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Abstract

Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and
separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of
evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological
scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level
remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for
which both the timing and the direction is known for most transmission events. To this purpose, we develop a new
transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral
evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host
evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our
data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic
diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-
related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically
unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for
a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire
backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different
biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and
retrieve’ hypothesis positing that viruses stored early in latently infected cells preferentially transmit or establish new
infections upon reactivation.
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Introduction

HIV evolutionary analyses generally focus on either within-host

dynamics or on among-host epidemiological processes [1]. The

rapid evolutionary rate of HIV allows the virus to accumulate

significant sequence divergence over the time course of a single

infection, ensuring that within-host HIV populations can escape

both considerable immune and drug selective pressure. Across

multiple infections, however, these selective dynamics and within-

host evolutionary arms race do not appear to strongly impact the

mode of HIV diversification, as multiple co-circulating lineages

generally reflect more neutral epidemiological dynamics [2]. The
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mechanisms involved in HIV transmission are key to this

distinction and they have received a great deal of attention due

to their importance for the design of preventive strategies (e.g. [3]).

Although transmission generally imposes a strong bottleneck on

HIV within-host populations [4,5], no clear phenotypic constraints

appear to act on transmission apart, perhaps, from co-receptor

usage, and a multitude of viral phenotypical aspects are only

loosely associated with enhanced transmission [6].

In addition to studies characterizing viral founder populations,

phylogenetic studies also take great interest in sequence data

sampled across multiple infections. Molecular phylogenetics

represents a popular approach to elucidate transmission links in

a wide variety of situations, including nosocomial transmission

from health care workers [7,8], mother-to-child transmission [9],

sexual transmission [10,11], parenteral transmission [12] and even

criminal transmission [13,14]. Its use as a forensic tool has led to a

critical appraisal of viral phylogenetics e.g. [15,16], and in this

respect, known transmission histories may provide valuable data to

evaluate the performance of the evolutionary reconstruction

methods. By comparing inferred clustering patterns with the

known phylogenetic relationships in a Swedish transmission chain,

Leitner et al. [17] were the first to demonstrate that phylogenetic

estimates were generally consistent with the transmission history,

provided the evolutionary model accounts for rate variation. A

more recent analysis of an HIV transmission cluster involving 9

patients also presented phylogenetic reconstructions that were

largely compatible with the known transmission history, except for

one particular transmission link that appeared to be confounded

by multi-drug resistance patterns in the pol gene [18]. Whereas

Leitner et al. examined topological differences between a single

viral and transmission tree, the more recent study took a somewhat

different perspective on compatibility and examined whether any

conflict arises when attempting to superimpose the host transmis-

sion history onto the viral phylogeny. This was motivated by the

fact that different viral evolutionary trajectories can be embedded

within a particular host transmission tree, akin to gene trees and

their containing species trees [19].

In addition to confirming transmission links, the question has

also been raised to what extent transmission direction and even

transmission times can be ascertained through phylogenetic

approaches. The former may be inferred through paraphyletic

clustering of the source viruses with respect to those of the

recipient, which requires adequate sampling of the viral diversity

within both source and recipient [20] or samples from the source

both before and after transmission [18]. To explore the temporal

dimension of viral transmission, phylogenetic trees need to be

calibrated in time units. This is accommodated by the incorpo-

ration of molecular clock models in phylogenetic inference and has

proven useful to test hypotheses on HIV-1 and HCV transmission

[21]. Applications to next-generation sequencing data have further

exploited time-measured trees to provide genetic estimates of dates

of HIV infection [22], although it needs to be acknowledged that -

even when a bottleneck can generally be assumed - the

transmission may have occurred anywhere between the divergence

from the source and the most recent common ancestor of the

recipient viruses [23].

The ability to estimate divergence times and evolutionary rates

from time-stamped sequence data has provided a historical

perspective on the emergence of different viruses (e.g. [24]) and

resulted in detailed investigations into the tempo of evolution at

different evolutionary scales [25,26]. Such studies also led to the

suggestion that HIV evolutionary rates may be higher within hosts

compared to among hosts. Although few attempts have been made

to quantify such differences, different hypotheses have been put

forward to explain a potential rate discrepancy [27] and modeling

efforts have been undertaken to examine them [28]. From an

evolutionary biology perspective, it is difficult to explain such

differences in the tempo of evolution at the different scales, and

similar to differences in the mode of phylogenetic diversification,

they may be dependent on how transmission is linked to within-

host evolutionary dynamics. A rate mismatch may arise from the

preferential transmission of stored virus, which will be ancestral to

the currently circulating diversity in the source patient, and this

will result in the accumulation of fewer substitutions between hosts

(‘store and retrieve’) [28,29]. This is in line with a recent

phylogenetic study that provided a genome-wide quantification

of rate differences within and among-host, and although based on

limited within-host data, the consistently-elevated rates across the

entire genome seem to support the hypothesis that HIV strains

that are less adapted to the host have an advantage during

transmission [30]. Alternatively, it has been proposed the within-

host adaptive process will have little impact on between host

evolutionary rate estimates because many transmissions will occur

early in infection before the host mounts effective immune

responses (‘stage-specific selection’) [27,31]. Finally, Herbeck et

al. [32] explain the rate mismatch by invoking frequent reversion

of adaptive mutations when virus enters a new host mounting

different immune responses (‘adapt and revert’).

Here, we present a new Bayesian genealogical inference

approach that reconstructs within-host viral evolution and

population dynamics for different individuals linked in a trans-

mission cluster. At the core of this approach lies a transmission

model that requires viral genealogies to be compatible with a

timed history of transmission events from a coalescent perspective.

Specifically, the model constrains the coalescent time for the

source and recipient viral population to be older than the

transmission event and assumes a host transition in the viral

genealogy upon transmission. This approach (i) further relaxes

requirements for topological compatibility between host and viral

Author Summary

Since its discovery three decades ago, the HIV epidemic
has unfolded into one of the most devastating pandemics
in human history. When HIV replication cannot be
completely inhibited, the fast-evolving retrovirus continu-
ously evades intra-host immune and drug selective
pressure, but diversifies according to more neutral
epidemiological dynamics at the interhost level. Limited
evidence suggests that the virus may evolve faster in a
single host than in a population of hosts, and various
hypotheses have been put forward to explain this
phenomenon. Here, we develop a new computational
approach aimed at integrating host transmission informa-
tion with pathogen genealogical reconstructions. We
apply this approach to comprehensive sequence data sets
sampled from a large HIV-1 subtype C transmission chain,
and in addition to providing several insights into the
reconstruction of HIV-1 transmissions histories and its
associated population dynamics, we find that transmission
decreases the HIV-1 evolutionary rate. The fact that we also
identify this decline for substitutions that do not alter
amino acid substitutions provides evidence against
hypotheses that invoke selection forces. Instead, our
findings support earlier reports that new infections start
preferentially with less evolved variants, which may be
stored in latently infected cells, and this may vary among
different HIV-1 subtypes.

HIV-1 Evolutionary Rate within and among Hosts
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evolutionary history, (ii) makes no assumption about transmission

bottlenecks, and (iii) makes more explicit use of the temporal

dimension in viral evolutionary reconstructions from serially-

sampled data. Importantly, the transmission constraints and

associated parameterization of transmission times allow partition-

ing of the viral genealogy into patient-specific evolutionary

trajectories, each informing the parameters of an overall within-

host demographic model. We apply this approach to new clonal

HIV-1 subtype C data from a previously-described [18], but

extended heterosexual transmission chain. Before applying the

model, we test molecular clock models and evaluate the

compatibility of the viral evolutionary history with the transmis-

sion model constraints. We subsequently explore the model’s

ability to estimate transmission bottlenecks and transmission times,

and use it to quantify evolutionary rates at the interface of within

and among-host HIV evolution. Our analyses clearly indicate that

transmission decreases HIV-1 evolutionary rates, and since this is

the case for both synonymous and non-synonymous substitutions,

the findings are consistent with the hypothesis of preferential

transmission of ancestral virus.

