent approaches (developed by McCammon,

Figure 1. Examples of principal component analysis and
coarse-grained models

(A) Principal component analysis (PCA) for the group of TATA-binding
protein (TBP) structures bound to several TATA-DNA sequences showing
top principal components as dissected separately for the protein and the
DNA. Adapted from [24]. (B) Mesoscale chromatin model. Beads represent
the linker DNAs following the wormlike chain model for DNA, and coarse-
grained beads denote the histone tails. An electrostatic surface charge
treatment for the nucleosome core (discrete surface charge optimization
[DiSCO] to approximate the Poisson-Boltzmann potential as a function of
salt) is shown [39,40]. CTD, C-terminal domain; NTD, N-terminal domain;
PC, principal component.
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Case, Karplus, Roux, Honig, Truhlar, and many others,
and reviewed recently [34]) that reduce the number of
degrees of freedom drastically, accounting for them in
an average sense in the form of solvation free-energy
estimates. Such treatments can be effective, especially
when combined with coarse-grained models of mole-
cular systems. However, Chen and Brooks [34] caution
that current surface-area-based non-polar models have
significant limitations and thus could benefit from
incorporating several non-polar solvation aspects.

Lattice models also reduce the conformational degrees of
freedom to a discrete set, therefore allowing (in theory)
exhaustive sampling of the conformational space. Lattice
models of proteins, such as those developed by Go– and
Taketomi [21] and by Miyazawa and Jernigan [35], are
associated with ideal funnel energy landscapes: a protein
chain is modeled by attractive interactions between pairs
of residues that interact in the native structures and
repulsive interactions of the other pairs, based on
statistical data. Recently, Coluzza and Frenkel [36] also
applied such latticemodels to study the effect of substrates
on the folding of their partner proteins. Such lattice
modelsofpolymersare typically sampledbyMCmethods,
with tailored moves like corner-flip, crankshaft (rotation
by 90° of two consecutive particles), branch rotation, and
center-of-mass translation. Protein lattice models have
also been extended to off-lattice protein versions.

General coarse-grained or multiscale models are most
challenging to formulate and validate because the
various components need to be resolved by different
approaches and combined effectively. For example,
simplified models of the chromatin fiber developed by
the groups of Langowski [37], Schiessel [38], Schlick
[39], and others, necessarily select the molecular parts to
resolve in more detail and those that can be effectively
approximated. For example, in studies aimed at dedu-
cing the architecture of the 30-nm chromatin fiber, the
nucleosome core, histone tails, linker DNA, and linker
histones are each modeled differently in a mesoscale
model sampled by MC (Figure 1B). The nucleosome
core – DNA wrapped around a histone octamer – is
represented as an irregular surface with Debye-Hückel
point charges that approximate the electrostatic field, as
evaluated by the non-linear Poisson-Boltzmann equa-
tion; the linker DNA, histone tails, and linker histone
protein are described by coarse-grained bead models.
Such a chromatin model, when carefully parameterized,
can reveal the dynamics/structure of each component as
a function of internal and external factors [40].

An impressive example of general coarse graining is the
membrane system as modeled by Arkhipov et al. [41]

and highlighted in [42]. Six coarse-grained amphiphysin
BAR-domain proteins placed on top of a coarse-grained
planar membrane patch of lipids triggered a re-shaping
of the electrostatics-dominated surface by inducing
global curvature within several microseconds, in agree-
ment with curvature dimensions observed experimen-
tally. Other successful and insightful coarse-grained
membrane systems were reported recently, revealing
pore formation [43], membrane architecture [44], and
protein/membrane-binding interactions [45]. Dynamics
simulations of virus capsids were also pursued by a
coarse-grained model to study the factors affecting capsid
stability [46]. An ambitious coarse-grained model of the
GroES chaperone showed that the equatorial region of
the GroEL/GroES chaperonin complex creates a channel
that blocks the passage of folded proteins while at the
same time welcomes the passage of secondary segments
of diameter up to that of an alpha helix [47].

A minimalist coarse-graining model for proteins based
on a ‘switching Go– model’ was also developed and
applied to derive a rotational mechanism of a biomo-
lecular machine, an ATP-driven molecular motor,
F1-ATPase [48].

A key question that was recently addressed by the Voth
group [49] was how, in general, should the coarse
graining be chosen. Their work proposed a systematic
elastic network coarse-graining approach that essentially
selects beads to represent groups of atoms so that atoms
in the same domain reflect the collective motions as
computed by PCA [49]. These beads are determined by
minimizing a residual of displacement differences. As
shown for models of the HIV-1 capsid protein dimer,
six- and eight-site models both approximate the system’s
‘essential dynamics’ well, as determined by subdomain
dynamics. They also showed that such coarse-grained
models for peptides can visit and re-visit the folded state,
unlike atomistic MD simulations, which reveal limited
sampling [50].

A systematic parameterization of protein side chains for a
coarse-grained peptide model in coarse-grained solvent
was also reported by Han et al. [51], who demonstrated
comparable solvation free energies with respect to
atomistic models and a factor of 1,000 speedup.

Another rigorous approach to multiscale formulations
was described recently by Noid et al. [52], who developed
a formal statistical mechanical framework for multiscale
coarse-grained models by constructing a many-body
potential of mean force that generates equilibrium
probability distributions for the coarse-grained sites
using information from atomistic simulations. Thus, the
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work rigorously connects equilibrium ensembles of all-
atom and multiscale models. Many interesting applica-
tions of multiscale models in various scientific fields are
collected in a special volume [53].

Future directions
With advances in computer memory and speed, MC
methods are enjoying increased applications in bio-
molecular simulations, both for atomistic and coarse-
grained models. They are vital components of various
enhanced sampling methods like transition path sam-
pling (see [4]) and thus deserve further consideration
and development as our molecular models and force-
field potentials evolve and become more complex and
hence more amenable to MC methods.

While harmonic approximation methods like PCA,
NMA, ED, and elastic networks continue to add
valuable insights into biomolecular flexibility and
function, they are also participating in more applica-
tions with the growth of network models for molecular
machines that help dissect and distill complex functional
motions.

Coarse-grained models are clearly emerging as a favored
approach to study either long-time behavior of small
systems like peptides, as in folding trajectories, or large
supramolecular systems that are too complex to study at
atomic resolution, such as the chromatin fiber, mem-
brane systems, and viruses. Exciting new rigorous
frameworks for coarse-graining general systems are also
under development and will likely increase.

Significantly, all of these approaches for enhanced
sampling can be combined for cumulative and signifi-
cant computational advantages. For example, a coarse-
grained energy function with parallel tempering MC was
used to study protein-protein binding through creating
equilibrium ensembles of various complexes to help
interpret paramagnetic relaxation enhancement experi-
mental data [54]. The combined populations of the
specific complexes and the relatively small number of
distinct but non-specific complexes helped explain the
existence of observed transient encounter complexes.

Of course, careful testing, parameterization, and cautious
interpretations are especially warranted in these creative
coarse-grained approaches. Still, all of these advances,
including elastic networks, coarse-grained approaches,
implicit solvation, internal coordinate PCA, and low-
frequency vibrational mode propagation, are collectively
opening the way to exciting applications of a rich variety
of biomolecular systems regarding large-scale conforma-
tional changes and functional dynamics on millisecond

and longer timescales that are helping to close the gap
between experimental and theoretical time frames.
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