Results

Sequence data
We amplified and sequenced partial pol and env regions for

multiple clones from 11 patients in a previously-studied HIV-1

subtype C transmission chain [18]. Our clonal sampling includes

sequences from additional time points for six out of nine previously

described patients as well as sequences from two newly identified

patients in the transmission cluster (K and L; Figure S1). Written

informed consent was obtained from each patient [18]. Patient A

and B represent the earliest infected patients in this cluster, but the

time and direction of transmission between these two patients has

not been clearly established. For the other transmission events,

patient interviews and clinical data were able to demarcate a

relatively narrow time interval for transmission (see Table S1).

Table S2 lists the sampling date, the number of pol and env clonal

sequences obtained for each sample and the sample viral load (if

known).

Bayesian genealogical inference
Testing molecular clock models. Because the compatibility

constraints we introduce as part of the transmission model

condition on divergence times for the viral lineages, we first

determined the most appropriate molecular clock model using a

standard Bayesian genealogical reconstruction with a flexible

coalescent prior (the Skyride model, [33]). We compared strict and

relaxed molecular clock models [34] using log marginal likelihoods

estimated by recent implementations of path sampling (PS) and

stepping-stone (SS) sampling [35,36] (Table S3). For both the pol

and env data sets, uncorrelated relaxed molecular clocks provide a

better model-fit compared to the strict molecular clock. Consistent

with general findings in previous analyses [36], a model that

considers a lognormal distribution to model rate variation among

lineages consistently outperforms a model using an exponential

distribution. We therefore performed all further analysis using this

relaxed clock parameterization.

Compatibility between viral evolutionary history and

transmission history. Before assuming coalescent compatibil-

ity under the transmission model, we investigated to what extent

the viral genealogy meets these constraints using a standard tree

prior. The compatibility constraints constitute an essential part of

the transmission model and enforce source and recipient lineages

to coalesce before transmission time while superimposing the

source-recipient transition onto the relevant viral lineages to

ensure that the genealogy follows the known chain of transmission

events (as illustrated in Figure 1; cfr. Methods). We performed a

Bayesian genealogical inference using a flexible tree prior and

summarize, for each transmission event, the frequency by which

the relevant viral coalescent patterns are indeed compatible with

the timed order of transmissions with Bayesian inference using

Markov chain Monte Carlo (MCMC) analysis. These posterior

compatibility probabilities, together with molecular clock and

divergence time estimates are listed in Table 1 for both pol and env.

Focusing on pol, we find maximum or close to maximum

posterior compatibility probability for 7 out of 10 transmission

events. To examine the incompatible coalescent patterns in more

detail, we summarized a maximum clade credibility (MCC) tree

and superimposed the transmission intervals in Figure 2. This

reveals that an anomalous clustering pattern and not an

inappropriate divergence time is responsible for the incompatibil-

ity for the patient B to H transmission event. The patient I cluster

is nested within the patient H diversity, and following the

transmission from patient B to patient I on the branch ancestral

to I and H, the virus needs to remain in patient I up to its specific

cluster. Therefore, the transmission from patient B to patient H,

which would have to occur along the same branch as the B to I

transmission, cannot be realized anymore.

Because the divergence time for patient B and patient I lineages

is relatively close to the B?I transmission time, this coalescence

event might occasionally be estimated after the transmission,

resulting in a imperfect compatibility probability of 0.78. Although

topologically consistent with the transmission history, the mean

coalescence time for patient C and D lineages is estimated after the

relevant transmission interval and only a small fraction of the

posterior density for this estimate appears to be before the

transmission time, resulting in a compatibility probability of 0.01.

To test whether drug selective pressure had any influence on

compatibility, we performed the same analysis excluding positions

associated with drug resistance [18]. Although this has little impact

on most of the posterior compatibility estimates (Table 1), patient

H and patient I viruses now form two reciprocally monophyletic

clusters in the MCC tree and, as opposed to the unexpected

paraphyletic clustering in Figure 2, this different clustering results

in a somewhat higher compatibility for the transmission from

patient B to H (see Figure 3). The evolutionary rate estimate is

slightly lower than that for the original pol dataset (Table 1), which

likely reflects the removal of positions at which substitutions can

become rapidly fixed due to the drug selective pressure. As a

consequence, some divergence times may also be slightly older,

which may explain the somewhat higher compatibility probability

for transmission from patient C to D, as well as for patient B to H

(Figure 3).

Although the env compatibility is largely consistent with pol,

notable exceptions exist. In particular, the B-H coalescent patterns

are now fully compatible with the transmission history, and the env

MCC tree (Figure 4) suggest that this results from a remarkable

difference in clustering between patient B, H and I viruses. In this

tree, both patient H and I viruses independently diverge from a

patient B lineage and are not more closely related to each other

anymore. The coalescent time for patient I and B lineages is now

almost fully compatible with the known transmission time. For

both the B?I and the original transmission event however, which

either occurred from patient A to B or vice versa, there is now far

less compatibility for either possible scenario, which results from a

too recent MRCA for the relevant lineages relative to the

transmission time (Figure 4). The compatibility probability for

the C?D transmission is also impacted by a too recent coalescent

HIV-1 Evolutionary Rate within and among Hosts
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Figure 1. A hypothetical transmission chain and viral genealogy for 4 patients. For each transmission event, we show an upper and lower
boundary for the transmission event. The viral lineages within each each patient are represented by a particular branch color, while the transmission-
associated host transitions in the viral genealogy are depicted using a color gradient. Whereas the viral genealogy is compatible with transmission
from P1 to P2 and P2 to P3, independent of the number of lineages transmitted, the most recent common ancestor for the P3 and P4 lineages is too
recent to be compatible with the respective transmission event.
doi:10.1371/journal.pcbi.1003505.g001

Table 1. Molecular clock estimates and compatibility probabilities for the pol and env sequences.

pol pol excluding DRMs2 env

CA?B/CB?A
1 0.98/0,98 0.94/0.94 0/0

CA?F 1.00 1.00 1.00

CF?G 1.00 1.00 1.00

CB?C 1.00 1.00 0.99

CB?H 0 0.30 1.00

CB?I 0.78 0.36 0.99

CC?D 0.01 0.18 0.18

CC?E 1.00 1.00 1.00

CC?L 1.00 1.00 1.00

CE?K 1.00 1.00 1.00

evolutionary rate (95% HPD) 4.75 (3.98–5.54) 4.39 (3.67–5.11) 7.40 (6.36–8.44)

coefficient of variation (95% HPD) 0.53 (0.40–0.66) 0.47 (0.33–0.61) 0.55 (0.42–0.67)

tMRCA (95% HPD) 16.95 (16.53–17.44) 16.99 (16.54–17.49) 16.45 (16.10–16.80)

Compatibility is expressed as the proportion of trees in the posterior sample that is compatible with the indicated transmission event after removal of 10% as burn-in.
The mean evolutionary rate and highest posterior density (HPD) intervals are expressed as the number of nucleotide substitutions (1023) per site per year. The
coefficient of variation represents the scaled variance in evolutionary rate among lineages. The time to the most recent common ancestor (tMRCA) represents the time
since the most recent sampling date (24/03/2006), and is expressed in years.
1The percentage of sampled genealogies with an entirely compatible coalescent history (C) are listed for the transmission histories assuming A as the original source
(A?B) as well as B as the original source (B?A).
2DRMs = drug resistance mutations. See [18] for an overview of the removed positions.
doi:10.1371/journal.pcbi.1003505.t001
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time of the relevant viral lineages, but to the same extent as for the

pol analysis excluding drug resistance mutations.

Within-host dynamics, transmission bottleneck and

transmission times under the transmission model. In

addition to the compatibility constraints, the transmission model

we develop as part of this study also specifies a within-host

coalescent model with shared parameters across all patients,

except maybe for the source (cfr. Methods). This can be

implemented instead of a standard coalescent tree prior because

the transmission times, which are estimable parameters con-

strained by the transmission interval boundaries, demarcate the

patient-specific trajectories and their associated coalescent rates

(cfr. Figure 1). We consider three simple parametric coalescent

models: a constant population size model, an exponential growth

and logistic growth model, with only the latter two accommodat-

ing a transmission bottleneck. To identify the most appropriate

coalescent prior for the within-host population dynamics, we again

use PS and SS estimates of the log marginal likelihood (Table S4).

For both the pol and env data sets, a model with transmission-

associated bottleneck consistently yields higher log marginal

likelihoods than the constant population size model. The logistic

growth model offers a better model fit than an exponential growth

model in pol but this is not reproduced by the env analysis.

This model-fit evaluation supports a transmission bottleneck

and suggests a relatively rapid increase in relative genetic diversity

that levels off later in infection. The fact that we can capture signal

for these dynamics is remarkable given the relatively sparse

sampling of within-host diversity through time, in particular close

to transmission, and the fact that treatment may impact genetic

diversity. For these reasons, it is not surprising that it remains

difficult to accurately estimate the overall transmission bottleneck

in our transmission chain using the logistic growth model. Using a

constant (between 0 and 1) b(1,1) prior for the ancestral proportion

parameter, which quantifies the fraction of diversity transmitted

from the source, we arrive at posterior estimates 0.32 [0.21–0.44]

and 0.26 [0.00–0.70] for pol and env respectively. These estimates

Figure 2. Maximum clade credibility tree for pol. Both tips and internal branches are colored according to the patient in which the viral lineages
are hypothesized to reside (cfr. legend on the left). For branches that cross a transmission interval, the part up to the interval is assigned to the source
patients. For posterior support values for each node, we refer to Figure S2. The transmission intervals are represented by the grey boxes. Dashed red
circles indicate the topological and coalescent incongruences. For the C?D coalescent event, the posterior marginal density of the tMRCA estimate is
plotted over the corresponding node in greyshade. Only a lower limit of the transmission interval is known for the A<B transmission. For
transmissions B?C, F?G, C?E, C?L and E?K the most recent boundary of the transmission interval (almost) equals the first sampling date.
doi:10.1371/journal.pcbi.1003505.g002

HIV-1 Evolutionary Rate within and among Hosts
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are unrealistically high compared to previous population genetic

studies reporting on diversity loss at transmission [4] or single

genome amplification studies demonstrating that HIV infections

are generally initiated by a single or only a few variants [37].

Given the lack of clear bottleneck signal in our sampling, we can

formalize previous knowledge as a prior distribution on the

ancestral proportion and specify an increasingly higher prior

probability towards small proportions using a b[1,10] and

b[1,100] distribution. As expected, the corresponding posterior

estimates returned increasingly lower ancestral proportions (e.g.

for env the mean decreases from 0.26 over 0.08 to 0.02 for b[1,1],

b[1,10] and b[1,100] respectively).

Because the transmission intervals we specify are generally

rather narrow relative to the sampling density through time (e.g.

for A?F, Figures 2 and 4), the transmission times are likely to be

sampled uniformly from the known interval. However, occasion-

ally we can find evidence that genealogical divergence times may

also impact the transmission time estimates. For C?L for

example, a very large time interval has been specified reflecting

the uncertainty on the transmission time, in which case the lower

boundary is determined by the divergence time between the

source and recipient lineages. On the other hand, the estimates of

divergence times relative to transmission times may also be

affected by the bottleneck size. When considering the difference

between the transmission time estimate and the time estimate for

the MRCA of the recipient viral population for C?E in env, we

obtain values of 20.05 (20.68,0.24), 0.04 (20.43,0.26) and 0.11

(0.00,0.30) years for the b[1,1], b[1,10] and b[1,100] priors

Figure 3. Maximum clade credibility tree for pol after exclusion of the same drug resistance associated positions as in [18]. Tips and
internal branches are colored according to the states’ posterior probability as estimated using a non-reversible discrete asymmetric trait analysis with
the patients as discrete states [67,68]. Both tips and internal branches are colored according to the patient in which the viral lineages are
hypothesized to reside (cfr. legend on the left). For posterior support values for each node, we refer to Figure S3. The black dotted circle indicates the
node responsible for the higher compatibility of the B?H transition. Like the increased C?D compatibility, this results from the lower evolutionary
rates that lead to somewhat older divergence time estimates. A) The divergence time between the patient B and I lineages is older than the upper
bound of the B?I transmission interval. Following the B?I host transition, B?H cannot be compatible any more. B) When the B-I divergence time is
estimated after its respective transmission, the viral genealogy is inferred to be incompatible with the B?I transmission, and no transition into
patient I is assumed. However, because the same node also represents the B-H coalescence time and this is in agreement with the compatibility
constraints, the fair amount of too recent divergence time estimations for the B-I lineages results in 30% B?H compatibility.
doi:10.1371/journal.pcbi.1003505.g003
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respectively. The negative difference represents a MRCA of the

recipient population that is older than the transmission time, and

hence implies transmission of multiple variants, whereas the

positive values represent transmission of a single lineage as

expected by the prior specification preferring a transmission

bottleneck. This reflects the potential interaction between bottle-

neck size and transmission/divergence times, but in the absence of

strong prior specification, the extent to which this can occur will

again depend on sampling intensity.

Transmission decreases HIV-1 evolutionary rates
Our sampling is not very informative about the transmission-

associated bottleneck size, but it does provide a unique opportu-

nity to investigate the impact of transmission on evolutionary rates.

Although formal evaluations are sparse, evolutionary rates among

hosts are suggested to be lower than evolutionary rates between

hosts [27,28,30]. To investigate this using our data, we separately

estimated within-host and between host evolutionary rates for both

pol and env. The within-host estimate was obtained using a

Bayesian hierarchical phylogenetic model (HPM) fit across

patients for which multiple samples are available. The HPM

model posits patient-specific evolutionary rate parameters, but

allows sharing of evolutionary rate information across patients

through a hierarchical prior specification. We report estimates of

the mean of the population-level (hierarchical) distribution as the

within-host evolutionary rate. An among-host evolutionary rate for

closely related patients was obtained using a transmission model

analysis that only considered a single sample per patient (cfr.

Methods). In addition, we compared these inferences with

evolutionary rate estimates from a data set representing epidemi-

ologically-unrelated patients infected with subtype C for the same

genome regions (cfr. Methods). Despite the uncertainty associated

with evolutionary rate estimates, this reveals a clear rate decrease

from small (within-host) to large (among-host) evolutionary scales

Figure 4. Maximum clade credibility tree for env. Both tips and internal branches are colored according to the patient in which the viral
lineages are hypothesized to reside (cfr. legend on the left). For branches that cross a transmission interval, the part up to the interval is assigned to
the source patients. For posterior support values for each node, we refer to Figure S4. The transmission intervals are represented by the grey boxes.
Dashed red circles indicate the coalescent incongruences. For the A<B and C?D coalescent event, the posterior marginal density of the tMRCA
estimate is plotted over the corresponding node in greyshade. Only a lower limit of the transmission interval is known for the A<B transmission. For
transmissions B?C, F?G, C?E, C?L and E?K the most recent boundary of the transmission interval equals the first sampling date.
doi:10.1371/journal.pcbi.1003505.g004

HIV-1 Evolutionary Rate within and among Hosts
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(Figure 5), with an intermediate rate for the epidemiologically-

related patients in the transmission chain. For both pol and env, we

observe about a twofold decrease in evolutionary rate among

epidemiologically-unrelated patients compared to the within-host

evolutionary rate.

The patients in the subtype C transmission chain have received

antiretroviral therapy for a substantial part of the period between

the first and last sample (see Figure S1), and this can affect viral

evolutionary rates in different ways [18,38]. Because the rate

estimate for the transmission chain relies on the samples before or

only shortly after treatment initiation for each patient, we do not

expect a considerable effect on the among-host evolutionary rate.

To examine whether treatment biases the within-host evolutionary

rates however, we compared our rates to estimates for a control set

of longitudinally sampled therapy-naive patients (cfr Methods)

using a Bayesian HPM approach with fixed-effects [39]. This does

not support any rate differences (see Table S5), suggesting that

therapy does not confound our comparison within and between

hosts. Because the control data sets include sampling over different

times during infection, we took the opportunity to also stratify

these patients into an ‘early’ and ‘chronic’ group, based on sample

availability before or after the first year of infection, in order to test

for stage-specific evolutionary rates. No substantial rate difference

between both groups was detected (see Table S5), which argues

against evolutionary rate differences due to stage-specific selection.

To test more explicitly that transmission decreases evolutionary

rates, we develop a new molecular clock approach that allows for

rate variation according to a relaxed molecular clock model but

also incorporates fixed effects to quantify a difference in rate along

a specified subset of branches (cfr. Methods and Figure S5). We

applied this model within the transmission chain framework in two

different ways. First, we specified an estimable rate effect on the

branches to which a transmission event can be unambiguously

assigned and we estimate the support for a lower rate on these

branches using ln Bayes factors (BFs). Using this approach, we find

about a twofold lower rate on the branches that accommodate a

transmission event in the subtype C transmission chain for both pol

and env with a strong ln BF support (Table 2). We also extended

the fixed effects to the complete branch set representing the

transmitted lineage in the chain as opposed to the within-host

branches that can be generally considered as evolutionary dead-

ends (see Figure S5). This results in similar rate differences and

Figure 5. Violin plot representation of the pol and env within and between-host evolutionary rates. Only patients for which samples for
more than one time point are available were used for the within-host analysis. The ‘within’ host label represents the HPM estimate of the mean within
host evolutionary rate of all patients. Likewise, the ‘linked’ between host label marks the direct estimate of the between host evolutionary rate. For
the latter, only the first available sample of each patient was used. The ‘unlinked’ between host labels denotes the rate estimates obtained with the
skyride prior for the pol and env regions of the epidemiologically unlinked subtype C sequences that overlap with our clonal data sets. The means of
each rate estimate are connected by a black line. Numbers between brackets indicate the fold decrease of the mean relative to the within host mean
rate estimate. All rates are in units of nucleotide substitutions per site per year * 1023.
doi:10.1371/journal.pcbi.1003505.g005
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associated ln BF support and complements our comparison of

intra-host and inter-host evolutionary rates in providing statistical

evidence for a slower among-host ‘trunk or backbone’ rate in the

transmission chain compared to lineages that do not get

transmitted. We note that this rate difference is not enforced by

the transmission constraints because we get consistent results when

using a flexible coalescent prior (the Bayesian skyride model, Table

S6), even though env shows a somewhat less pronounced rate

difference.

The different hypotheses that have been put forward to explain

rate differences within and among hosts have different expecta-

tions concerning synonymous (mS ) and non-synonymous (mN )

substitution rates [28]. Whereas ‘store and retrieve’ is expected to

affect mS and mN rates in a similar way, ‘adapt and revert’ and

‘stage-specific selection’ are predicted to have a greater influence

on non-synonymous mutations and their substitution rates.

Moreover, the latter two hypotheses may also imply a more

pronounced rate decrease for non-synonymous substitutions in env

because of the major immunological pressure it experiences. To

assess these predictions for our data, we resort to recent techniques

to map codon substitutions [40] and employ them to obtain

posterior estimates of mS and mN (see Methods). Comparing the mS

and mN estimates for both pol and env to the overall substitution

rates (Figure 5), we consistently find a similar rate decrease over

the different evolutionary scales, and similar decreases for both pol

and env. As expected for approximately silent substitutions, mS

estimates are highly similar between pol and env for the same

evolutionary scale (they are the only estimates with the same Y-

axis scale for the corresponding pol and env panels in Figure 5).

Estimates of mN on the other hand are much higher for env due to

stronger immune pressure and relaxed constraints in this gene

region.

Discussion

In this study, we present a novel transmission model in a

Bayesian genealogical inference framework that focuses on time-

calibrated viral evolutionary histories and requires such genealo-

gies to be compatible with a known transmission history. Before

applying the model to estimate HIV-1 evolutionary rates, we

investigate the compatibility assumptions on new clonal data from

a subtype C transmission chain and assess the model’s potential to

estimate transmission bottlenecks. We consider viral genealogies to

be compatible with a transmission history if the viral lineages from

the source and recipient coalesce before the time of transmission

and if the host transitions can be superimposed onto the genealogy

according to the time-ordered chain of transmission events. This

approach follows gene-species tree thinking [19] and relaxes the

assumption that viral and transmission trees need to be a perfect

match, but explicitly incorporates temporal constraints instead.

The compatibility concept we introduce here, as well as the

violations we identify in our data, are important considerations for

phylogenetic studies that assess transmission linkage. Conditioning

on the contact tracing information being correct, the major source

for the 2 to 3 incompatible transmission events we observe for both

pol and env appears to be a too recent divergence time estimate for

the source-recipient lineages, as exemplified by the C–D coales-

cence patterns, and not anomalous clustering. In this respect, it is

important to note that high compatibility statistics are only expected

if a considerable ancestral divergence (or pre-transmission interval

[41]) exists for each transmission event. If the source and recipient

lineages coalesce almost immediately before the time of transmis-

sion, the stochasticity of the substitution process and the stochastic

error in the divergence time estimates will inevitably result in

credible intervals for the divergence time of source-recipient

lineages that overlap with the upper boundary for the transmission

time. However, since the ancestral divergence is generally

pronounced in transmission chains [41], the fact that we do not

observe high compatibility for these transmission events may be due

to the same reason we invoke for the lower inter-host evolutionary

rates. A preferential transmission of ancestral viruses may in fact

result in more similar source-recipient lineages than expected based

on their transmission time and bias their divergence time estimates

towards more recent times (see Figure S6). The only instance of

incompatibility that appears to result from a clustering issue involves

the clustering of patient B,H and I lineages in pol. The marked

difference with the clustering for env might have resulted from a

pattern of convergent evolution leading to higher similarity between

patient I and patient H virus in pol. An analysis excluding the

positions associated with drug resistance indicated that drug

selective pressure may at least have been responsible for the

unexpected paraphyletic clustering of patient I with respect to

patient H, but their divergence time is still too recent to be

compatible with patient B as a source for both these patients. We

note that convergent evolution due to drug selective pressure also

induced incompatible clustering in the original analysis of the

population sequences from this transmission chain [18]. However,

this concerned the viruses from patients F and G, and the

convergent substitution patterns involved may have a lower impact

on our analyses because we use longer and therefore more

informative clonal sequences. Although we attempted to exclude

recombinant sequences from our analysis, we note that undetected

recombination within a gene region may also be responsible for

incompatibly between the viral genealogy and transmission history.

Also relevant to phylogenetic investigations of viral transmission

is the ability to infer transmission direction. A recent study of HIV

Table 2. Evolutionary rate estimates and support for the fixed effect in the mixed effects clock model.

Fixed effects pol env

rate lnBF rate lnBF

transmission branches 1.82 (1.00,2.76) 7.50 3.95 (1.99,6.01) 6.40

within-host branches 4.28 (3.40,5.25) 8.41 (6.68,10.23)

transmitted lineage branches 2.21 (1.57,2.99) .7.50 3.80 (2.32,5.20) .6.29

within-host branches 5.07 (4.02,6.21) 10.37 (8.06,12.76)

The mean evolutionary rate and highest posterior density (HPD) intervals are expressed as the number of nucleotide substitutions (1023) per site per year. The Bayes
factor (BF) is computed as the posterior odds over the prior odds that the rate for the transmission branches or transmitted lineage branches is smaller than the within
host-rate.
doi:10.1371/journal.pcbi.1003505.t002
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transmission in two criminal cases suggested that transmission

direction can be deduced from paraphyletic relationships that

show recipient virus clades nested within the larger diversity of the

source virus population [20]. We demonstrate that such relation-

ships can be easily reconstructed in a rooted phylogeny when

source samples are available before and after transmission. In the

absence of such samples from the source, however, both the source

and recipient diversity may need to be sampled close to

transmission to be able to recover paraphyletic relationships. We

show that different gene regions are not necessarily consistent in

revealing recipient sub-clusters within a source clade. For example,

a paraphyletic relationship is reconstructed for the F?G

transmission in pol but not in env. In source F, a selective sweep

in the env region, which is the dominant target for immune

selective pressure, might already have erased the paraphyletic

structure. Indeed, within-host HIV phylogenies generally have a

strong temporal structure [42] and the continual strain turnover

will reduce the probability of recovering source-recipient para-

phyletic relationships. In addition to the differential impact of

selective pressure (e.g. drug selective pressure in pol and immune

selective pressure in env) and incomplete lineage sorting effects in

the two genome regions that may be largely unlinked due to

recombination, also experimental aspects leading to non-propor-

tional representation of variants could explain the general

differences we observe among the two gene regions.

The transmission model incorporates a coalescent prior that

models the within-host population dynamics for each patient

starting from transmission from its respective source. Although not

the focus of our study, we demonstrate that a model incorporating

a transmission bottleneck with subsequent logistic growth in

relative genetic diversity fits our data best. Accurately quantifying

the bottleneck, however, remains challenging and requires more

dense sampling, in particular close to transmission. In the absence

of such data, prior information on the bottleneck size may be

incorporated, which in our case indicates that the bottleneck size

parameter may interact with the relative timing of the transmission

and recipient MRCA, provided recipient diversity is sampled close

to transmission. The latter is likely to be a general requirement to

accurately estimate HIV-1 infection dates from recipient coales-

cent times [22]. Intensive sampling throughout transmission will

not only assist in estimating transmission times or quantifying

bottlenecks, but it may also help to resolve whether the bottleneck

results from a single variant being transmitted as opposed to the

outgrowth of a single lineage from multiple transmitted viruses in

the recipient [43]. In addition to more samples, the genealogical

inference may also benefit from a more detailed characterization

of the diversity within each sample. Nowadays this can be

efficiently pursued using next-generation sequencing (NGS)

platforms, although this would result in shorter read lengths than

the clonal sequences we obtained here. Finally, conventional (RT-

)PCR followed by either molecular cloning or NGS may both

suffer from a non-proportional representation of sequences due to

the re-sampling of only certain templates. This as well as other

confounders can be avoided by using single genome amplification

followed by direct sequencing of the amplicons [44]. We note that

the availability of more comprehensive sampling may not only

better inform the current model but also stimulate the develop-

ment of extensions such as patient-specific coalescent parameter-

izations as well as more complex coalescent models, perhaps in a

hierarchical framework [39].

Using the transmission model, we scrutinize HIV-1 evolutionary

rates in the subtype C transmission chain and find an intermediate

rate compared to within-host evolution on the one hand and

evolution among epidemiologically unrelated individuals on the

other hand. This suggest that the more transmissions in the HIV-1

evolutionary history, the slower the evolutionary rate, which may

be consistent with the different hypotheses put forward to explain a

rate mismatch at different HIV-1 evolutionary scales. The subtype

C transmission chain encompasses 15 years of HIV evolution and

10 transmission events, while the subtype C evolutionary history

for 81 sequences from unrelated patients encompasses about 50

years of HIV evolution but at the very least more than 8 times the

number of transmission events. The fact there are far more

transmission events and therefore more opportunity for transmis-

sion-associated rate decrease in the latter explains why we find the

lowest evolutionary at this scale. We test the transmission-

associated rate decline more explicitly by applying a new

molecular clock model that allows quantifying a different rate

for the branches that accommodate a transmission event. In

agreement with the twofold lower rate among epidemiologically-

unrelated patients compared to within-host evolutionary rates, we

demonstrate a similar rate difference between branches accom-

modating a transmission event or branches representing the entire

transmitted lineage compared to background within-host evolution

in the viral genealogy for both pol and env. This suggests that

lineages that avoid accumulating particular substitutions within

hosts, perhaps those resulting from the evolutionary arms race, do

not compromise their transmissibility and will consequently be

characterized by a lower divergence rate.

Evidence for a rate difference within and among hosts across the

entire genome was recently interpreted as support for the ‘store

and retrieve’ hypothesis [30]. Indeed, it seems unlikely that the

selection forces invoked by both the ‘stage-specific selection’

hypothesis and the ‘adapt and revert’ hypothesis operate strongly

across the entire genome. Our study also finds similar differences

in two different genome regions, but more importantly, we provide

evidence for a similar decline in both synonymous and non-

synonymous substitution rates. This argues more directly against

hypotheses based on selective dynamics whereas it is compatibility

with the ‘store and retrieve’ hypothesis. We acknowledge that

synonymous substitutions are not necessarily selectively neutral,

for example due to codon usage bias and secondary RNA

structure, but the selection effect will still be considerably weaker

on silent versus replacement changes [45]. It is therefore not

surprising that we find similar synonymous substitution rates for

both pol and env at the same evolutionary scale despite very

different non-synonymous rates. By focusing on synonymous

substitutions, we also avoid having to compare rates for a subset of

branches, such as the internal branches [30], which, unlike

external or tip branches, are less likely to represent transient

(slightly) deleterious mutations that will be eliminated by purifying

selection [46,47]. Whereas [30] found a more pronounced rate

difference in the env gene, suggesting that reversions may also

contribute to the rate difference in this gene, we find similar rate

differences for both pol and env. However, our study focuses on the

gp41 region of the env gene which may experience less reversions

compared to the C2V5 region of env gp120 for example.

By focusing on subtype C, our study extends the rate differences

within and among hosts that were previously established for

subtype B. However, the rate mismatch between the intra-host

and interhost level for epidemiologically unrelated patients

appears to be less pronounced (about 2-fold) than that identified

for subtype B complete genomes (about 4 to 5 fold difference,

[30]). This discrepancy may be due to the differences in the

transmission dynamics underlying subtype C and subtype B

spread. Based on a recent study that provided evidence against

preferential transmission from the compartmentalized virus [48],

and on rates of evolution that are even slower among IDUs than
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among populations where the virus is transmitted sexually [31],

Lythgoe et al. [28] claim that an inherent transmission and/or

establishment advantage is the most plausible hypothesis and

speculate that larger inoculum sizes during high-dose rectal and

intravenous transmission may result in slower among-host rates

than for sexual transmission. In the latter case, stochastic effects

may be more important. Following this argumentation, the less

pronounced rate mismatch we find for subtype C may be due to

the largely heterosexual nature of the this epidemic as opposed to a

larger contribution of homosexual and intravenous drug user

(IDU) transmission for subtype B. However, we note that a

comparison of six subtype B within-host data sets for the pol region

also pointed at lower differences (1.64 fold; [30]).

While the role of latently-infected memory T cells in creating a

long-term viral reservoir was already well established as a

significant barrier to HIV eradication [49], the ‘store and retrieve’

hypothesis also attributes a major role to HIV persistence and

reservoir dynamics in the conflict between HIV selective pressures

at the within and between host level. HIV evolution and

adaptation within a particular host has been termed ‘shortsighted’

because it is unlikely to favor viral variants that are efficiently

transmitted or that efficiently establish infection in new hosts [50].

The storage of HIV variants in latent cells at an early stage and

preferential transmission upon reactivation later in infection

provides a mechanism to respond to the different selective

pressures within and between hosts [51]. Further studies need to

determine how pervasive ‘store and retrieve’ can be because it has

important implications for modeling the spread of drug resistant

and immune escape variants. Our analysis of an HIV transmission

cluster using dedicated Bayesian inference approaches corrobo-

rates recent findings about rate differences within and among hosts

and hints at potential differences between different subtypes,

perhaps linked to differences in main risk group-associated

transmission routes.

Materials and Methods

Amplification, cloning and sequencing of the partial pol
and env gene regions from the HIV-1 subtype C
transmission chain samples

We obtained PCR products for both the pol and env gp41 region

(HXB2 nucleotide positions 2097 to 2292 and 7173 to 8792

respectively) using previously described procedures that were

specifically adapted for the use of Expand High Fidelity PCR

System (Roche Diagnostics, Mannheim, Germany) [52,53]. PCR

products from 25 samples were cloned using TOPO XL PCR

cloning kit (Life Technologies, Gent, Belgium), and 1–19 clones

were subsequently sequenced. TOPO ligated PCR fragments were

transformed into TOPO 10 cells (Life Technologies, Gent,

Belgium). Single colonies were used to inoculate 5 mL LB aliquots

and left overnight in a shaking incubator at 37uC. Plasmid DNA

was extracted from cultured cells using a QIAprep Miniprep Kit

(Qiagen, Venlo, The Netherlands) and clones were sequenced

using an ABI PRISM Big Dye Terminator v3.1 Ready Reaction

Cycle Sequencing Kit with previously described primer sets

[52,53]. Sequencing reactions were run on an ABI3100 Genetic

Analyzer (Life Technologies). Sequence fragments were assembled

and analyzed using Sequence Analysis v3.7 and SeqScape v2.0

(Life Technologies, Gent). For env in particular, the clone

sequences were considerably longer than the previously obtained

population sequences [18] because numerous insertions and

deletions seriously hamper unambiguous population sequencing

[53]. Testing both datasets for recombination signal with the W-

test [54] using SplitsTree v.4.12.6 [55] revealed significant

recombination signal (p = 8.328E-5 for env and p = 6.248E-4 for

pol. We omit sequences with statistically significant recombination

signal, as identified using RDP3 [56], from further analyses.

Bayesian evolutionary reconstruction of the HIV-1
subtype C transmission chain

Sequences were aligned using Clustal W [57] and manually

edited according to their codon reading frame in Se-Al (http://

tree.bio.ed.ac.uk). Because identical clones might have resulted

from template re-sampling [58], especially at lower viral loads, we

analyzed only unique sequences obtained from the isolates. We

conducted Bayesian evolutionary reconstructions using BEAST for

both the pol and env gp41 alignments employing either the Skyride

model [33] or the transmission model discussed below. The

Skyride model was used as a flexible demographic tree prior in

analyses aimed at testing molecular clocks and evaluating the

coalescent compatibility of viral genealogy with the known

transmission history, before enforcing this compatibility in analysis

using the transmission model. The latter is based on the

compatibility concept outlined below as the first part of the

transmission model, and formalized into a compatibility statistic.

Specifically, we record a statistic for each transmission in each

sampled genealogy that evaluates whether the source-recipient

coalescent events pre-date the specific transmission event and

whether the correct host transition order can be superimposed

onto the viral genealogy, allowing us to calculate the posterior

compatibility probability for each transmission event. We perform

our analyses with a codon position partitioning into first+second

and third positions, each associated with a general-time reversible

(GTR) model and among site rate heterogeneity modeled using a

discrete C-distribution and a proportion of invariable sites. We

apply the same substitution model and among-site rate variability

to the data discussed in the next sections. MCMC chains were run

sufficiently long to ensure convergence, as inspected using Tracer

v1.5 (http://tree.bio.ed.ac.uk). Maximum clade credibility (MCC)

trees were summarized using the TreeAnnotator tool in BEAST

and visualized in FigTree v1.4 (http://tree.bio.ed.ac.uk). Molec-

ular clock models, including a strict clock assumption as well as the

uncorrelated relaxed clock models with underlying exponential

(uced) and lognormal distribution (ucld), were tested using recent

implementations of path sampling (PS) [59] and stepping-stone

(SS) sampling [60] estimators of the marginal likelihood in BEAST

[35]. Both PS and SS have been shown to outperform the widely-

used harmonic mean estimators [35] and offer similar perfor-

mance as Bayesian model averaging when proper priors are used

[36]. The length of each power posterior MCMC length in the

PS/SS approach was set to he number of states for the standard

MCMC analysis divided by the number of steps taken to arrive at

the prior.

A Bayesian evolutionary model for known HIV-1
transmission histories

We implement a new genealogical model in the BEAST

statistical inference software [61] that accounts for the known

transmission links among patients and allows estimating evolu-

tionary parameters as well as transmission times and within-host

population dynamics from viral diversity sampled through time.

BEAST infers rooted, time-calibrated genealogies with a coales-

cent or birth-death process as a prior distribution for the

branching events [61]. Generally, the entire genealogy is assumed

to be generated by a single coalescent or branching process. To

accommodate the specific transmission structure and within-host

population dynamics, we modify this standard prior specification
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in two ways. First, we enforce the viral genealogy to be compatible

with the known transmission history by enforcing coalescent events

between source and recipient lineages to exist before the

transmission time and assuming a transmission-associated

source-recipient host transition along the relevant lineages in the

viral genealogy. In Figure 1, we illustrate the coalescent

compatibility concept for a hypothetical transmission chain of 4

patients and a particular genealogy of viruses sampled from each

patient. For each transmission event, we show an upper and lower

boundary for the transmission event which represents the fact that

the actual transmission time is difficult to pinpoint, but a

transmission interval can often be defined using external

information (e.g. based on the last negative and first HIV positive

test for the recipient). In this case, we require the coalescent times

for source and recipient lineages to predate the upper boundary

for the transmission time and superimpose transmission-associated

host transitions onto the viral genealogy as depicted by the

transitions in branch colors in Figure 1. The latter allows tracking

the host transition history in the viral genealogy and ensures that

also inadequate clustering of patient-specific lineages can lead to

incompatibility despite the fact the relevant coalescent times may

still be compatible with their transmission time (as observed for the

patient H and I lineages in the pol genealogy in the subtype C

transmission cluster). In the example genealogy, both the

coalescent events for lineages from patient 1 and patient 2, and

from patient 2 and patient 3, are compatible with their

transmission events, despite the fact that two lineages are

transmitted during the latter event. In contrast, the most recent

common ancestor for lineages from patient 3 and patient 4

appears to be more recent than the upper boundary for the

transmission time between patient 3 and patient 4, which is

considered to be incompatible under our model. Therefore, no

genealogies would be allowed to have such coalescent patterns

under the transmission constraints.

We explicitly parameterize the transmission times for each

transmission event and integrate out their dates over the known

transmission time intervals in our inference framework. The

transmission time parameters naturally partition the genealogy

into patient-specific lineages represented by the different branch

colors in Figure 1. This allows us to model a within-host coalescent

process for each patient and estimate population parameters based

on the distribution of waiting times in the patient-specific lineages.

Because within-host sampling is generally sparse for transmission

clusters, all patients share the same coalescent model in the current

implementation of the model, except maybe for the ultimate

source of the transmission cluster which cannot be related to its

respective source patient. We consider simple demographic

functions as coalescent models, including constant population size:

NR
e (t)~NR

e (tS?R),

where NR
e (t) is the effective population size in the recipient (R) at

time t and Ne(tS?R) is the effective population size at time of

transmission (tS?R) from the source (S) to R. Because this model

assumes no transmission bottleneck (NR
e (tS?R)~NS

e (tS?R)),

where NS
e (tS?R) is the effective population size in S at tS?R),

we also consider an exponential growth model:

NR
e (t)~pNS

e (tS?R)exp½{r(tS?R{t)�,

where p represents an ancestral proportion (0wpw1) of the

effective population size in S at time of transmission and r
represents the exponential growth rate, and extend this further to a

logistic growth model:

NR
e (t)~

pNS
e (tS?R)c

1zc
,

with

c~exp {r(tS?R{t{

log (
NR

e (t)

pNS
e (tS?R)

{1){1

� �

r
)

2
664

3
775:

So, the latter two demographic functions are explicitly

parameterized in terms of a transmission bottleneck. Because this

cannot be applied to the patient at the origin of the transmission

chain (e.g. patient 1 in Figure 1), we allow specifying a separate

demographic function for this patient using standard parametric

formulations. Although constant, exponential and logistic models

can therefore also be applied to this patient, we consistently opted

for a simple constant model because the putative source patients

are only sparsely sampled through time (see Figure S1). Our

BEAST implementation enables the simultaneous inference of

viral genealogical history, including the tempo and mode of viral

evolution, and transmission times and bottlenecks. We sample

from the posterior distribution using Markov chain Monte Carlo

(MCMC) incorporating standard transition kernels.

Comparing estimates of within and among host
evolutionary rates for the subtype C transmission cluster
data

In order to compare evolutionary rate estimates at different

scales, we distinguish between HIV-1 evolution within hosts,

among epidemiologically-related hosts and among epidemiologi-

cally unrelated hosts. We study the first two processes based on

data from the subtype C transmission cluster and discuss the data

and associated analysis for the remaining evolutionary scale in the

next section. To obtain a ‘pure’ within-host evolutionary rate

estimate for pol and env gp41 across different patients, we apply a

Bayesian Hierarchical Phylogenetic (HPM) model to the trans-

mission cluster patients for which sequences from multiple time

points are available (see Table S2) [62,63]. This approach allows

specifying independent genealogies for each patient while pooling

information on evolutionary and population genetic parameters

across patients through hierarchical prior specification. Due to the

sparse sampling within the patients, we resort to a strict molecular

clock model and apply a constant population size model to the

patient-specific genealogy. We specify hierarchical prior distribu-

tions over the evolutionary rate and demographic parameters,

allowing them to vary around an unknown common mean. We

consider the mean estimate of the hierarchical prior distribution

for the evolutionary rate as a quantification of the overall within-

host evolutionary rate. To reduce the impact of within-host

evolution among the epidemiologically-related patients, we only

include the time point of each patient closest to the transmission

event from its source.

Because HIV-1 replication rate and evolutionary rate may be

affected by drug treatment, which was common for the patients in

our subtype C transmission chain, we sought to investigate how

comparable our within-host rate was to estimates from untreated

patients. For this purpose, we compiled control data sets based on

a search for intra-patient sequences in the HIV sequence database

(http://www.hiv.lanl.gov/) according to the following criteria: (i)
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longitudinal samples, (ii) known time of sampling, (iii) untreated,

(iv) pol or env genome region, including fragments with a minimum

length of 200. By screening the relevant publications, we identified

10 and 15 studies with pol and env data respectively that met our

criteria. To ensure a close match in genomic region, all sequence

data were aligned against the clonal data. Only sequences with .

75% overlap with the clonal data of the respective region were

kept for further analysis. Because only few pol sequences (9/30

patients) spanned the entire length of the clonal sequence

alignment, we trimmed the alignment from 421 AA to 330 AA

( = 78.5% of the original length). Finally, duplicates were removed

and sequences were grouped per patient. This resulted in the

inclusion of 30 patients for which the serially-sampled sequences

start at AA 1 of protease and end at AA 231 of reverse

transcriptase (numbering according to HXB2). For env, where the

sequence overlap was less of an issue, the intermediate alignment

consisted of 34 patients and comprised AA 468 to AA 856 of

gp160. We refer to Tables S7 and S8 for a detailed overview of all

control datasets.

In addition to serving as untreated controls, both the pol and env

data sets were stratified in those sampled during ‘early’ and

‘chronic’ stage of infection by making use of the available disease

stage information, in order to assess what impact this has on

substitution rates estimates. In particular we classified sequences

under ‘early’ when they were sampled in the first year of infection

and ‘chronic’ when they were sampled later in infection. The data

from the subtype C transmission chain corresponds better with

data from the chronic stage of infection, which generally also

allows for sampling over longer time periods providing potentially

more calibration information. Following the within-host evolu-

tionary analysis for transmission chain patients, we apply a

Bayesian HPM procedure to this data, but extend it with fixed

effects to test for differences among patient groups [63]. The fixed-

effects HPM enables the estimation of Bayes Factor (BF) support

for the early vs. chronic group effect on any evolutionary

parameter, in our case the evolutionary rate.

Evolutionary rate estimation for epidemiologically-
unlinked subtype C sequence data

To complement our rate estimates within hosts and among

epidemiologically-linked hosts, we compile a representative

subtype C data set from epidemiologically-unlinked hosts. To this

purpose, we retrieve and align all available HIV-1 subtype C full

genomes with annotated sampling year from the Los Alamos HIV

sequence database (http://www.hiv.lanl.gov/). From the resulting

alignment containing 505 sequences, we select a diverse subset to

minimize epidemiological relatedness and ensure that they are

representative for the diversity of the subtype C epidemic. At the

same time, we aim to spread the sampling density over the

available sampling time interval. Therefore, we select the 5 most

divergent sequences within each sampling year by constructing a

BioNJ tree in Seaview [64], followed by subsampling according to

diversity. For the latter we make use of the Phylogenetic Diversity

algorithm, which selects for the subtree of n taxa connected by the

longest branch length [65]. For the year 1989, we kept only two

sequences in our selection because 3 of the 4 available sequences

were from the same patient. This selection procedure resulted in a

dataset of 82 taxa spanning the period of 1986–2010. Inspection of

the temporal signal by plotting root-to-tip divergence as a function

of sampling time in Path-O-Gen v1.3 (http://tree.bio.ed.ac.uk/)

lead us to remove 1 outlier sequence from 2009, and showed clear

signal for divergence accumulation over the sampling time interval

(R2 = 0.50) for the remaining 81 full genomes. We again used the

W-test [54] as implemented in SplitsTree v4.12.6 [55] to detect

recombination; no significant signal was found.

For the Bayesian genealogical inference, we partition the full

genome by gene to allow for among-gene rate variation. We

further subdivide the rev and tat genes according to their splicing

parts, and split pol and env into the region that overlaps with our

clonal data and the remainder of the gene. We specify a Bayesian

HPM for the gene-specific GTR substitution model parameters,

the shape parameter for C-distribution modeling among-site rate

variation, and for the proportion of invariant sites. Similar to the

analyses of the other data sets, we specify a Bayesian Skyride

model as a flexible demographic prior for the tree.

A mixed effects molecular clock to model among-lineage
evolutionary rate variation

To quantify and test for different evolutionary rates along an

arbitrary branch set in the genealogy, we develop a novel mixed

effects molecular clock approach in our Bayesian framework that

combines both fixed and random effects. Following standard

hierarchical modeling terminology, the random effects hi quantify

possibly different rates for each branch i and we posit that these

effects arise from an uncorrelated relaxed clock process following

[34] on the log-scale. Assuming effects are additive on the log-

scale, we further incorporate fixed effects b to allow for different

overall rates on fixed subset of branches in the unknown

genealogy. Specifically, we model the overall rate ri on branch i as

log ri~hizXib, ð1Þ

where Xi is the fixed design indicator or covariate associated with

branch i.

We test two different fixed-effect designs for the transmission

chain data: one that differentiates branches along which a

transmission event occurred from the remaining branches and

one that differentiates the branches representing the transmitted

lineage from the remaining branches (see Figure S5). In the former

case, we focus on single branches that unequivocally represent a

transmission event. For these branches, we set Xi~1; for all other

branches, we set Xi~0. To achieve unequivocal events, we omit

the sequence samples from patient G and the earliest sampling

time point for patient C (C94), which complicate the unambiguous

assignment of transmission events. The remaining nine transmis-

sion-associated branches are generally well-supported in the

posterior according to the genealogical inference, but we enforce

the descendent taxa to be monophyletic in the molecular clock

inference to ensure that the effect is always associated with an

identifiable branch. For the second approach, we specify

‘transmitted’ lineages for the full data set without monophyletic

constraints as the set of branches from the root of the tree to the

MRCAs of patients from which there is no more onwards

transmission in the chain; these branches receive Xi~1 and

represent the ‘trunk’ or ‘backbone’ lineages [47] for multiple

patients in a transmission chain.

To evaluate the significance of the fixed-effect specification, we

conduct a Bayes factor (BF) test [66] that expresses the posterior

odds over the prior odds that rates on the branches of interest

(transmission-associated or transmission lineage-associated) are

lower than the background within-host branches. We perform the

BF test using the posterior sample obtained via MCMC directly

since the restricted hypothesis is nested within the unconstrained

model that we simulate. Under the unconstrained model, the

posterior sample average of the indicator I(bv0) converges to the

posterior probability of the constrained hypothesis. Since the prior
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odds in our case simplify to 1, we simply need to compute the odds

ratio of the mean indicator value to estimate the BF.

Estimating absolute rates of synonymous and non-
synonymous substitutions at the different evolutionary
scales

To estimate absolute synonymous and non-synonymous substi-

tution rates, we integrate recently developed stochastic mapping

procedures in the BEAST analyses described above [40]. We

follow an approach that is conceptually similar to [47], but is

computationally more efficient in accommodating the uncertainty

about the phylogenetic tree and about other nuisance parameters.

Briefly, we fit codon position partitioned substitution models in a

Bayesian framework and use standard MCMC integration to

obtain a sample from the posterior distribution of model

parameters. At each iteration of the MCMC, we use stochastic

mapping to impute the full evolutionary history of each nucleotide

position within each codon site in our alignment and subsequently

summarize the resulting numbers synonymous (S) and non-

synonymous (N) substitutions. To obtain posterior estimates of

synonymous (mS ) and non-synonymous (mN ) evolutionary rates in

substitutions per site per year, we divide the total S and N counts

at each iteration by the total tree length in time units, and

summarize these quantities across the posterior distribution of

trees to arrive at mean estimates and credible intervals. To obtain

an overall within-host mS and mN estimate for comparison with the

estimates for the epidemiologically-linked and epidemiologically-

unrelated data sets, we sum the N and S counts for the patient-

specific genealogies at each iteration in the HPM analysis and

divide them by the sum of the respective tree lengths, and then also

summarize these quantities across all samples.

Supporting Information

Figure S1 Schematic representation of the studied
transmission chain. Orange arrows indicate transmission

events. The width of the arrow is proportional to the time interval

for transmission. For the first event between patient A and B, the

time and direction of transmission could not be established by the

patient interviews nor by clinical data. This is indicated by the

double-sided arrow. The patients are indicated by bars whereby

the color indicates the treatment status. Red indicates periods

without treatment whereas the treatment type is as in the legend.

{: the patient is deceased. The light blue arrows indicate sampling

events for which clonal data were generated, including the

sampling year.

(EPS)

Figure S2 Maximum clade credibility tree for pol. Tips

and internal branches are colored according to the states posterior

probability as estimated using a non-reversible discrete asymmetric

trait analysis with the patients as discrete states [67,68]. This was

run on the empirical tree distribution obtained with the Skyride

analysis of our chain data. The correspondence between the colors

and patients is as in the legend. Numbers indicate the posterior

probability of the nodes.

(EPS)

Figure S3 Maximum clade credibility tree for pol after
exclusion of the same drug resistance associated
positions as in [18]. Tips and internal branches are colored

according to the states posterior probability as estimated using a

non-reversible discrete asymmetric trait analysis with the patients

as discrete states [67,68]. This was run on the empirical tree

distribution obtained with the Skyride analysis of our chain data.

The correspondence between the colors and patients is as in the

legend. Numbers indicate the posterior probability of the nodes.

(EPS)

Figure S4 Maximum clade credibility tree for env. Tips

and internal branches are colored according to the states posterior

probability as estimated using a non-reversible discrete asymmetric

trait analysis with the patients as discrete states [67,68]. This was

run on the empirical tree distribution obtained with the Skyride

analysis of our chain data. The correspondence between the colors

and patients is as in the legend. Numbers indicate the posterior

probability of the nodes.

(EPS)

Figure S5 Illustration of the fixed-effects rate specifica-
tion using env as an example. Branches on which the rate

effect is specified are coloured red. A) The rate effect is specified on

the branches over which transmission could unambiguously be

assigned. B) The fixed-effects are specified on the branches that

represent the transmitted lineages.

(EPS)

Figure S6 Illustration of the effect of the transmission-
associated rate decline on node height estimation under
a molecular clock model. Each tree depicts the same

hypothetical transmission scenario. The transmission event is

represented by the transition from black (source) to red (recipient)

along the relevant branch. Branch lengths for the left and middle

tree are expressed in units of genetic change, whereas they

represent time for the tree on the right. The leftmost tree depicts

the situation that can be expected under a constant evolutionary

rate throughout the evolutionary history, i.e. when the divergence

between source and recipient taxa is proportional to their

divergence time. The tree in the middle illustrates that

transmission of an ancestral variant (the branch part in the source

has been evolving at a slower rate) results in a lower then expected

divergence. However, under a clock model tips are constrained to

be proportional to their sampling time and because of the

averaging effect of rate differences under an uncorrelated relaxed

clock - rates are drawn from an underlying distribution- the lower

divergence between the source and recipient lineages will be

reflected in a more recent divergence time for their common

ancestor (rightmost tree).

(EPS)

Table S1 Established transmission intervals. Samples are

indicated by a capital letter to identify the patient, followed by two

numbers to indicate the sampling year. If different from the

number of sequenced clones, the number of unique sequences is

indicated between brackets.

(PDF)

Table S2 Overview of the conal data. Samples are indicated

by a capital letter to identify the patient, followed by two numbers

to indicate the sampling year. If different from the number of

sequenced clones, the number of unique sequences is indicated

between brackets.

(PDF)

Table S3 Molecular clock model comparison for the pol
and env sequences. 1 PS: path sampling log marginal likelihood

estimates. SS: stepping stone sampling log marginal likelihood

estimates. Smaller absolute values indicate a better model fit. The

similarity between the marginal likelihoods estimated by path

sampling (PS) and stepping-stone sampling (SS) suggests adequate

convergence properties [35,36]. 2 uced and ucld: uncorrelated

relaxed clock models in which the rate of every branch is drawn
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from an underlying exponential (uced) or lognormal (ucld)

distribution.

(PDF)

Table S4 Demography model comparison results for
the pol and env region. 1 PS: path sampling log marginal

likelihood estimates. SS: stepping stone sampling log marginal

likelihood estimates. Smaller absolute values indicate better model

fit. The similarity between the marginal likelihoods estimated by

path sampling (PS) and stepping-stone sampling (SS) suggests

adequate convergence properties [35,36].

(PDF)

Table S5 Fixed effects analyses. 1 Bayes factors (BF) indicate

how much the posterior (the result) deviates from the prior (the

initial beliefs). In general, BF ,3 are considered as absence of

support. 2 These results refer to the comparison of the within host

rate of the transmission chain subjects with the within host rate of

the control patients. 3 Here, the within host rate estimates of the

‘early’ group (only control subjects) are weighed against the rate

estimate of the ‘late’ group (both control and transmission chain

patients).

(PDF)

Table S6 Evolutionary rate estimates and support for
the fixed effect in the mixed effects clock model using a
flexible coalescent prior. Whereas the estimates in Table 2

were obtained under the transmission model, the estimates in this

table were obtained using the Bayesian skyride model as a tree

prior. The mean evolutionary rate and highest posterior density

(HPD) intervals are expressed as the number of nucleotide

substitutions (1023) per site per year. The Bayes factor (BF) is

computed as the posterior odds over the prior odds that the rate

for the transmission branches or transmitted lineage branches is

smaller than the within host-rate.

(PDF)

Table S7 Detailed information on the pol within host
rate control data sets. 1 median number of time points: 7

(range: 2–12). Median time period covered: 148 (range: 4–350). 2

median number of time points: 7 (range: 3–19). Median time

period covered: 1170 (range: 434–4352). 3 When all samples were

taken within the first year after the known or estimated date of

infection, the sampled disease stage is labeled ‘early’. When later

samples were available, the sampled disease stage is labeled as

‘chronic’. 4 All sample dates were, if not yet specified as such,

converted to days. Whenever the date was specified as mm-yyyy

instead of dd-mm-yyyy, the day was set tot the 15th. When the

sampling date was only specified as a year, the data were not taken

into account.

(PDF)

Table S8 Detailed information on the env within host
rate control data sets. 1: median number of time points: 5,5

(range: 2–12). Median time period covered: 184 (range: 4–341). 2:

median number of time points: 6,5 (range: 3–11). Median time

period covered: 1118 (range: 1142–3661). 3,4 Determination of the

‘early’ and ‘chronic’ stages as well as the dating were done in the

same manner as for the pol data. The sample date for the siblings

studied by Draenert et al. [69] was given as months after infection.

Here, the conversion was done by assuming 30 days per month. 5:

Additional sequences for this patient were available from [70]. 6:

Additional sequences for this patient were available from [71] and

[3]. 7: Additional sequences for this patient were available from

[71].

(PDF)
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